欢迎光临小豌豆知识网!
当前位置:首页 > 生活技术 > 医学兽医> 可摄入事件标记的电磁感测和检测独创技术208509字

可摄入事件标记的电磁感测和检测

2021-02-03 20:19:10

可摄入事件标记的电磁感测和检测

  相关申请的交叉引用

  本专利申请是基于2017年07月24日提交的PCT国际专利申请、于2019年03月22日进入中华人民共和国国家知识产权局国家阶段的申请号为201780058565.7、发明名称为“可摄入事件标记的电磁感测和检测”的中国发明专利申请的分案申请。

  背景技术

  本公开一般涉及用于感测和检测事件的各种设备和技术。更具体地,本公开涉及可摄入标识符(ingestible identifier),其采用电磁能量来发送表示感测或检测事件的信号。

  已经提出了将包括电子电路的可摄入事件标记(ingestible event marker)用于各种各样的不同的医疗应用(包括诊断应用和治疗应用二者)中。用于检测可摄入标识符的现有技术状态包括进行与皮肤上的两个点的湿接触并测量由可摄入标识符激活引起的电压差。弱信号电平和强背景噪声限制了这些传统技术,使得检测并解码来自可摄入标识符的信号变得困难且计算密集。两个其他限制使得可摄入传感器和外部检测器之间的通信异常。首先,由于可摄入传感器上可用的电量非常小并且可摄入传感器的尺寸小,因此通信只有一种方式。不存在返回给发送者的确认,如同典型的世界上普遍的几乎所有双工通信系统。其次,由于尺寸小、可摄入的安全材料的列表有限、以及此应用所需的制造成本非常低,因此在电路中添加晶体振荡器在商业上不可行(并且也许在技术上不可行,但至少是非常困难)。因此,这种通信情况的固有区别特征是传输频率的不确定性。尽管大多数商业通信系统在已知频率为几十的兆比率(parts per million)的环境中工作,但是由局部电源和胃液供电的摄入传感器受到产生具有+/-1%范围的中心频率的挑战。因此,本公开的各方面的重要贡献是实现用于RF系统的通信协议,在其中与检测器的背景噪声相比传输功率非常低,并且与典型的现代系统相比传输频率不确定性很大。与其他RF系统相比,可摄入传感器具有用于发送信号的线圈和可被用于储存通信之间的能量的任何电容器二者都可用的极其受限的尺寸。此外,诸如FDA之类的监管机构的健康问题和意见限制了可能被患者消化的某些金属的量,从而对用于感测和通信二者的总可用功率设定了上限。这些通信协议有效地改善了可用于外部检测和解码的信号电平。存在动机来增加从可摄入标识符接收的信号电平,使得可以更容易地检测可摄入标识符,并且通过放置在身体的各个部位上的或者由患者佩戴的接收器来检测该可摄入标识符。

  发明内容

  在一个方面,提供了一种电子装置。所述电子装置包括:控制装置;耦合到所述控制装置的驱动器电路;耦合到所述控制装置的局部电源,所述局部电源被配置为:由于该局部电源与导电流体接触而向控制装置和驱动器电路提供电压电势差。所述局部电源包括:电耦合到控制装置的第一材料,以及电耦合到控制装置且与第一材料电隔离的第二材料。电感器耦合到驱动器电路,其中所述驱动器电路被配置为通过电感器产生电流,并且其中改变通过电感器产生的电流的幅值,以产生由接收器远程可检测到的编码信号。

  在另一方面,提供了一种接收器电路。所述接收器电路包括:谐振电路;耦合到所述谐振电路的低噪声电压放大器;以及耦合到所述低噪声电压放大器的输出的接收器处理器电路,所述接收器处理器被配置为:接收表示脉冲通信信号的模拟信号,将所述模拟信号转换为数字信号,并对所述数字信号进行解码以再现作为脉冲通信信号而传输的数据。另外,意图使接收器被患者每天佩戴达延长的时间段。因此,它的尺寸和功耗二者都是有限的。

  在又一方面,提供了一种接收器电路。所述接收器电路包括:接收电感器;耦合到接收线圈的跨阻放大器;耦合到所述跨阻放大器的输出的放大器;以及耦合到所述放大器的输出的接收器处理器电路,所述接收器处理器被配置成:接收表示脉冲通信信号的模拟信号,将所述模拟信号转换为数字信号,并对所述数字信号进行解码以再现作为所述脉冲通信信号而传输的数据。

  前述内容是总结并因此可以包含对细节的简化、概括、包括和/或省略;因此,本领域技术人员将理解,该总结仅是说明性的并且不旨在以任何方式进行限制。本文中描述的设备和/或过程和/或其他主题的其他方面、特征和优点将在本文中阐述的教导中变得明显。

  在一个或多个方面,相关系统包括但不限于用于实现本文中引用的方法方面的电路和/或程序;电路和/或程序实际上可以是硬件、软件和/或固件的任何组合,其被配置为根据系统设计者的设计选择来实现本文引用的方法方面。除了前述内容之外,在诸如本公开的文本(例如,权利要求和/或详细描述)和/或附图的教导中阐述和描述了各种其他方法和/或系统方面。

  前述总结仅是说明性的,并不旨在以任何方式关于所附权利要求的范围进行限制。除了上述说明性方面和特征之外,通过参考附图和以下详细描述,其他方面和特征将变得明显。

  附图说明

  在所附权利要求中特别阐述了本文中描述的方面的新颖特征。然而,通过参考以下描述并结合如下的附图,可以更好地理解关于操作的方法和组织二者的方面。

  图1示出了根据本公开的一个方面的基于电磁场的感测和检测系统。

  图2示出了根据本公开的一个方面的吞下可摄入标识符的个体。

  图3示出了根据本公开的一个方面的用于检测由可摄入标识符产生的电磁场的接收器。

  图4A示出了根据本公开的一个方面的包括电绝缘元件的可摄入标识符的侧视图。

  图4B示出了根据本公开的一个方面的包括电绝缘元件的可摄入标识符的俯视图。

  图5示出了根据本公开的一个方面的具有位于相对端部上的不相似金属的可摄入标识符的一个方面的框图。

  图6示出了根据本公开的一个方面的具有位于同一端部上且通过非导电材料分开的不相似金属的可摄入标识符的另一方面的框图。

  图7示出了根据本公开的一个方面的当图9的可摄入标识符与导电液体接触并处于激活状态时通过导电流体的电流路径或离子转移。

  图7A示出了根据本公开的一个方面的图7的不相似材料的表面的分解图。

  图8示出了根据本公开的一个方面的图5的具有pH传感器单元的可摄入标识符。

  图9是根据本公开的一个方面的在图5和图6的系统中使用的控制装置的一个方面的框图图示。

  图10示出了根据本公开的一个方面的第一电感器组件。

  图11示出了根据本公开的一个方面的第二电感器组件。

  图12示出了根据本公开的一个方面的包括导电通信组件和电感器组件的可摄入标识符。

  图13示出了根据本公开的一个方面的图12中所示的可摄入标识符的侧截面图。

  图14示出了根据本公开的一个方面的图4A和4B中所示的可摄入标识符的一个方面。

  图15示出了根据本公开的一个方面的图12-图13中所示的可摄入标识符的一个方面。

  图16示出了根据本公开的一个方面的包括形成在单独基板上的单独电感器组件和集成电路的可摄入标识符。

  图17示出了根据本公开的一个方面的包括形成在非导电膜上的电感器的可摄入标识符。

  图18示出了根据本公开的一个方面的包括在将不相似材料沉积在集成电路上之后形成在图13中所示的不相似材料中的一个或两个上的电感器的可摄入标识符。

  图19是根据本公开的一个方面的包括电感器和单端电感器驱动器电路的可摄入标识符的示意性表示。

  图20是根据本公开的一个方面的包括电感器和推挽式H桥型电感器驱动器电路的可摄入标识符的示意性表示。

  图21是根据本公开的一个方面的包括电感器和单端电感器驱动器电路的可摄入标识符的示意性表示,在这里第一金属层被划分成两个区域并且第二金属层被设置在单个区域中。

  图21A是根据本公开的一个方面的包括电感器和单端电感器驱动器电路的可摄入标识符的示意性表示,在这里第一金属层被划分成两个区域并且第二金属层被划分成两个区域。

  图22是根据本公开的一个方面的包括电感器和推挽式H桥型电感器驱动器电路的可摄入标识符的示意性表示,在这里第一金属层被划分成两个区域并且第二金属层被设置在单个区域中。

  图22A是根据本公开的一个方面的包括电感器和推挽式H桥型电感器驱动器电路的可摄入标识符的示意性表示,在这里第一金属层被划分成两个区域并且第二金属层被划分成两个区域。

  图23示出了根据本公开的一个方面的形成在绝缘底部结构上的电感元件或电感器结构,该电感元件或电感器结构可以被采用作为可摄入标识符集成电路中的电感元件。

  图24示出了根据本公开的一个方面的形成在绝缘底部结构上的多层电感元件或电感器结构,该多层电感元件或电感器结构可以被采用作为可摄入标识符集成电路中的电感元件。

  图25示出了根据本公开的一个方面的双层双端口电感器配置。

  图26是根据本公开的一个方面的图25中所示的双层双端口电感器的示图。

  图27是根据本公开的一个方面的图25和图26中所示的双层双端口电感器的示意性表示。

  图28示出了根据本公开的一个方面的四层双端口电感器配置。

  图29是根据本公开的一个方面的图28中所示的四层双端口电感器612的示图。

  图30是根据本公开的一个方面的图28和图29中所示的四层双端口电感器的示意性表示。

  图31示出了根据本公开的一个方面的n层n端口电感器配置。

  图32是根据本公开的一个方面的图31中所示的n层n端口电感器的示图。

  图33是根据本公开的一个方面的图31和图30中所示的n层n端口电感器的示意性表示。

  图34示出了根据本公开的一个方面的具有中心抽头连接配置的对称双层三端口电感器。

  图35是根据本公开的一个方面的具有图34中所示的中心抽头连接的对称双层三端口电感器的示图。

  图36是根据本公开的一个方面的图34和图35中所示的电感器的示意性表示。

  图37是根据本公开的一个方面的谐振(振荡)电感器驱动器电路的示意性表示。

  图38是根据本公开的一个方面的脉冲电感器驱动器电路的框图。

  图39是根据本公开的一个方面的图38中所示的脉冲电感器驱动器电路的示意性表示。

  图40是根据本公开的一个方面的图38和图39中所示的电池倍压器电路的框图。

  图41是根据本公开的一个方面的图40中所示的每个倍压器电路级的示意性表示。

  图42是根据本公开的一个方面的图38和图39中所示的脉冲发生器电路的示意性表示。

  图43是根据本公开的一个方面的图38和图39中所示的电感器放电电路726的简化示意性表示。

  图44是根据本公开的一个方面的可以由图38-图43中所示的脉冲电感器驱动器电路产生的脉冲通信协议的时序和极性图。

  图45是根据本公开的一个方面的图44中所示的脉冲通信协议的稀疏脉冲模板和自卷积图。

  图46是根据本公开的一个方面的可变模板图,该可变模板图可以被采用来识别图44中所示的脉冲函数的传输频率。

  图47示出了根据本公开的一个方面的用于检测由可摄入标识符产生的电磁场的电压模式接收器。

  图48是根据本公开的一个方面的来自接收电感器的脉冲响应的图形表示。

  图49示出了根据本公开的一个方面的用于检测由可摄入标识符产生的电磁场的电压模式接收器。

  图50示出了根据本公开的一个方面的电流模式接收器。

  图51示出了根据本公开的一个方面的另一接收器电路。

  图52示出了根据本公开的一个方面的包括相对于彼此正交间隔开的接收电感器和对应接收器的接收器配置。

  图53示出了根据本公开的一个方面的包括正交间隔开的接收电感器和对应接收器的接收器配置。

  图54示出了根据本公开的一个方面的包括多个接收器电感器L1-Ln和多个接收器RX1-RXn的接收器配置。

  图55示出了根据本公开的一个方面的接收器电路。

  图56是根据本公开的一个方面的脉冲传输频谱的图。

  图57是根据本公开的一个方面的可以由图38-图43中所示的脉冲电感器驱动器电路产生的脉冲通信协议的时序和极性图。

  图58是根据本公开的一个方面的可以由图47-图53中所示的接收器电路接收到的脉冲通信协议的时序和极性图。

  图59是根据本公开的一个方面的可以由图47-图53中所示的接收器电路接收到的脉冲通信协议的时序和极性图。

  图60是根据本公开的一个方面的由图47-图53中所示的接收器电路接收到的40比特数据包。

  图61是根据本公开的一个方面的由图47-图53中所示的接收器电路接收到的数据包的精细频谱。

  图62是示出脉冲的“0”码片序列的示例的图,以及示出脉冲的“1”码片序列的示例的图。

  图63示出了与模板相关的、组合的(0+1)数据的图,其示出了如何找到频率和对齐二者:最高峰值确定这二者。

  图64示出了先前的图中的“A”子码片和“B”子码片的图形表示。

  图65是示出了如何组合根据以上描述的子码片A和B来产生“0”码片=[A B]和“1”码片=[B A]的图。

  图66是示出了组合片在SNR=5000的情况下看起来如何的图。

  图67示出了模板图,其是通过对“A”子码片和“B”子码片求和而产生的,并且被用在解码中以找到数据包的起始点和正确频率。

  图68示出了用于最佳匹配组合片的典型低噪声卷积的图;模板卷积和与片数的关系。

  图69示出了在SNR=5000的情况下的频谱的图,其是对于每个假定的频率的最大卷积值与假定频率的关系的图。

  图70示出了针对极低噪声情况的针对每个片的“A”子码片得分:(X轴:片数,Y轴:相关值)。

  图71示出了在A码片得分的数据包开始处的放大视图:(X轴:片数,Y轴:与“A模板”值的相关)。

  图72示出了将A子码片和B子码片相关值二者绘制在一起。

  图73示出了根据片数的“0”码片值的图。

  图74示出了根据片数的0码片得分和1码片得分二者的图。

  图75示出了比特长度得分与片数之间的关系的图。

  图76示出了具有两条线的低噪声数据包的图:更深的线是比特长度得分,且更浅的线是如所解释的比特值。

  图77示出了在不同信噪比下的最佳拟合组合片的四个图。

  图78示出了“bestThisSums”的各种图,该“bestThisSums”是针对各个SNR“最佳拟合总和”与“模板”卷积。

  图79示出了在不同SNR下的各种频谱图。

  图80示出了被用来在SNR的这些各个水平下对数据包进行成功解码的比特长度得分。

  图81示出了用于另外的尖峰协议的前四个“A”码片。

  图82示出了如所传输的信号的图,假设每符号240个码片。

  图83示出了针对极低噪声情况的针对每个片的“A”子码片得分。

  图84示出了针对极低噪声情况的针对每个片的F码片得分。

  图85示出了所有的A码片一直到W码片得分与片数的关系的图。

  图86示出了符号长度得分中的每一个与片数的关系的图。

  图87是示出低噪声(-5.5dB)数据包的图。

  图88示出了正确频率的低噪声示例,示出了符号长度片的第一组合片。

  图89示出了符号长度片的第二组合片总和。

  图90分别在两个所示的图中示出了在存在噪声的情况下相同的第一片和第二片总和的两个图。

  图91示出了被用于符号长度片的模板。

  图92示出了曲线图2270中所示的组合片与图9中所示的模板的卷积。

  图93示出了曲线图2280中所示的组合片与图9中所示的模板的卷积。

  图94示出了频谱:根据频率的、对于每个符号长度片的两个峰值的幅值的总和。图95示出了帧长度拉伸/挤压分析和符号长度拉伸/挤压分析二者的频谱。

  图96示出了来自具有更多噪声运行的结果,在这里该图示出了帧长度片根据频率的频谱,并且SNR=-13.5dB。

  图97示出了帧长度片根据频率的频谱,在这里SNR=-17.5dB,但每符号仅有120个码片。

  图98是与曲线图2280(参见图90)中相同的第二片、相同的数据集合,但是在高了10个单位的频率。

  图99示出符号长度片的第二片,其中SNR=7dB,但频率在551个单位而不是501个单位。

  图100示出了距检测器9英寸处的传感器仿真器的粗略频谱的图。

  图101示出了距检测器9英寸处的传感器仿真器的精细频谱的图。

  图102示出了来自与源距离9英寸处的检测器的组合帧长度片的图。

  图103是示出了使用在与源距离9英寸处收集的数据的BestSums的图。

  图104是示出了使用在与源距离9英寸处收集的数据的数据包符号和强度的图。

  图105是示出了距检测器24英寸处的传感器仿真器的粗略频谱的图。

  图106示出了距检测器24英寸处的传感器仿真器的精细频谱P3SS2。

  图107示出了距检测器24英寸处的传感器仿真器的精细全帧频谱。

  图108示出了针对与源距离24英寸接收的信号、最佳组合全帧片连同最佳拟合模板的图。

  图109是示出了针对与源距离24英寸收集的数据、bestSums(模板与组合片的卷积的结果)结果的图。

  图110是示出了针对与源距离24英寸收集的数据、符号值和数据包结果的图。

  图111是示出了使用在与源距离24英寸处收集的数据的BestSums的图。

  具体实施方式

  在以下详细描述中,对形成其一部分的附图进行参考。在附图中,除非上下文另有指示,否则类似的符号和参考字符通常标识遍及若干视图的类似的组件。在具体描述、附图和权利要求中描述的说明性方面不意味着进行限制。在不脱离这里呈现的主题的精神或范围的情况下,可以利用其他方面,并且可以进行其他改变。

  在详细地解释使用电磁信号感测和检测可摄入标识符的各个方面之前,应该注意,本文中公开的各个方面不限于它们的应用或用于附图和说明中所说明的部件的构造和布置的细节。相反,所公开的方面可以置于或结合在它们的其他方面、变化和修改中,并且可以以各种方式来实践或实施。因此,本文中公开的使用电磁信号来感测和检测可摄入标识符的方面本质上是说明性的,并且不意味着限制其范围或应用。此外,除非另有说明,否则本文中采用的术语和表述是出于方便读者来描述各方面的目的而选择的,而不是限制其范围。另外,应当理解,在没有限制的情况下,所公开的方面、方面的表述和/或其示例中的任何一个或多个可以与其他公开的方面、方面的表述和/或其示例中的任何一个或多个组合。

  而且,在以下描述中,应该理解,诸如前面、后面、内部、外部、顶部、底部等等的术语是为了方便的词语,并且不应被解释为限制性术语。本文中使用的术语并不意味着对在本文中描述的设备的范围进行限制,或其部分可以按其他取向被附接或利用。将参考附图更详细地描述各个方面。

  如前所述,检测可摄入标识符的常规手段包括进行与皮肤上的两个点的湿接触,并测量在激活可摄入标识符之后由流过患者身体的导电电流所引起的电压差。弱信号电平和强背景噪声可能会限制导电电流技术,并且可能使得检测并解码来自可摄入标识符的信号变得困难且计算密集。另外,在传统的感测和检测技术中,例如,当接收器从腹部离开移动到诸如颈部、胸腔或胸部、手臂、手腕、大腿或腿部之类的位置时,信号逐渐消失。

  总体概述

  在各个方面中,可以采用呈电导体形式的电磁线圈(诸如呈线圈、螺旋或螺旋状的形状的导线)来产生电磁信号。电磁线圈中产生的电流与诸如电感器和传感器线圈之类的设备中的磁场相互作用。或者电流经过线圈的导线以产生磁场,或者相反地经过线圈的内部的外部时变磁场在导体中产生EMF(电压)。如本文中下面更详细描述的,电磁信号可以由形成在包括有源器件区域的半导体基板上的电感器来产生。例如,电感器的导电元件可以被形成在覆盖半导体基板或玻璃基板的介电层上。例如,可以将导电元件图案化并蚀刻成期望的形状,诸如平面螺旋状。可以去除电感器下方的基板的区域以降低电感Q因数。无线通信的当前变革和对更小无线通信设备的需求已经致力于针对无线电通信电子装置的优化和小型化。无源组件(诸如电感器、电容器和变压器)在这些器件的操作中起到了必要的作用,并且因此已经致力于减小这种无源组件的尺寸并改善其性能和制造效率。

  分立的电感器和电容器是在交流电和射频应用(诸如振荡器、放大器和信号滤波器)中采用的无源电磁组件以提供依赖于频率的效应。具体地,电感器两端的电压是电感与经过电感器的电流的时间导数的乘积的函数。传统的电感器包括多个绕组,所述绕组包围由铁磁或绝缘材料构成的芯。虽然电感器芯不是必需的,但是例如使用铁磁芯会增加电感值。电感也是线圈匝数(具体地,电感与匝数的平方成比例)和芯面积的函数。传统的分立电感器被形成为螺旋状(也被称为螺线管形状)或环形线圈。芯通常由包括多个磁畴(magnetic domain)的铁、钴或镍(或铁磁合金)形成。供应给电感器的电流在芯材料中感应出磁场,从而引起畴对齐(domain alignment)并且结果得到材料磁导率的增加,这进而增加了电感。

  半导体工业的发展多年来一直致力于制造尺寸减小的更高性能的器件。半导体电路设计和制造的一个挑战是将高性能电容器和电感器集成到半导体器件中。理想地,使用半导体制造领域中的常规方法和过程来在半导体基板的相对小的表面区域上形成这些组件。然而,与有源器件的特征尺寸和线宽相比,电感器和电容器很大并且不容易集成到通常具有处于亚微米范围中的特征尺寸的半导体器件中。例如,应当理解,电感器可以被形成在玻璃基板上而不是半导体基板上。

  形成在半导体或玻璃基板表面上的大多数电感器具有螺旋形状,在这里螺旋的平面平行于基板表面。已知用于形成螺旋电感器的许多技术,诸如对形成在基板表面上的导电材料层进行掩模、图案化和蚀刻。还可以形成多个互连的螺旋电感器以提供期望的电感特性和/或简化制造工艺。参见例如描述多层螺旋电感器的美国专利No.6,429,504和公开了一种具有高Q因数的高值电感器的美国专利No.5,610,433,该高值电感器是由多个层形成的,每个层包括两个或更多个。例如,各层中的线圈串联互连,以使得电流沿相同方向流过电感器。

  作为重要的电感器优值的Q(或品质因数)被定义为感抗与电阻的比率。高Q电感器(例如,具有低电阻)根据输入信号频率来呈现窄Q峰值,在这里峰值出现在电感器谐振频率处。在以窄带宽工作的依赖于频率的电路中使用高Q电感器尤为重要。例如,增加在振荡器中工作的电感器的Q会降低振荡器相位噪声,并将振荡器频率限制在较窄的频带内。因为Q值是电感器电阻的反函数,从而将电阻最小化会增加Q。一种用于使电阻最小化的已知技术是增加形成电感器的导电材料的横截面积。

  本公开的各个方面将交替的物理现象用于传统的基于导电电流的可摄入标识符检测技术。在一个方面,例如,本公开提供了用于感测和检测可摄入标识符的技术,其采用由可摄入标识符在胃液中感应的电流所产生的电磁场,其更容易在身体的表面内和表面上行进。可以采用接收装置(即天线,诸如电感器)来接收电磁场并将其转换为电压。然后可以通过任何合适的装置(诸如分立的或集成的电子装置)来接收这种电压。参见例如用于讨论体域通信技术的Wang,Jianqing,Qiong Wang,Body Area Communications:ChannelModeling,Communication Systems,and EMC.Singapore:John Wiley&Sons SingaporePte.Ltd.,2013。

  对于方向性,使得电磁场接收器不拾取来自相邻患者的信号,可以将磁屏蔽件放置在接收天线(例如电感器)的顶上。通过将天线限制在屏蔽件和身体之间,接收器将仅接收在身体内行进的场。作为增强,屏蔽件可以制成抛物面,其中天线(电感器)被放置在焦点中以增强信号强度,就像在碟形卫星天线中那样。

  图1示出了根据本公开的一个方面的基于电磁场的感测和检测系统100。图1示出了最近吞下可摄入标识符104的个体102。如下文更详细描述的,可摄入标识符104在其与个体102的胃中的胃肠流体接触时产生编码的电磁信号。尽管编码的电磁信号可以被配置为表示许多变量,但在一个方面该编码的电磁信号表示可摄入事件。在一个方面,除了其他变量之外,可摄入事件可以与个体102服用药物剂量、药物类型或剂量或其组合相关联。

  系统100的实现可以包括许多变化。例如,在一个方面,可以采用如结合图4-图9所描述的可摄入标识符。在该实现中,可摄入标识符在其与导电流体接触时被供电,并且然后产生可以由例如电感器天线检测到的电磁场。该技术是有利的,因为与在皮肤表面上的电流传导相比,电磁场倾向于在患者的皮肤表面上更好地传播。可以用具有N个绕组(其中N是整数)以及可选地用以增加灵敏度的铁氧体磁芯的电感器天线来分接(tap)皮肤表面上的电磁场。由于个体102的身体帮助电磁场的传播,所以系统100在例如接收器106、108、110、112、114、116、118、150、152和/或可摄入标识符104的电感器天线的位置和放置上提供了额外的灵活性。

  在另一方面,可摄入标识符可以包括放大器,以放大由可摄入标识符电路产生的信号。电感器绕组可以被设置在可摄入标识符的同一集成电路上。在另一个方面,电感器绕组可以被印制在介于电极之间的非导电膜(例如裙部)上,所述电极由位于可摄入标识符上的不相似材料制成。在其他方面,可以使用导电可消化材料在非导电膜或集成电路上印制电感器天线。在另一方面,可以添加电感器绕组作为单独的集成电路并且该电感器绕组可以耦合到可摄入标识符电路。此外,系统100可以在各种频率操作,诸如例如100kHz至1MHz,这可以提供用于减小发送器电感器和接收器电感器天线的尺寸的机会。可以通过个体102的身体开始吸收电磁能量的阈值来检测频率上限。这种上频率阈值可以约为400MHz,但不限于此。在其他实现中,操作频率可以选自例如10Mhz至1GHz。

  在各个方面,具有N匝的电感器可以位于可摄入标识符集成电路的两侧上。激励(excitation)在一侧上将为正而在另一侧上将为负,以增强信号强度或使信号强度加倍。可摄入标识符可以被配置为:通过添加多个发送器和多个电感器、或者单个发送器经由多路复用器耦合到多个电感器、或者单个发送器和单个电感器经由多路复用器耦合到多个调谐元件(诸如两个或更多电容器),而以多个频率而不是单个频率进行发送。在其他方面,例如可以将诸如铁氧体电感器的磁性材料沉积或添加到可摄入标识符集成电路以增加发送电感器的电感。在其他方面,可摄入标识符电极可以形成为电感器的形状。

  在其他方面,可摄入标识符可以被配置为直接与移动电信设备(诸如移动电话、蜂窝电话或智能电话)通信,在增加的信号强度的可用性和数据安全性考虑的前提下。

  由可摄入标识符104发送的电磁信号可以被与个体102相关联的接收器检测到。在各个方面,可摄入标识符104和接收器106、108、110、112、114、116、118、150、152中的任一个可以被配置用于单向通信,以及在某些情况下双向通信。接收器106、108、110、112、114、116、118、150、152可以被配置为感测和检测可摄入标识符104,并且可以位于个体102的身体上或身体之外。因此,接收器106、108、110、112、114、116、118、150、152可以位于个体102的身体上、部分地或完全地植入在个体102中,或者可以位于个体102之外但是接近个体102以使得接收器可以容易地检测到相对弱的电磁信号。

  在一个方面,接收器106可以位于贴片中并且粘附到个体102的腹部或者个体102的下半身上的任何位置,以在可摄入标识符被个体102摄入之后感测和检测可摄入标识符104。在另一个方面,接收器108可以位于贴片中并且粘附到个体102的胸腔、胸部或上半身部分。在又一方面,接收器116可以位于贴片或项链上并且佩戴在个体102的脖子或喉咙附近或周围、或者头部上或接近头部的其他地方。在另一个方面,例如,接收器110可以位于臂带中并且在肩膀附近佩戴在个体102的上臂周围。在另一方面,接收器112可以位于手表中并且佩戴在个体102的手腕周围。在又一方面,接收器152可以位于手腕带中并且佩戴在个体102的手腕周围。在另一方面,接收器150可以位于腰带中并且佩戴在个体102的腰部周围。在另一方面,接收器114可以位于脚踝带中并且佩戴在个体102的脚踝周围或个体102的腿上的其他位置。在各种其他方面,接收器可以位于个体102上或接近个体102的任何位置。在另一方面,接收器118可以位于身体之外但是接近个体102。例如,接收器118可以位于个体102穿着的衣服122的口袋120内部。

  直接耦合到个体102的身体的接收器106、108、116可以通过涂覆到接收器106、108、116的皮肤接触表面的粘合剂来附接。放置在个体的手臂或手腕周围的接收器110、112、152可以包括带子或条带以将接收器110、112、152保持在位。在一个方面,接收器112可以具有类似于手表的形状因子。接收器118可以松散地定位在由个体102穿着的衣服122的口袋120内。接收器150可以像腰带一样佩戴在腰部周围。

  在用于感测和检测可摄入标识符的系统的当前实现中,可能需要低能电磁信号来限制场超出个体102的身体的传播以维持被电磁信号承载的信息的隐私性。

  在各个方面,电磁屏蔽或“罐(can)”可以被定位在接收器电感器天线上,以屏蔽接收器免受来自个体102的身体外部的源的电磁波的影响。在一些方面,屏蔽件可以成型为抛物面反射器,以便将来自个体的身体的电磁场聚焦到接收器电感器天线中。在其他方面,两个电感器可以在可摄入标识符上相对于彼此以垂直或正交取向定位,以提供电磁信号的更非均匀的接收。除了电感器天线之外,在接收器技术中可以采用其他形式的天线,诸如偶极天线或贴片天线。

  图2示出了根据本公开的一个方面的吞下可摄入标识符104的个体102。当可摄入标识符104被浸入在通常见于胃132中的电解液中时,内部局部电池被激活以向可摄入标识符104的电子电路供给能量。如图所示,可摄入标识符104在个体102的身体130中发送电磁场136。可摄入标识符104包括谐振电路中的电感器以设定电磁场136的频率。电磁场136遍及身体134传播并且在身体130的表面上传播,位于身体130的腹部附近的接收器106可以在那里检测到磁场136。接收器106包括用来检测电磁场134的电感器天线。可摄入标识符104包括如下电路,其利用在可摄入标识符104中编程的信息来对电磁场134进行编码。

  图3示出了根据本公开的一个方面的用于检测由可摄入标识符(诸如结合图1和图2讨论的可摄入标识符104)产生的电磁场的接收器106。接收器106包括谐振电路140和接收器电子装置142以用来处理从可摄入标识符接收到的编码的电磁信号。谐振电路140可以包括电感器天线144和调谐电容器146以在操作频率谐振。

  通过可摄入标识符的传输

  图4A和4B示出了根据本公开的一个方面的包括电绝缘元件208的可摄入标识符200的各个视图。电绝缘元件208延伸超出集成电路202的外边缘。图4B是图4A中所示的标识符200的平面图。如图4A中所示,集成电路202包括由第一材料构成的上电极204和由第二材料构成的下电极206,其中第一材料和第二材料不相似并且具有不同的电化学电势。如图4B所示,电绝缘元件208具有圆盘形状。参考图4A和4B,上电极204和下电极206以及集成电路202位于圆盘形电绝缘元件208的中心或靠近圆盘形电绝缘元件208的中心。从电绝缘元件208的边缘到集成电路202和电极204、206的周边的距离可以变化,并且在某些方面是~0.05mm或更大(例如~0.1mm或更大),包括~1.0mm或更大(诸如~5.0mm或更大)并且包括~10mm或者更大,其中在某些方面距离可能不能超过~100mm。利用相对于集成电路202上可用的表面积而言的较大可用表面积,可以在电绝缘元件208上设置电感器或电感元件。

  在图4A至4B中所示的示例中,上电极204和下电极206具有平面配置。然而,在其他方面,电极204、206可以具有任何便利的形状,例如方形、圆盘形等、平面或其他形状。圆盘形电绝缘元件208具有平面圆盘结构,其中电绝缘元件208的边缘延伸超出平面上电极204和平面下电极206以及集成电路202的边缘。在所描绘的示例中,电绝缘元件208的半径比上电极204和下电极206的半径更大,例如大~1mm或更多,诸如大~10mm或更多。

  应注意,在任何给定示例中,电绝缘元件208可以或可以不延伸超出电极204、206或集成电路202的边缘。例如,如图4A至4B中所示,电绝缘元件208延伸超出上电极204和下电极206以及集成电路的边缘。然而,在其他示例中,电绝缘元件208可以限定与电极中的一个(例如底部电极206)的边缘相称的边缘,以使得其不延伸超出两个电极204、206的边缘或者集成电路202的边缘,其中电绝缘元件208可以包括延伸超出顶部电极204的边缘但不延伸超出底部电极206的边缘的边缘。

  图5-图9示出了根据本公开的各个方面的可摄入标识符系统210、220、260的各个方面。图5-图9中所示的可摄入标识符系统210、220、260包括耦合到电感器401的固态半导体开关400。该固态半导体开关400在电子控制装置218(图5、图7、图8)、228(图6)的控制下将电力(AC或DC电流)切换到电感器401。将会认识到,图5-图8是简化的框图电路,并且仅旨在用于说明目的。因此,固态半导体开关400和/或电感器401可以包括附加的电路或子电路。

  参考图5和图7,可摄入标识符系统210包括施加到控制装置218的框架212的第一材料214(金属1)和第二材料216(金属2)。控制装置218的输出耦合到固态半导体开关400,该固态半导体开关400控制流过电感器401的电流以产生电磁场。该配置提供由第一材料214(金属1)和第二材料216(金属2)在暴露于离子溶液时产生的电池。因此,当系统210与导电液体接触和/或部分接触时,通过第一和第二不相似材料214、216之间的导电液体形成电流路径230、250,如通过示例在图7中所示的。电池驱动控制装置218,该控制装置218通过控制切换到电感器401的电流来产生振荡频率。当开关400闭合时振荡电流流过电感器401并且产生RF电磁信号。RF电磁信号通过个体的身体传播,并且可以由具有电磁信号检测机制的外部或内部接收器装置来检测。如果以足够高的能量来提供广播,则患者佩戴的类似寻呼机的设备将在每次摄入药丸时进行检测。

  参考图5,第一和第二不相似材料214、216(金属1和金属2)位于其相对端部上。如上所述,可摄入标识符系统210可以与任何药物产品结合使用,以确定患者何时服用药物产品。如上所指示的,本公开的范围不受与系统210一起使用的产品和环境的限制。例如,系统210可以被放置在胶囊内并且胶囊被放置在导电液体内。然后胶囊将在一段时间上溶解并将系统210释放到导电液体中。因此,在一个方面,胶囊将包含系统210而不包含产品。然后,这种胶囊可以被用在存在导电液体的任何环境中和与任何产品一起使用。例如,胶囊可以落入填充有喷气燃料(jet fuel)、盐水、番茄酱、电机用油或任何类似产品的容器中。另外,可以在摄入任何药物产品的同时摄入包含系统210的胶囊,以便记录事件的发生(诸如产品何时被服用)。

  在图5中所示的结合药物产品的系统210的具体示例中,当产品或药丸被摄入时,系统210被激活。在一个方面,系统210通过控制由控制装置400驱动到电感器401中的电流来产生电磁信号,以产生可用本文中所述的接收器检测到的独特的电磁信号,从而表示已经服用了药物产品。框架212是用于系统210的底盘,并且多个组件被附接到框架212、沉积在框架212上或固定到框架212。在系统210的这个方面中,第一可消化材料214与框架212物理地相关联。第一材料214可以被化学沉积在框架上、蒸镀在框架上、固定到框架上或构建在框架上,所有这些在本文中都可以被称为关于框架212“沉积”。第一材料214被沉积在框架212的一侧上。能够被用作第一材料214的感兴趣的材料包括但不限于:Cu或CuCl。除了其他协议之外,通过物理气相沉积、电沉积或等离子体沉积来沉积第一材料214。第一材料214可以是从约~0.05μm至约~500μm厚,诸如从约~5μm至约~100μm厚。通过阴影掩模沉积或光刻和蚀刻来控制形状。另外,即使仅示出了用于沉积材料的一个区域,但是每个系统210可以包含可根据需要来沉积材料214的两个或更多个电气性独特的区域。

  在不同侧,即如图5中所示的相对侧,沉积另一种第二可消化材料216,以使得第一和第二材料214、216不相似。尽管未示出,但是所选择的不同侧可以是与针对第一材料214而选择的侧靠近的侧。本公开的范围不受所选的侧限制,并且术语“不同侧”可以意指与第一所选的侧不同的多个侧中的任何一个。此外,即使系统的形状被示出为方形,该形状也可以是任何几何上合适的形状。第一和第二不相似材料214、216被选择成使得当系统210与导电液体(诸如体液)接触时它们产生电压电势差。用于材料216的感兴趣的材料包括但不限于:Mg、Zn或其他电负性金属。如上面关于第一材料214所指出的,第二材料216可以化学沉积在框架上、蒸镀到框架上、固定到框架上或者构建在框架上。而且,可能需要粘合层来帮助将第二材料216(以及第一材料214,在需要时)粘附到框架212。用于材料216的典型粘合层是Ti、TiW、Cr或类似材料。可以通过物理气相沉积、电沉积或等离子体沉积来沉积阳极材料和粘合层。第二材料216可以是从约~0.05μm至约~500μm厚,诸如从约~5μm至约~100μm厚。然而,本公开的范围既不受任何材料的厚度限制,也不受被用来将材料沉积或固定到框架212的工艺的类型限制。

  因此,当系统210与导电液体接触时,通过第一材料214和第二材料216之间的导电液体形成电流路径,图7中示出了一个示例。控制装置218被固定到框架212并且电耦合到第一材料214和第二材料216。控制装置218包括电子电路(例如能够控制和改变第一材料214和第二材料216之间的电导的控制逻辑),以及用于驱动通过电感器401的电流以产生独特的电磁信号的电子电路,所述独特的电磁信号被编码以提供独特的标识符,该独特的标识符对应于系统210和/或系统210所附接或组合的产品。

  在第一材料214和第二材料216之间产生的电压电势提供用于操作包括控制装置218和电感器401的系统210的电力。在一个方面,系统210以直流(DC)模式操作。在替代方面,系统210控制电流的方向,以使得电流的方向以循环方式反转,类似于交流(AC)模式。当系统到达导电流体或电解质时(在这里流体或电解质成分由生理流体(例如胃酸)来提供),第一材料214和第二材料216之间的电流流动路径在系统210外部完成;通过系统210的电流路径由控制装置218来控制。电流路径的完成允许电流流动,并且进而接收器(未示出)可以检测电流的存在并且识别到系统210已经激活且正发生或已发生所期望的事件。

  在一个方面,两种材料214、216在功能上类似于直流(DC)电源(诸如电池)所需的两个电极。导电液体充当完成电源所需的电解质。所描述的完成的电源由系统210的第一材料214和第二材料216与身体的周围流体之间的物理化学反应来限定。完成的电源可以被视为利用离子或导电溶液(诸如胃液、血液或其他体液)以及一些组织中的反向电解的电源。另外,环境可以是除了身体之外的其他东西,并且液体可以是任何导电液体。例如,导电流体可以是盐水或金属基涂料。

  在某些方面,两种材料214、216可以通过附加的材料层而免受周围环境影响。因此,当屏蔽件被溶解并且两种不相似材料暴露于目标位点时,产生电压电势。

  仍然参考图5,第一材料214和第二材料216提供电压电势以激活控制装置218。一旦控制装置218被激活或加电,控制装置218就可以以独特的方式来改变通过电感器401的电流电导以产生独特的电磁信号。通过改变流过电感器401的电流,控制装置218被配置为控制通过电感器401的电流的幅值、相位或方向。这产生可以由接收器(未示出)检测和测量的独特电磁特征,所述接收器可以被定位在患者的身体的内部、外部、部分地内部或部分地外部。

  另外,电绝缘元件215、217可以被设置在第一材料214和第二材料216之间,并且可以与框架212相关联,例如固定到框架212。预期到电绝缘元件215、217的各种形状和配置在本公开的范围内。例如,系统210可以完全或部分地被电绝缘元件215、217包围,并且电绝缘元件215、217可以沿着系统210的中心轴线定位或者相对于中心轴线偏心。因此,本文所要求保护的本公开的范围不受非导电膜215、217的形状或尺寸的限制。此外,在其他方面,第一和第二不相似材料214、216可以被位于第一材料214和第二材料216之间的任何限定区域中的一个膜分开。

  在各个方面,电感器401可以包括预定数量的绕组,并且可以是具有框架212或控制装置218的集成电路。电感器401的绕组可以被形成在控制装置218或框架212的基板上,或者可以被印制在介于位于可摄入标识符210上的第一材料214和第二材料216之间的电绝缘元件215、217上。在其他方面,可以使用电绝缘元件215、217或集成的控制装置218上的导电可消化材料来印制电感器401。在另一方面,可以添加电感器绕组作为耦合到可摄入标识符控制装置218的单独的集成电路。

  由可摄入标识符210产生的导电电流可以通过开关400(以开关或开关矩阵的方式)路由经过电感器401,如例如图21、图21A示出单端电感器420和驱动器电路500布置,以及图22、图22A示出推挽式H桥电感器504和驱动器电路布置502。返回参考图5,系统210可以被配置为以各种频率操作(诸如例如约100kHz至约1MHz),这可以提供用于减小发送器电感器和接收器电感器天线的尺寸的机会。可以通过个体102(图1)的身体开始吸收电磁能量的阈值来检测频率上限。这种上频率阈值可以约为400MHz,但不限于此。

  图6描绘了可摄入标识符220,其包括施加到电子控制装置228的框架222的第一材料224(金属1)和第二材料226(金属2)。控制装置228的输出耦合到固态半导体开关400,所述固态半导体开关400控制流过电感器401的电流以产生电磁场。该配置提供由第一材料224(金属1)和第二材料226(金属2)在暴露于离子溶液时产生的电池。电池驱动控制装置228,该控制装置228通过控制切换到电感器401中的电流来产生振荡频率。当开关400闭合时振荡电流流过电感器401并且产生RF电磁信号。RF电磁信号通过个体的身体传播,并且可以由具有电磁信号检测机制的外部或内部接收器装置检测到。如果以足够高的能量来提供广播,则患者佩戴的类似寻呼机的设备将在每次摄入药丸时进行检测。

  图6中所示的系统220的框架222类似于图5中所示的系统210的框架212。在系统220的这个方面,可消化或可溶解的材料224被沉积在框架222的一侧的一部分上。在框架222的同一侧的不同部分处,沉积另一种可消化或可溶解的材料226,以使得两种材料224、226不相似。更具体地,第一材料224和第二材料226被选择成使得它们在与导电液体(例如体液)接触时产生电压电势差。

  控制装置228被固定到框架222并且电耦合到不相似材料224、226。控制装置228包括能够控制材料224、226之间的电导路径的一部分的电子电路。不相似材料224、226由非导电(电绝缘)元件229分开。电绝缘元件229的各种示例在2010年4月27日提交的发明名称为“HIGHLY RELIABLE INGESTIBLE EVENT MARKERS AND METHODS OF USING SAME(高度可靠的可摄入事件标记以及使用其的方法)”的美国专利No.8,545,402以及2008年9月25日提交的发明名称为“IN-BODY DEVICE WITH VIRTUAL DIPOLE SIGNAL AMPLIFICATION(具有虚拟偶极子信号放大的体内设备)”的美国专利No.8,961,412中公开了,通过引用将每一个的整个公开并入本文中。

  一旦控制装置228被激活或加电,控制装置228就可以改变不相似材料224、226之间的电导。因此,控制装置228能够控制通过包围系统220的导电液体的电流的幅值。如上面关于系统210所指示的,可以由接收器(未示出)来检测与系统220相关联的独特电流签名,以标记系统220的激活。为了增加电流路径的“长度”,改变电绝缘膜229的尺寸。电流路径越长,接收器检测电流就越容易。

  在各个方面,如下文更详细描述的,系统220可以包括用于产生电磁场的发送电感器401。电感器401可以包括预定数量的绕组,并且可以与可摄入标识符210的控制装置228集成。在另一方面,电感器绕组可以被印制在介于电极224、226之间的电绝缘膜229上。可以使用导电的可消化材料将电感器401印制在电绝缘膜229上或者可以将该电感器401与控制装置228集成。在另一方面,电感器绕组可以添加作为耦合到可摄入标识符控制装置228的单独的集成电路。由可摄入标识符220产生的导电电流在电流被路由到系统220的电池电路之前,可以通过开关400路由通过电感器401。系统220可以被配置为在各种频率(诸如例如约100kHz至约1MHz)操作,这可以提供用于减小发送器电感器401和接收器电感器天线的尺寸的机会。可以通过个体102(图1)的身体开始吸收电磁能量的阈值来检测频率上限。这种上频率阈值可以约为400MHz,但不限于此。

  图7示出了根据本公开的一个方面的图5中所示的处于激活状态并且与导电液体接触的系统210。系统210通过接地接触件232接地。系统210还包括传感器组件254,其关于图9更详细描述。通过与系统210接触的导电流体在第一材料214和第二材料216之间建立离子或电流路径230。通过第一和第二不相似材料214、216与导电流体之间的化学反应来产生在第一和第二不相似材料214、216之间产生的电压电势。

  图7A示出了根据本公开的一个方面的第一材料214的表面的分解图。第一材料214的表面不是平面的,而是具有如所示的不规则表面234。不规则表面234增加了材料的表面积,并且因此增加了与导电流体接触的面积。将会认识到,图7中所示的第二材料216也可以具有不规则表面。

  在一个方面,在第一材料214的表面处,在第一材料214和周围的导电流体之间存在化学反应,以使得质量被释放到导电流体中。如本文中所使用的术语“质量”是指形成物质的质子和中子。一个示例包括材料是CuCl的情况,并且当与导电流体接触时,CuCl变成溶液中的Cu(固体)和Cl-。通过离子路径230来描绘离子流入导电流体中。以类似的方式,在第二材料216和周围的导电流体之间存在化学反应,并且离子被第二材料216捕获。离子在第二材料214处的释放和离子被第二材料216的捕获统称为离子交换。由控制装置218来控制离子交换的速率以及因此离子发射速率或流量。控制装置218可以通过改变第一和第二不相似材料214、216之间的电导(这会改变第一和第二不相似材料214、216之间的阻抗)来增加或减少离子流的速率。通过控制离子交换,系统210可以在离子交换过程中对信息进行编码。因此,系统210使用离子发射来在离子交换中对信息进行编码。

  控制装置218可以在将固定的离子交换速率或电流流动幅值保持为近恒定的同时、类似于当频率被调制并且幅度恒定时,改变该速率或幅值的持续时间。而且,控制装置218可以在将持续时间保持为近恒定的同时改变离子交换速率或电流流动幅值的水平。因此,使用持续时间的变化的各种组合并改变速率或幅值,控制装置218在电流流动或离子交换中对信息进行编码。例如,控制装置218可以使用但不限于以下技术中的任何一种,即二进制相移键控(Binary Phase-Shift Keying,PSK)、频率调制、幅度调制、开关键控和具有开关键控的PSK。

  如上所述,本文中公开的各个方面(诸如图5和图6的系统210、220)分别包括作为系统210的控制装置218或系统220的控制装置228的一部分的电子组件。可以存在的组件包括但不限于:逻辑和/或存储器元件、集成电路、电感器、电阻器、用于测量各种参数的传感器、电感器400、谐振电路和用来驱动电感器和/或谐振电路的驱动器电路。每个组件可以被固定到框架和/或另一个组件。支撑体的表面上的组件可以以任何方便的配置来布置。在两种或更多种组件存在于固体支撑体的表面上的情况下,可以提供互连。

  现在参考图8,根据本公开的一个方面,系统260包括连接到第三材料219的pH传感器组件256,该第三材料219是根据被执行的特定类型的感测功能而选择的。pH传感器组件256也连接到控制装置218。第三材料219通过非导电屏障235与第一材料214电隔离。在一个方面,第三材料219是铂。在操作中,pH传感器组件256使用第一和第二不相似材料214、216之间的电压电势差。pH传感器组件256测量第一材料214和第三材料219之间的电压电势差并记录该值以供稍后比较。pH传感器组件256还测量第三材料219和第二材料216之间的电压电势差,并记录该值以供稍后比较。pH传感器组件256使用电压电势值来计算周围环境的pH水平。pH传感器组件256将该信息提供给控制装置218。控制装置218耦合到开关400并控制流过电感器401的电流以产生电磁场。在一个方面,电磁场可以对与离子转移中的pH水平相关的信息进行编码,其可以由接收器(未示出)检测到。因此,系统260可以确定与pH水平相关的信息并将其提供给环境外部的源。

  图9示出了根据本公开的一个方面的控制装置218的框图表示。控制装置218包括控制组件242、计数器或时钟244、以及存储器246。另外,控制装置218被示出为包括传感器组件252以及传感器组件254(其最初在图7中被参考)。控制组件242具有电耦合到第一材料214的输入248和电耦合到第二材料216的输出250。控制组件242、时钟244、存储器246和传感器组件252/254也具有电力输入(有些未示出)。当系统210(图1和图7)与导电流体接触时,通过由第一材料214和第二材料216与导电流体之间的化学反应所产生的电压电势来提供这些组件中的每一个的电力。控制组件242通过对系统210的总阻抗进行改变的逻辑来控制电导。控制组件242电耦合到时钟244。时钟244向控制组件242提供时钟周期。基于控制组件242的被编程的特性,当设定数量的时钟周期已过去时,控制组件242改变开关400(图5、图7、图8)的电导以控制流过电感器401(图5、7、8)的电流,以便将信息编码在电磁场中。重复该循环并且因此控制装置218产生独特的电流签名特性。控制组件242还电耦合到存储器246。时钟244和存储器246二者都由在第一材料214和第二材料216之间产生的电压电势来供电。

  控制组件242还电耦合到第一传感器组件252和第二传感器组件254并与它们通信。在所示的方面,第一传感器组件252是控制装置218的一部分,并且第二传感器组件254是单独的组件。在替代方面,第一传感器组件252和第二传感器组件254中的任何一个可以在没有另一个的情况下使用,并且本公开的范围不受传感器组件252或254的结构或功能位置的限制。另外,在不限制所要求保护的本公开的范围的情况下,系统210的任何组件可以在功能上或结构上移动、组合或重新定位。因此,有可能具有一个单个结构(例如处理器),其被设计为执行以下所有组件的功能:控制组件242、时钟244、存储器246和传感器组件252或254。另一方面,使这些功能组件中的每一个位于电链接并且能够通信的独立结构中也在本公开的范围内。

  再次参考图9,传感器组件252、254可以包括以下传感器中的任何一个:温度、压力、pH水平和电导率。可以配置附加节点作为参考电极,以允许独立地测量阳极和阴极。在一个方面,传感器组件252、254从环境收集信息并将模拟信息传达给控制组件242。控制组件然后将模拟信息转换为数字信息,并且数字信息被编码在电磁场中。在另一方面,传感器组件252、254从环境收集信息并且将模拟信息转换为数字信息,然后将数字信息传达给控制组件242。在图9中所示的方面,传感器组件254被示出为电耦合到第一和第二不相似材料214、216以及控制装置218。在另一方面,如图9中所示,传感器组件254在另外不同的连接点处电耦合到控制装置218,该连接点充当用于向传感器组件254供应电力的源以及传感器组件254与控制装置218之间的通信信道这两者。

  如上所述,控制装置218可以被预先编程以输出预定义的电磁编码信号。在另一方面,该系统可以包括接收器系统,该接收器系统可以在系统被激活时接收编程信息。在另一方面(未示出),开关244和存储器246可以组合成一个装置。

  除了上述组件之外,系统210(图5和图7)还可以包括一个或其他电气或电子组件。感兴趣的电气或电子组件包括但不限于:附加的逻辑和/或存储器元件(例如以集成电路的形式);功率调节装置(例如电池、燃料电池或电容器);传感器、激励器等;信号传输元件(例如以天线、电极、电感器等的形式);无源元件(例如电感器、电阻器等)。

  图10示出了根据本公开的一个方面的包括电感器402的第一组件403。第一组件403与集成电路404相关联地配置,在集成电路404的顶部上具有阴极层(未示出)。例如,集成电路404组件与可摄入标识符(诸如图12和图13中所示的可摄入标识符270)相关联。返回图10,集成电路404组件例如在一侧上在10微米至10毫米之间(诸如100微米至5毫米),例如在一侧上为1毫米,其在第一侧(未示出)上具有阴极而在第二侧(未示出)上具有阳极。可以通过在集成电路404上沉积、蚀刻或印制图案化的金属层来形成电感器402。电感器402可以包括限定多匝的、螺旋图案设计的致密金属图案。金属层具有在其中切割的狭缝,诸如单螺旋狭缝切割。在其他方面,电感器402可以是螺线管或具有铁氧体的螺线管,但不限于此。电感器402是耦合到驱动器电路的谐振电路的组件,以产生在电感器402内部振荡的电信号。

  图11示出了根据本公开的一个方面的包括电感器408的第二组件406。第二组件406与集成电路410(集成电路或柔性电极)相关联地配置。集成电路410组件例如在一侧上在10微米至10毫米之间(诸如100微米至5毫米),例如在一侧上为1毫米,其在第一侧(未示出)上具有阴极而在第二侧(未示出)上具有阳极。集成电路410被嵌入在非导电膜412中,经由此通过调制电流来产生导电传输。电感器408沿着集成电路410的周边走向,即与该集成电路410的周边相关联。电感器408包括例如多匝/多层线圈。在一个方面,电感器408相对较小。在各个方面,在电感器408上引入绝缘层(未示出)以扩展范围。例如,绝缘层在电感器408上包括几百微米的塑料。

  参考图10和图11,在各个方面,可以根据与生命周期药物信息学系统相对应的任何图案和/或位置来配置电感器402、408。图案包括例如螺旋、波形、曲线、多匝的、直线、弯曲的、单层、多层以及其他设计和设计的组合。

  图12示出了根据本公开的一个方面的包括电感器420的可摄入标识符270。在图12中,可摄入标识符270包括集成电路272和非导电膜274(例如,裙部、电绝缘元件)。集成电路272包括导电通信组件和电感器420。

  图13是图12中所示的可摄入标识符270的侧截面图。可摄入标识符270包括集成电路272(在本文中也被称为标识符)以及上电极276和下电极278,其中上电极276和下电极278由不相似材料制成,并且被配置为使得当与胃液接触时电流流过集成电路272,以促使电路中的一个或多个功能块发射可检测信号。如先前所讨论的,可摄入标识符270包括非导电膜274(在本文中有时被称为“裙部”或电绝缘元件)。如所示,可摄入标识符270包括在电极中的一个276上面形成的电感器420元件。

  可摄入标识符270可以与被配置为接收由电感器420组件产生的电磁场的接收器结合使用。可附接的医疗装置的一个示例是发送器/接收器,其永久地与身体相关联(诸如植入体内)或可拆卸地附接到身体的外部部分。可摄入标识符270可以与发送和/或接收装置通信地相关联。发送/接收装置包括体内装置、可拆卸地或永久地附接到身体的外部装置、以及远程装置,即与身体没有物理关联但能够与可摄入事件标记通信的装置。例如,在下文中结合图3、图47、图49和图50-图55来更详细地讨论感兴趣的接收器。

  包括通信启用的药丸和包装的装置和系统的各个方面使得能够识别可摄入标识符270及其任何药物(如果存在的话)。如下面所用的“药丸”表示任何通信启用的药物。可摄入标识符270包装包括例如“泡罩(blister)”包装,其能够容纳单个的可摄入标识符(诸如药丸或有限数量的药丸、或胶囊)。可摄入标识符270包装还包括与药物相关联的容器、盒、包装物、IV袋等。

  在各个方面,通信组件可以是对药丸的主控(sovereign)。在其他方面,通信组件可以是分布式的,例如与包装以及与可摄入组件(诸如药丸或胶囊)物理相关联。

  一旦可摄入标识符270到达患者环境,则与可摄入标识符270相关联的信息可以被用于各种目的。例如,可摄入标识符270可以与可摄入标识符270的容器和与接收器互操作,以确保尝试打开可摄入标识符容器的人实际上是被开具药方的人。进一步的通信活动包括信息控制系统,在其中将与可摄入标识符270相关联的药物信息与从一个或多个源接收到的患者数据进行比较,以确定例如药物是否是禁忌的、是否服从适当的剂量和时间、或其他事件和/或条件。

  在患者摄入之后,可以从通信组件中的一个或多个恢复由可摄入标识符270存储的信息。例如,可以通过电磁场通信组件(例如使用接收器)在摄入之后执行通信能力。数据可以被存储在可摄入标识符270中并在每次事务时用安全数字签名重新编程。

  当患者对可摄入标识符270的排出已发生时,各个方面允许与诸如传感器的装置通信,以确定例如与患者或药物相关的数据、或通过身体的渡越时间。可选地,在各个方面,数据被擦除(或者与数据相关联的各种组件/子组件被破坏或与系统分离)以保护排出之后的隐私问题。

  已经结合图1-图13在一般层面上描述了电磁可摄入标识符感测和检测系统,本公开现在转向电磁可摄入标识符感测和检测系统的具体实现,该电磁可摄入标识符感测和检测系统包括(1)包括低阻抗电感器的可摄入标识符脉冲电路和驱动器电路、(2)组合的可摄入标识符和电感器谐振电路、(3)脉冲通信系统和协议、以及(4)用来接收由可摄入标识符发送的电磁信号的各种接收器配置。

  图14-图18示出了根据本公开的各个方面的电磁可摄入标识符感测和检测系统的各种配置。根据本公开的各个方面,图14-图18中所示的可摄入标识符中的每一个可以被采用作为电磁可摄入标识符感测和检测系统的发送组件。

  图14示出了根据本公开的一个方面的图4A和4B中所示的可摄入标识符200的一个方面。可摄入标识符200包括集成电路202和位于在集成电路202上提供的不相似材料204、206(图4A)之间的非导电膜208。如本文所述,不相似材料204、206在可摄入标识符200被浸入导电流体中时产生用来供电的电压电势。在一个方面,图14中所示的可摄入标识符200可以以结合图5-图9描述的方式来配置。换言之,可摄入标识符200可以通过在图1和图2中所示的个体的体内产生编码信号,而被采用在如本文所述的基于电磁场的感测和检测系统中。

  图15示出了根据本公开的一个方面的图12-图13中所示的可摄入标识符270的一个方面。可摄入标识符270包括集成电路272、非导电膜274和设置在集成电路272上的电感器420。如本文所述,不相似材料274、276(图13)在可摄入标识符200被浸入导电流体中时产生用来对集成电路272供电的电压电势。在一个方面,可摄入标识符272可以以结合图12-图13描述的方式来配置。

  返回参考图15,在没有限制的情况下,电感器420例如可以如在图10和图11中所示的那样被图案化。电感器420是谐振电路的组件,并且由集成电路272的驱动器电路组件来驱动。驱动的谐振电路产生可以由个体外部的接收器检测到的电磁信号。

  在一个方面,可摄入标识符270通常由在单个半导体制造工艺中形成的单片Si材料组成。因此,在用于制造集成电路272的半导体制造工艺中所采用的金属可以被采用来制造可摄入标识符270和电感器420。因此,在半导体制造工艺期间,包括电感器420和电容器的谐振电路可以被形成在集成电路272上。

  可以使用各种技术在可摄入标识符270的集成电路272上形成电感器420。在一个方面,电感器420可以被形成为(1)从集成电路272的底部到集成电路272的顶部的螺旋,其中不同的层通过通孔(via)互连。在另一方面,电感器420可以被形成为(2)在集成电路272的一侧上从集成电路272的外部部分到内部部分的第一层金属,并且在第一层金属的顶部上形成第二层金属。电感器420可以包括四个堆叠的电感器层和八个不同的节点以用于驱动电感器420。在另一个方面,电感器420可以被形成为(3)具有中心抽头的两个单独的电感器,以匹配信号中的任何寄生劣化。

  图16示出了根据本公开的一个方面的可摄入标识符280,其包括集成电路282和形成在单独的基板440上的单独的电感器430组件。因此,可摄入标识符280可以在两个单独的过程中被制造为稍后互连的两个单独的基板。在一个方面,可摄入标识符280包括集成电路282、集成无源器件(IPD)组件450、以及可选地非导电膜288。IPD组件450是与集成电路282集成的无源器件。集成电路282包括设置在其上的不相似材料,以便在与导电流体接触时产生电压电势,其中电压电势为集成电路282供电,如结合图4A-4B和图5-图9所述的。非导电膜288可以介于不相似材料之间,以在不相似材料之间延伸电流流动的路径。IPD组件450上的电感器430被形成在单独的基板440上并且电耦合到集成电路282的输出。

  可以在单个Si晶圆基板284上使用第一互补金属氧化物半导体(CMOS)工艺来制造集成电路282。可以在第二晶圆基板440上使用第二工艺来制造电感器430和电容器以制造IPD组件450。IPD组件450可以采用高质量金属以用来在第二集成电路(IC)裸片基板440上构建电感器430。然后可以利用附加的工艺(诸如沉积、钻孔等)将可摄入标识符280的集成电路282和IPD组件450部分堆叠在一起,如果需要的话。该过程将从两个单独的晶圆基板284、440产生单个半导体(例如Si)。例如,可以使用各种技术(诸如分子键合)来组合或结合两个单独的半导体基板284、440。如果采用可选的非导电膜288,则集成电路282可以位于非导电膜288(例如裙部)上。在另一方面,可以采用再分布层(RDL)来实现电感器430。在另一方面,可以在玻璃基板而不是半导体基板上形成电感器。

  图17示出了根据本公开的一个方面的可摄入标识符290,其包括形成在非导电膜294上的电感器460。可摄入标识符290包括集成电路292、非导电膜294和形成在非导电膜294上的电感器460。集成电路292包括在其上形成的不相似材料,以在与导电流体接触时产生电压电势并且在流体中产生导电电流,如结合图4A-4B和图5-图9所述的。非导电膜294介于不相似材料之间以使电流流动的路径延伸。可以使用诸如沉积、印制等的各种工艺在非导电膜294上制造电感器460。电感器460电耦合到集成电路292。

  图18示出了根据本公开的一个方面的可摄入标识符295,其包括在不相似材料274、276被沉积在集成电路272上之后形成在不相似材料274、276(图13)中的一个或两个上的电感器470。谐振电路的电容器部分可以在半导体制造工艺期间或之后形成。在一个方面,单独的半导体晶圆可以通过Si通孔工艺被结合在一起并连接到可摄入标识符的不相似材料(例如Mg和CuCl)并填充有铜(Cu)金属。该工艺可以在裸片的一侧或两侧上执行,并且然后被单个化以产生单独的组件。

  图19是根据本公开的一个方面的包括电感器420和单端电感器驱动器电路500的可摄入标识符270的示意性表示。单端驱动器电路500被配置为驱动电感器420。通过由如先前在本文中结合图12-图13所讨论的、浸入导电流体中的不相似材料274、276所形成的局部电池501来向驱动器电路500供电。控制装置422控制与电感器420串联连接的开关SW。开关SW包括输入端子424、输出端子426和控制端子428。控制装置422耦合到开关SW的控制端子428以控制开关SW的操作。例如,控制装置422可以被配置为断开和闭合开关SW以产生通过电感器420的RF振荡电流,其产生RF电磁信号。可以以预定义的方式来使开关SW断开和闭合,以产生编码的RF电磁信号。RF电磁信号可以通过身体组织传输。RF电磁信号可以由具有磁信号检测机制的外部或内部接收器装置来检测。

  图20是根据本公开的一个方面的包括电感器420和推挽式H桥504型电感器驱动器电路502的可摄入标识符271的示意性表示。推挽式桥504型电感器驱动器电路502被配置为驱动电感器420。驱动器电路502通过由先前结合图12-图13讨论的、浸入导电流体中的不相似材料274、276所形成的局部电池501来供电。电感器420连接在H桥504的两个节点之间,所述H桥504包括处于浮置配置的至少四个开关SW1、SW2、SW3、SW4。开关SW1、SW2、SW3、SW4中的每一个包括输入端子、输出端子和控制端子。控制装置430耦合到开关SW1、SW2、SW3、SW4中的每一个的控制端子,以控制开关SW1、SW2、SW3、SW4的电导。例如,控制装置被配置为以预定义的方式来使开关SW1、SW2、SW3、SW4断开和闭合,以产生通过电感器420的振荡电流,其产生编码的RF磁信号。在一个方面,H桥504中的两个开关SW1、SW2同时闭合以通过电感器420来传导电流(i)1,而其他两个开关SW3、SW4保持断开。然后,H桥504中的两个开关SW3、SW4同时闭合以通过电感器420来传导电流(i)2,而其他两个开关SW1、SW2保持断开。一对开关(SW1、SW2)和(SW3、SW4)交替地将电感器420连接在局部电池501的正极端子和返回端子之间,以通过电感器420交替地传导电流(i)1和i2。

  控制装置430操作开关SW1、SW2、SW3、SW4以将两个开关与电感器420串联连接半个周期。因此,控制装置430在将恒定负载置于电池501上的同时在每个周期驱动电感器420两次以使信号加倍。例如,在一个方面,控制装置在第一相位φ1处操作两个开关SW1、SW2并且在第二相位φ2处操作其他两个开关SW3、SW4,其中第一相位φ1与第二相位φ2异相180°。因此,在周期的第一半期间,开关SW1和SW2闭合并且开关SW3和SW4断开以产生通过电感器420的第一电流(i)1。在周期的第二半期间,开关SW3和SW4闭合并且开关SW1和SW2断开以在第一电流(i)1的相反方向上产生通过电感器420的第二电流(i)2。在一个周期中,电感器420由i1和i2驱动以使输出信号加倍。因此,当控制装置使开关对SW1、SW4和SW2、SW3循环接通和切断时,产生通过电感器420的编码的振荡电流,这进而产生可以通过身体组织传输的RF电磁信号。RF电磁信号可以由具有磁信号检测机制的外部或内部接收器装置来检测。

  图21是根据本公开的一个方面的包括电感器420和单端电感器驱动器电路422的可摄入标识符270的示意性表示。单端驱动器电路422被配置为驱动电感器420。驱动器电路422通过由如先前结合图12-图13讨论的电耦合浸入导电流体中的不相似材料274、276而形成的局部电池来供电。如图21所示,可摄入标识符270的电池部分被分开,以使得施加到控制装置506的电力与施加到电感器420的电力隔离。开关SW包括输入端子507、输出端子509和控制端子511。控制装置506耦合到单端驱动器电路422,其耦合到开关SW的控制端子511以控制开关SW的电导。在控制装置506的控制下,单端驱动器电路422操作与电感器420串联连接的开关SW。开关SW由控制装置506来断开和闭合,以产生通过电感器420的编码的振荡电流,其产生RF电磁信号。RF电磁信号可以在很少衰减或没有衰减的情况下通过身体组织传输。RF磁信号可以由具有磁信号检测机制的外部或内部接收器装置来检测。

  图21A是根据本公开的一个方面的包括电感器420和单端电感器驱动器电路422的可摄入标识符270A的示意性表示,其中第一金属层274被划分成两个区域,并且第二金属层276被划分成两个区域。

  图22是根据本公开的一个方面的包括电感器420和推挽式H桥504型电感器驱动器电路502的可摄入标识符271的示意性表示。推挽式桥504型电感器驱动器电路430被配置为驱动电感器420。驱动器电路430通过由如先前结合图12-图13所讨论的浸入导电流体中的不相似材料274、276所形成的局部电池来供电。如图22所示,可摄入标识符270的电池部分被分开,以使得施加到控制装置506的电力与施加到电感器420的电力隔离。电感器420连接在H桥504的两个节点之间,该H桥504包括处于浮置配置的至少四个开关SW1、SW2、SW3、SW4。在一个方面,H桥504中的两个开关同时闭合以使得电流能够流过电感器420,而其他两个开关保持断开,从而交替地将电感器420连接在电池的正极端子和返回端子之间。开关SW1、SW2、SW3、SW4中的每一个包括输入端子、输出端子和控制端子。控制装置506耦合到推挽式桥504型电感器驱动器电路502,其耦合到开关SW1、SW2、SW3、SW4的控制端子以控制开关SW1、SW2、SW3、SW4的电导。

  在控制装置506的控制下,推挽式桥504型电感器驱动器电路430操作开关SW1、SW2、SW3、SW4以将两个开关与电感器420串联连接半个周期。因此,在将恒定负载置于电池501上的同时在每个周期驱动电感器420两次以使信号加倍。例如,在一个方面,驱动器电路430在第一相位φ1处操作两个开关SW1、SW2并且在第二相位φ2处操作其他两个开关SW3、SW4,其中第一相位φ1与第二相位φ2异相180°。因此,在周期的第一半期间,开关SW1和SW2闭合并且开关SW3和SW4断开以产生通过电感器420的第一电流(i)1。在周期的第二半期间,开关SW3和SW4闭合并且开关SW1和SW2断开以在第一电流(i)1的相反方向上产生通过电感器420的第二电流(i)2。因此,在一个周期中,电感器420由i1和i2驱动以使输出信号加倍。因此,当控制装置430使开关对(SW1、SW2)和(SW3、SW4)循环接通和切断时,产生通过电感器420的编码的振荡电流,这进而产生可以在很少衰减或没有衰减的情况下通过身体组织传输的RF电磁信号。RF电磁信号可以由具有磁信号检测机制的外部或内部接收器装置来检测。

  结合图19-图22描述的开关SW、SW1、SW2、SW3、SW4可以被实现为固态电子开关元件(诸如半导体开关元件),包括例如晶体管、场效应晶体管(FET)、金属氧化物半导体FET(MOSFET)、双极结型晶体管及其任何合适的等同物。

  图22A是根据本公开的一个方面的包括电感器420和推挽式H桥型电感器驱动器电路430的可摄入标识符271A的示意性表示,其中第一金属层274被划分成两个区域并且第二金属层276被划分成两个区域。

  图23示出了根据本公开的一个方面的形成在绝缘底部结构514上的电感元件508或电感器结构,其可以被采用作为可摄入标识符集成电路中的电感元件。例如,在半导体基板512上形成平面型电感器508。如图23中所示,这种平面型电感器结构508通常具有螺旋结构,其包括通过基板上的绝缘层514而形成在半导体基板512上的导电金属510的条带或螺旋。图23中所示的传统方形电感器的电感值可以被表示为下面的等式(1):

  

  其中L是电感(nH),d是螺旋形电感器金属化层510的最外部尺寸的长度(mm),p是螺旋形电感器金属化层510的宽度(mm),q是在螺旋形金属化层510的两个相邻区域之间的间隔(mm),并且r是p/q的比率,即(p/q)。当p=q时,上述等式被简化为下面的等式(2):

  

  例如,如果p=q=0.05mm且d=0.5mm,则电感L由上式(1)或(2)计算为约2nH。

  上面描述的平面电感器508构造通过减少位于芯片外的电路元件的数量以及复杂互连所需的伴随,来增加电路的集成度。然而,最近,为了减小半导体集成电路器件的尺寸和制造成本,不仅要求有源组件(例如晶体管)而且要求无源组件(例如电感器和电容器)越来越小型化。因此,对于上述平面型电感器,已经尝试通过减小螺旋形导体层510的尺寸来解决小型化要求。也就是说,通过减小宽度p和间隔q的尺寸。

  例如,如果p=0.006mm,q=0.006mm,并且d=0.15mm,则电感L由上式(1)计算为约2.5nH。如果具有该尺寸的螺旋形金属化层或导体层510形成在GaAs基板上,则导体层510的线间电容(inter-line capacitance)C等于约0.06pF。该值是通过将螺旋形导体层510的两个相邻区域近似为共面条带线而获得的。在这种情况下,谐振频率fo约等于12.5GHz,其中fo被定义为下面的等式(3):

  

  为了将螺旋形电感器金属化层或导体层510的平面尺寸减小到例如其原始尺寸的70%,如果上述参数被设计为p=0.0024mm并且q=0.001mm,则电感L可以保持在约2.5nH。然而,导体510的线间电容C增加为高达约0.28pF,并且结果谐振频率fo将减小到约6.0GHz,这比原始尺寸的情况低了约6.5GHz。因此,在图23中所示的电感器508的情况下,当减小螺旋形导体层510的相邻区域的间隔q以便小型化时,线间电容C将增加并且谐振频率fo将减小,并且因此最大可操作频率降低。

  图24示出了根据本公开的一个方面的形成在绝缘底部结构526、528上的多层电感元件520或电感器结构,其可以被采用作为可摄入标识符集成电路中的电感元件。图24中示出了多层电感器配置的一个示例。如图24中所看到的,多层电感器结构520被制造成具有构成相应的螺旋电感器部分522、524的第一和第二金属化层级。每个电感器部分522、524被形成在对应的绝缘层526、528上,并且通过中心定位的导电通孔530而端对端地连接。与图23中描绘的平面结构508相比,图24的多层布置确实提供了每单位面积中的电感的显着增加,以及尺寸d的减小。

  图25-图27示出了根据本公开的一个方面的双层双端口电感器600配置。图25中所示的双层双端口电感器600配置包括两个电感器部分602、604,它们被形成在半导体集成电路601的两个对应绝缘层608、610上,并且通过第一中心定位的导电通孔606而端对端地连接。用于将电感器600连接到其他电路元件的两个端口A1(端口1)、A2(端口2)位于半导体集成电路601的顶层603上。第二电感器部分604的第二端口A2通过第二偏心定位的导电通孔607连接到半导体集成电路601的顶层603。尽管图25-图27示出了双层双端口电感器600,但本公开设想一种n层n端口电感器,其包括为n个的多个电感器部分,所述n个电感器部分形成在半导体集成电路的对应n个绝缘层上,通过一个或多个导电通孔串联、并联或其任何合适的组合来互联,其中n是大于2的任何整数。在图28-图30中示出了具有多于两层的多层电感器的一个示例,其公开了一种四层双端口电感器,该四层双端口电感器包括电感器部分614、616、618、620,其形成在半导体集成电路的对应绝缘层622、624、626、628上,并且通过中心定位的导电通孔而端对端地互连。

  图26是根据本公开的一个方面的图25中所示的双层双端口电感器600的示图。为清楚说明起见,双层双端口电感器600被示为两个单独的电感器部分602、604。第一电感器部分602被形成在第一绝缘层608上,并且第二电感器部分604被形成在半导体集成电路601的第二绝缘层610上。第一和第二电感器部分602、604通过以虚线示出的导电通孔606串联连接。至两个端口A1(端口1)、A2(端口2)的连接被设置在半导体集成电路601的顶层603上。通过导电通孔607来提供至第二端口A2的连接。

  图27是根据本公开的一个方面的图25和图26中所示的双层双端口电感器600的示意性表示。第一电感器部分602被指定为L1并且第二电感器部分604被指定为L2。电感器部分L1、L2的端部B1、B2通过导电通孔606串联连接。电感器600可以通过两个端口A1(端口1)、A2(端口2)耦合到电路元件。因为电感器部分602、604(L1、L2)在半导体集成电路601的相邻绝缘层608、610上被形成为线圈,所以在一个电感器部分602中流动的电流(i)通过互感而在相邻电感器部分604中感应出电压。如图27中所示,电流(i)沿相同方向流过第一和第二电感器部分602、604。

  图28-图30示出了根据本公开的一个方面的四层双端口电感器612配置。根据本公开的一个方面,图28中所示的四层双端口电感器612配置包括四个电感器部分614、616、618、620,它们被形成在半导体集成电路611的四个对应绝缘层622、624、626、628上,并且通过导电通孔630、632、634、635而端对端地连接。双端口A1(端口1)、A4(端口2)被设置在半导体集成电路611的顶层613上,以用于将电感器612连接到其他电路元件。第二端口A4耦合到第四电感器部分620,并且通过导电通孔634连接到半导体集成电路611的顶层613。

  图29是根据本公开的一个方面的图28中所示的四层双端口电感器612的示图。为清楚说明起见,四层双端口电感器612被示为四个单独的电感器部分614、616、618、620。电感器部分614、616、618、620中的每一个被形成在单独的绝缘层622、624、626、628上,并且通过导电通孔630、632、634、635串联连接。通过导电通孔635来提供A4(端口2)至半导体集成电路611的顶层613之间的连接。在半导体集成电路611的顶层613上设置至端口A1(端口1)和A4(端口2)的连接。

  图30是根据本公开的一个方面的图28和图29中所示的四层双端口电感器612的示意性表示。第一电感器部分614被指定为L1,第二电感器部分616被指定为L2,第三电感器部分618被指定为L3,并且第四电感器部分620被指定为L4。电感器部分L1-L4通过导电通孔630、632、634而端对端地串联连接。电感器612可以通过两个端口A1(端口1)、A4(端口2)耦合到电路元件。因为电感器部分614、616、618、620(L1-L4)在半导体集成电路611的相邻层622、624、626、628上被形成为线圈,所以在一个电感器部分614中流动的电流(i)通过互感在相邻的电感器部分616等中感应出电压。如图30中所示,电流(i)以相同的方向流过第一、第二、第三和第四电感器部分614、616、618、620(L1-L4)。

  图31-图33示出了根据本公开的一个方面的n层n端口电感器630配置。根据本公开的一个方面,图31中所示的n层n端口电感器630配置包括在半导体集成电路631的n个对应绝缘层640、642、644、646上形成的n个电感器部分633、636、637、638。形成在n个单独的对应绝缘层640、642、644、646上的n个电感器部分633、636、637、638中的每一个是位于其上面的一个电感器部分的镜像。如图31中所示,n个电感器部分633、636、637、638不互连,而是被布置为n个单独的电感器部分633、636、637、638。所述n个电感器部分633、636、637、638可以通过2n个端口A1(端口1)、B1(端口2)、A2(端口3)、B2(端口4)、A3(端口5)、B3(端口6)、An(端口(2n-1))、Bn(端口2n)以任何合适的方式彼此互连并且互连至其他电路。

  图32是根据本公开的一个方面的图31中所示的n层n端口电感器630的示图。为清楚说明起见,n层n端口电感器630被示为n个单独的电感器部分633、636、637、638。第一电感器部分633被形成在第一绝缘层640上,第二电感器部分636被形成在第二绝缘层642上,第三电感器部分637被形成在第三绝缘层644上,并且第n电感器部分638被形成在第n绝缘层646上。电感器部分中的每一个限定线圈,该线圈是位于其上面的线圈的镜像。n个电感器部分633、636、637、638不连接,而是单独地形成。n端口对(A1(端口1)、B1(端口2))、(A2(端口3)、B2(端口4))、(A3(端口5)、B3(端口6))、(An(端口(2n-1))、Bn(端口2n))可以以任何预定配置被设置在n个单独的绝缘层上以用于将各个电感器部分630连接到电路。

  图33是根据本公开的一个方面的图31和图30中所示的n层n端口电感器630的示意性表示。第一电感器部分633被指定为L1,第二电感器部分636被指定为L2,第三电感器部分637被指定为L3,并且第n电感器部分638被指定为Ln。如图33中所示,电感器部分L1-Ln不互连,并且可以以任何预定配置而通过n端口对(A1(端口1),B1(端口2))、(A2(端口3),B2(端口4))、(A3(端口5),B3(端口6))、(An(端口(2n-1)),Bn(端口2n))单独耦合到电路元件。因为电感器部分633、636、637、638(L1-Ln)在半导体集成电路631的相邻绝缘层640、642、644、646上被形成为单独的线圈,所以在一个电感器部分633中流动的电流通过互感而在相邻的电感器部分636等中感应出电压。

  图34-图36示出了根据本公开的一个方面的具有中心抽头连接653配置的双层三端口电感器650。图34中示出的具有中心抽头连接653配置的双层三端口电感器650包括四个电感器部分652、662、664、654,它们被形成在半导体集成电路651的两个对应绝缘层658、660上,并且通过导电通孔653、656、657、668而端对端地连接。用于将电感器650连接到其他电路元件的三端口A1(端口1)、A4(端口2)、A2/A3(端口3)位于半导体集成电路651的顶层655上。这种几何形状使得能够构造具有两层金属的两层对称线圈,而传统的对称的中心抽头线圈每个线圈就需要两层。因此,本几何形状在相同的裸片面积中提供更多的匝数。

  图35是根据本公开的一个方面的具有图34中所示的中心抽头连接653的双层三端口电感器650的示图。为清楚说明起见,具有中心抽头连接653的双层三端口电感器650被示为四个单独的电感器部分652、662、664、654。第一和第二电感器部分652、662被形成在第一绝缘层658上,并且第三和第四电感器部分664、654被形成在第二绝缘层660上。第二电感器部分654是第一电感器部分652的镜像。第一、第二、第三和第四电感器部分652、662、664、654通过以虚线示出的导电通孔653、656、657、668串联连接。可以在半导体集成电路651的顶层655上提供至三个端口A1(端口1)、A4(端口2)、A2/A3(端口3)的连接。

  图36是根据本公开的一个方面的图34和图35中所示的电感器650的示意性表示。在示意图中,两层双端口电感器650的第一电感器部分652被标记为L1,第二电感器部分654被标记为L2,第三电感器部分664被标记为L3,并且第四电感器部分654被标记为L4。电感器L1、L2、L3、L4通过连接656、657、668而串联连接。因为电感器L1、L2、L3、L4在半导体集成电路651的相邻层658、660上被形成为线圈652、654,所以在一个线圈652中流动的电流通过互感在相邻线圈654中感应出电压。如图所示,电流(i)以相同的方向流过电感器L1、L2、L3、L4中的每一个。

  图37是根据本公开的一个方面的谐振(振荡)电感器驱动器电路700的示意图。电感器驱动器电路700使用交叉耦合的MOSFET晶体管702、704来添加负电阻(-R),该负电阻(-R)将其自己表现为提供自振荡行为的负电阻(-R)。第一MOSFET晶体管706的栅极耦合到第二MOSFET晶体管704的漏极708。同样,第二MOSFET晶体管704的栅极710耦合到第一MOSFET晶体管702的漏极712。电感器L包括类似于本文中描述的电感器部分的电感器部分714。电源电压VDD耦合到电感器L,并且基板716耦合到VSS。电感器L包括两个端口P1和P2,以将电感器L连接到其他电路元件(诸如交叉耦合的MOSFET晶体管702、704)。在图37的示例中,电感器L耦合在第一和第二MOSFET晶体管702、704的漏极712、712之间,其中电感器L的端口1(P1)耦合到第一MOSFET晶体管702的漏极712,并且电感器L的端口2(P2)耦合到第二MOSFET晶体管704的漏极708。电容器C耦合在第一和第二MOSFET晶体管702、704的漏极712、712之间,以设置电感器驱动器电路700的振荡频率。可选地,电感器L的寄生电容可以被用于设置振荡频率。交叉耦合的MOSFET晶体管702、704提供在电感器L内部振荡的电流。这提供了合理的Q,其被定义为与周期中在电感器L中建立的能量相比功率周期中的功率损耗。足够高的Q提供存储在电感器L中的足够的能量并提供更高的电流以得到更有效的系统。应当理解,除了图37中所示的电路之外,可以采用其他类型的负电阻电路。

  图38是根据本公开的一个方面的脉冲电感器驱动器电路720的框图。电感器驱动器电路720被采用来推动信号经过设置在半导体集成电路的各个层上的电感器部分L1、L2、L3、L4。不是将电感器部分L1、L2、L3、L4耦合到振荡器,而是产生随时间按指数衰减的电流脉冲。电荷可以存储在电容器中并且可以放电。如图38中所示,脉冲电感器驱动器电路720包括耦合到脉冲发生器电路724的电池倍压器部分722,该脉冲发生器电路724耦合到线圈放电电路726。在图38中所示的示例中,脉冲发生器电路724耦合到四个电感器放电电路726、728、730、732。然而,应当理解,在不脱离本公开的范围的情况下,多达n个电感器放电电路可以耦合到脉冲发生器电路724。如本文所讨论的,电感器驱动器电路720将电荷泵送到电容器中,并且然后在相对于占空比的非常短的放电周期上将电容器放电到电感器部分L1、L2、L3、L4中。

  电感器放电电路726、728、730、732并联耦合到脉冲发生器电路724。在该“电荷泵”配置中,电感器放电电路726、728、730、732结构被设置在并联支路734、736、738、740中以提供四倍的电流,而不是将它们堆叠以提供四倍的电压。可以配置N层电感器以提供N个电容器。电感器部分L1、L2、L3、L4可以连接成单相的而不是交流电(AC)。如本文中所述,每个电感器部分L1、L2、L3、L4包括两个端口P1和P2,以将电感器部分L1、L2、L3、L4耦合到对应的电感器放电电路726、728、730、732。

  图39是根据本公开的一个方面的图38中所示的脉冲电感器驱动器电路720的示意图。电感器驱动器电路720被采用来推动信号经过设置在半导体集成电路的各个层上的电感器部分L1、L2、L3、L4。电池倍压器电路722使施加到电感器放电电路726、728、730、732中的每一个的电池电压VBAT成四倍。脉冲发生器电路724将脉冲施加到电感器放电电路726、728、730、732中的每一个,这会驱动对应的电感器部分L1、L2、L3、L4。结合图40-图43提供电池倍压器电路722、脉冲发生器电路724和电感器放电电路726、728、730、732的详细描述。

  图40是根据本公开的一个方面的图38和图39中所示的电池倍压器电路722的框图。电池倍压器电路722包括耦合到第一倍压器电路744的输入的电池电压742VBAT,并且第一倍压器电路744 2*VBAT的输出耦合到第二倍压器电路746的输入。第二倍压器电路7464*VBAT的输出被施加到脉冲发生器电路724和电感器放电电路726、728、730、732。

  可以采用倍增器744、746,在这里电源电压(例如来自电池)低于电路所需的电压。MOSFET电路通常是许多集成电路中的标准逻辑块。由于这个原因,二极管经常被这种类型的晶体管取代,但是被布线以起到二极管的作用(一种被称为二极管布线的MOSFET的布置)。电容器C1、C2、C3使电池VBAT、第一倍压器电路744 2*VBAT和第二倍压器电路746 4*VBAT的输出电压稳定。

  在一个方面,每个倍压器电路744、746可以包括电荷泵或倍增器,其包括级联的二极管/电容器单元,每个电容器的底板由时钟振荡器电路748、750所供应的时钟脉冲串来驱动。该电路从系统电池742获取DC输入VBAT,时钟串提供开关信号。倍增器通常要求从具有相反相位的时钟脉冲来驱动交替的单元。

  图41是根据本公开的一个方面的图40中所示的倍压器电路744(746)级的示意图。交叉耦合的开关电容器电路在其已放电至1伏以下时继续供电。倍压器电路744(746)包括开关电容器级752和时钟级754。时钟级754在时钟输入CLK处从时钟振荡器电路748(750)接收脉冲串,并产生具有相反相位的时钟脉冲φ1和φ2。当时钟φ1为低时,晶体管Q1和Q4导通,并且晶体管Q2和Q3关断,且电容器C4上的电压被施加到输出Vout。同时,时钟φ2为高会使晶体管Q6和Q7关断且使晶体管Q5和Q8导通,从而引起电容器C5充电到Vin。当时钟φ2变低时,电容器C5两端的电压被推至两倍的Vin(2Vin),晶体管Q6和Q7导通且晶体管Q5和Q8关断,并且2Vin被施加到输出,使得Vout=2Vin。在下一个半周期,角色被反转,以使得时钟φ1为高并且时钟φ2为低,晶体管Q1和Q4关断且晶体管Q2和Q3导通以将电容器C4充电至Vin。同时晶体管Q6和Q7关断且晶体管Q5和Q8导通,以使得C5上的电压2Vin被施加到输出。当时钟φ1变低时,电容器C4两端的电压被推至两倍的Vin(2Vin),晶体管Q1和Q4导通且晶体管Q2和Q3关断,并且2Vin被施加到输出,以使得Vout=2Vin。因此,从电路的每一侧交替地向输出Vout供应2Vin。

  图41中描述的倍压器电路744(746)级的实现提供低损耗,因为不存在二极管布线的MOSFET及其相关联的阈值电压问题。电路744(746)还具有纹波频率加倍的优点,因为实际上两个倍压电路都从异相的时钟φ1、φ2供应输出。

  图42是根据本公开的一个方面的图38和图39中所示的脉冲发生器电路724的示意图。脉冲发生器电路724包括:第一和第二施密特触发器758、760、包括R1和C6以用来在第二“延迟的”施密特触发器760的输入处设置时间常数延迟τ的RC电路、反相器762和或非逻辑门。在电子学中,施密特触发器758、760是具有滞后(hysteresis)的比较器电路,其是通过将正反馈施加到比较器或差分放大器的非反相输入而实现的。它是将模拟输入信号转换为数字输出信号的有源电路。该电路被命名为“触发器”,因为输出保持其值直到输入变化得足以触发改变为止。在非反相配置中,当输入高于所选阈值时,输出为高。当输入低于另一不同的(更低的)所选阈值时,输出为低,并且当输入在这两个电平之间时,输出保持其值。该双阈值动作被称为滞后,并且意味着施密特触发器758、760具有存储器,并且可以充当双稳态多谐振荡器(锁存器或触发器)。两种电路之间存在密切关系:施密特触发器可以被转换为锁存器,并且锁存器可以被转换为施密特触发器。

  第一振荡器756向第一施密特触发器758的输入766提供时钟串,并且同时向R1、C6电路的电阻器R1的输入提供时钟串。因此,出现在第二施密特触发器760的输入770处的时钟信号被延迟了由R1、C6电路设置的τ。因此,假设第一和第二施密特触发器758、760具有类似的内部传播延迟特性,则第二“延迟的”施密特触发器760的输出774从第一施密特触发器758的输出772延迟了时间常数τ=R1*C6秒。第一“未延迟的”施密特触发器758的输出772被反相器762反相,并且反相器762的输出776被施加到或非门764的输入A。第二“延迟的”施密特触发器760的输出774被施加到或非门764的输入B。或非门764的输出778是一系列脉冲,其施加至电感器放电电路726、728、730、732(图38、图39)的一个输入。第二振荡器780提供时钟串782,其被施加到电感器放电电路726、728、730、732(图38、图39)的另一输入。

  图43是根据本公开的一个方面的图38和图39中所示的电感器放电电路726的简化示意图。如本文所述,电感器放电电路726耦合到脉冲发生器电路724(图42)。在该“电荷泵”配置中,电感器放电电路726被应用于N层电感器中的一个。电感器部分L1以单相模式连接。如本文所述,电感器部分L1包括两个端口P1和P2,以将电感器部分L1耦合到电感器放电电路726的对应电路结构。

  电感器放电电路726包括:电容器充电电路790、耦合电路792、和对电路794、796充电和放电的电感器部分L1。电感器放电电路726从或非门764(图42)的输出778接收一系列脉冲。该一系列脉冲被施加到第一反相器784。该第一反相器784的输出798被施加到电容器充电电路790的晶体管Q10的栅极、施加到耦合电路792的晶体管Q12的栅极,并且施加到第二反相器786的输入。第二反相器786的输出791被施加到电容器充电电路790的晶体管Q9的栅极、和耦合电路792的晶体管Q11的栅极。当第一反相器的输入为低时,晶体管Q9和Q10导通并且晶体管Q11和Q12关断,以对电容器C6充电。当第一反相器的输入为高时,晶体管Q9和Q10关断且晶体管Q11和Q12导通,将电容器C6上的电压施加到放电电路794、796的输入797。

  第二振荡器780提供时钟串782,其被施加到第三反相器788。第三反相器788的输出793被施加到晶体管Q13和Q14的栅极、以及第四反相器790的输入。第四反相器790的输出795被施加到晶体管Q15和Q16的栅极,使得晶体管Q13、Q16和晶体管Q14、Q15交替地导通和关断。例如,当第三反相器788的输入为高时,晶体管Q13和Q16导通且晶体管Q14和Q15关断。因此,电感器部分L1的端口P1通过晶体管Q13耦合到输入797处的电容器电压,并且电感器部分L1的端口P2通过晶体管Q16耦合到VSS。当第三反相器788的输入变低时,角色反转,使得晶体管Q14和Q15导通且晶体管Q13和Q16关断。因此,电感器部分L1的端口P2通过晶体管Q15耦合到输入797处的电容器电压,并且电感器部分L1的端口P2通过晶体管Q14耦合到VSS。当一系列脉冲从或非门764(图42)的输出778到达,并且时钟串782从第二振荡器780(图42)到达时,电容器部分L1被交替地充电和放电以产生电磁信号。

  因此,电感器放电电路726将电荷泵送到电容器C6中,然后在相对于占空比的非常短的放电周期上将电容器C6放电到电感器部分L1中以提供传输协议。其他电感器放电电路728、730、732的操作类似于电感器放电电路726,并且为了公开的简洁和清楚,这里将不再重复。

  脉冲通信协议

  在一些方面,定义了脉冲通信协议,用于从可摄入标识符(例如可摄入标识符104)发送信号并且用于由接收器(例如接收器106、108、110、112、114、116、118、150、152中的任何一个来接收、检测以及解码。通常,本公开的可摄入标识符是极小且廉价的系统。它们的成本和/或尺寸限制了对通常被用来产生更好信号质量的组件的包含,诸如向电路添加晶体以将振荡器精确地调谐到已知频率。这倾向于使得接收器最初能够知道可摄入接收器的实际频率为在+/-5-10%之内。此外,可摄入标识符的生物电流电池电压和电流输出倾向于在整个传输序列中改变。由于尺寸有限,所以与任何噪声相比,信号的幅度往往非常弱。由于发送器(可摄入标识符)侧上的资源非常有限,所以可能希望仅采取单向通信协议,这必然会阻止从接收器发送以及在可摄入标识符处接收同步的应答、确认或任何响应消息。此外,多个可摄入标识符可以同时在用户中是激活的,每个可摄入标识符发送单个接收器在它们各自的电池寿命耗尽之前需要拾取的类似(以及可能改变的)信号。本文中的系统约束强烈地表明正确进行信号通信的负担在于接收器,因为接收器必须被配置为考虑到最初不精确的信号频率、可能变化的电压和电流输出、具有本质上低信噪比的信号、没有任何往复通信的识别、以及多重的这些传输序列。

  本公开的各方面通过公开一种利用由可摄入标识符中的电感器产生的一系列电磁脉冲的脉冲通信协议来解决这些问题中的至少一些。这些电磁脉冲可以根据本文下面定义的协议的变化中的一种来发送,并且可以根据相同的协议由接收器相应地接收、检测和解码。该脉冲通信协议的各种示例在本文中也可以被称为“尖峰(spike)”协议。

  通常,尖峰协议可以由累积来自电池的电荷并且在非常短的时间段内通过电感器释放电荷的、可摄入标识符的脉冲系统来启动,从而产生相比于从连续波中获得的而言在更短持续时间更高幅度的信号。为了产生这一点,控制电路限定脉冲之间的间隙。相应地,接收器通过仅在应该存在尖峰之处寻找信号来利用这一点,从而忽略尖峰之间的时间。例如,如果在1000μs时段内每个1μs持续时间存在10个尖峰,则所有信号能量都被压缩到时间的1%。如果检测器(例如接收器)忽略脉冲之间的数据,则在该时段期间存在的噪声的仅1%实际上与信号能量竞争。相比之下,在典型的“谐振系统”中,信号能量将在整个1000μs上均匀分布,并且该周期内的所有噪声将与信号能量竞争。因此,尖峰协议可以将信噪比改善100倍(在该示例中)。SNR改善与占空比反向相关。

  另外,尖峰协议可以允许在信号之间不存在干扰的情况下检测同时摄入的多个可摄入标识符。这被实现是因为除非两个信号具有完全相同的传输频率和相位,否则巧合的信号的脉冲将出现在脉冲之间的间隙中并因此被忽略。

  图44是根据本公开的一个方面的根据可以由图38-图43中所示的脉冲电感器驱动器电路720产生的尖峰协议的一个示例的时序和极性图800。纵轴表示电压(V)并且横轴表示“脉冲时序”时间(μs)。脉冲函数802包括在预定时段(~130μs)或时间帧上具有不同极性的一系列脉冲804、806。脉冲函数802对与如本文中所讨论的可摄入标识符相关联的信息进行编码。正脉冲804具有正极性(+1V)或幅度,并且负脉冲806具有负极性(-1V)或幅度。脉冲函数802由脉冲电感器电路720产生,并且由充当发送天线的电感器来发送。脉冲或尖峰协议可以是两相的或单相的。

  如本文中所述,如结合图38-图43中的脉冲电感器驱动器电路720所讨论的那样,通过对电容器C(例如图43的C6)充电、然后在相对于占空比的非常短的放电周期上将电容器放电到电感器部分L(例如图43的L1)来实现传输协议。例如,脉冲协议是位于128个位置处的一系列+/-或关/开序列。所有的能量被置于~13个脉冲中,并且噪声被分布在128个脉冲上,在该示例中这改善了每比特噪声指数。因此,尖峰协议在本文中也可以被称为“稀疏脉冲”码。下面描述脉冲协议的一个示例。

  因此,在一个方面,“稀疏脉冲”码可以如下实现:

  

  

  码(code)是数据包,其前面是12个0(同步)和[1 0 1 0](前导码)。符号定义以下面这种方式:“impulse”(电容器通过线圈来放电,极性由impulseNoGapsMask来确定)之前是许多个无脉冲(0),个数来自于“gaps”。

  因此,“impulse”“1”以128个0结束,随后是以下128码片(chip)序列:

  

  在该定义中,128个“子码片”构成单个码片,其中子码片被定义为+1尖峰、-1尖峰或无尖峰。64个码片组成符号。在该定义中,符号与比特之间存在1:1的对应关系。在这种情况下,“0”是以下序列,之后是128个0:

  

  在该序列中,每个码片是1μs,因此每个符号是128μs,并且每个比特是64*128=8192μs。

  在一个方面,可以采用“非常稀疏脉冲”码。“非常稀疏脉冲”码是脉冲之间的间隙为脉冲的宽度的~998倍的情况。这将给予可摄入标识符更多时间来使电荷泵在放电之前在电容器上产生最大电压。这个方面可能不会改变脉冲之间的间隙长度,除了在比特之间的转换期间。

  在一个方面,脉冲可以非常短。例如,传输频率可以出现在处于~12.5kHz至~20kHz或大于~24kHz以及高达~10MHz的范围的频率处。脉冲不是确定性的,但是它们以~6kHz的重复率在128个脉冲上重复。电池准备就绪是随机的,并且电池阻抗(Z)和电压(VBAT)可能会波动。可以基于电池的当前状况来调整脉冲宽度和重复率。这些类型的协议可以适用于物联网型电路。

  图45是根据本公开的一个方面的图44中所示的脉冲通信协议的稀疏脉冲模板和自卷积图808。纵轴表示电压(V)并且横轴表示“脉冲时序”时间(μs)。模板脉冲函数810(以实线示出)表示图44中所示的脉冲函数802。模板脉冲函数810的自卷积产生自卷积函数812(以虚线示出)。自卷积函数812是脉冲函数802的自相关。脉冲函数802的自相关或自卷积是脉冲函数802在不同时间点与其自身的互相关。一般而言,这是根据它们之间的时间滞后(time lag)在观察之间的相似性。自卷积函数812是用于找到重复模式(诸如存在被噪声掩盖的周期信号)或识别信号中由其谐波频率暗示的丢失的基本频率的数学工具。接收器可以使用它来识别传输或广播频率。因此,通过空间传输的脉冲函数802由接收器的接收天线来检测。接收器包括用来实现识别脉冲函数802的传输频率的功能的信号处理电路。接收器被配置为通过采用模板脉冲函数810以及模板脉冲函数810的自卷积函数812(或自相关)来确定传输频率。

  图46是根据本公开的一个方面的可变模板图814,其可以被采用来识别图44中所示的脉冲函数802的传输频率。纵轴表示电压(V)并且横轴表示“脉冲时序”时间(μs)。模板图814示出了被用来传输脉冲函数802的最低(模板816)到最高(模板822)广播频率的可变模板816、818、820、822。

  根据一些方面,尖峰协议的一个定义利用稀疏脉冲的两种序列,在本文中被称为“0”码片和“1”码片。参考图62,曲线图1800示出了脉冲的“0”码片序列的示例,并且曲线图1810示出了脉冲的“1”码片序列的示例。注意0与1不同,存在相位从一个变为另一个的移动。对于所示的码片定义,可用的操作包括计算码片的自相关和互相关:0x0、1x1、0x1、1x0、(0+1)x(0+1)。注意,在该方案中,(0x1)和(1x0)相关性不如在其他协议中那么重要,即不组合所有的码片以确定起始帧的对齐的协议。因为本协议使用所有的可用数据来确定起始点,所以仅组合的卷积(0+1)x(0+1)才是重要的。理想情况下,这种卷积在精确对齐处具有最大值,并且在其他任何地方都具有零。该特定的码片定义设置没有实现这一点,但确实提供了一种这样的卷积,其中“旁瓣(side lobe)”相对小、并且最大的旁瓣具有相反的极性并且方便地位于峰值附近。这些旁瓣也可以帮助建立“最佳猜测”对齐。

  图63示出了与模板进行相关的组合(0+1)数据的曲线图1820,其示出了如何找到频率和对齐二者:最高峰值确定这两者。这是相对高SNR的情况。还应注意,只有在数据包中存在相等数量的0和1时,这两种码片定义才产生组合卷积。这是因为码片定义中没有相同数量的上升和下降尖峰。

  为了对该尖峰协议进行解码,解码器模块(例如,接收器中的处理)寻找单个数据包以进行解码。两个数据包的频率和开始时间二者都是未知的。根据某些方面,通过查看最大数据包尺寸的1.5倍的窗口(因为不知道登记数据包在帧内的位置,所以这确保获得完整的数据包),然后将窗口增加0.5倍的数据包距离来实现这一点。来自这三部分中的每一个的数据可以被重复使用,因此每个帧实际上分析数据的三分之一,保留来自之前分析的数据的2/3。

  在一些方面,来自可摄入标识符的模拟数据被数字化,并存储到等于最大数据包长度(最低传输频率)的数据帧中。一次性分析这些帧中的两个,并且存储来自每个帧的分析信息并在增加下一帧时重新使用。

  为了对数据包进行解码,需要找到这些脉冲之间的精确时序,以及还有通信的起始点。因此,脉冲模式被设计成使得如果假定的脉冲之间的时序是正确的并且假定的起始点是正确的,则与如果任一个有偏离的情况(即使存在少量差错)相比,对应的相关积将非常大。因此,返回参考图56,曲线图1200示出了针对各种脉冲时序变化的最佳猜测起点的相关积(自相关)。请注意,宽范围的脉冲时序变化(0-1000μs是来自标称的变化,实际上是+/-500μs)。

  从这里,为了以计算上有效的方式找到针对这些脉冲时序变化中的每一个的“最佳猜测起点”,对于每个脉冲时序假设,第一步是执行样本点到标称数量的样本点的标称(即,预定义的参考量)帧中的“拉伸或挤压”过程。因此,如果脉冲之间的时间小于标称,则针对每组尖峰(例如13个尖峰)的样本点必须被“拉伸”到表示尖峰之间的标称时序的样本点的数量中。另一方面,如果尖峰之间的时间大于标称,则收集所有13个尖峰所需的样本数大于标称值,并且数据需要被“挤压”到样本点的标称数量中。这种“拉伸和挤压”将以通信数据包的起始点仍然未知、但被保留在“拉伸的/挤压的”数据中的方式来完成。下面在第二示例的尖峰协议定义中定义执行该拉伸和挤压操作的更详细示例。

  接下来:通信数据包可以是例如40比特长,并且每个比特可以由例如每符号64个相同的码片来表示,并且每个码片可以由例如13个尖峰来表示。因此,这个定义将需要略多于40*64=2560个“帧”,其中每帧表示13个尖峰(以及它们之间的间隙)。应该获得多于该数量的帧,因为不知道这时该数据包从哪里开始。还有多少要取决于更高级别的协议:数据包之间有多长时间?通常,期望数据包之间的间隙至少为几个比特宽,以使得当解码过程开始寻找数据包的起始时,这些间隙显示为空白。

  该过程中的下一步是采用所有2560个帧(在该示例中),将它们堆叠起来,并将它们加在一起(将2560个帧中的每一帧的第一数据点加在一起以得到求和的帧的第一数据点,每一帧的第二数据点被加在一起以得到求和的帧的第二数据点,等等)。这是前面简要提到的“堆叠和求和”操作的示例。这种堆叠和求和操作加强了尖峰并使噪音平均化。

  因此,所有的2560×13=33,280个尖峰由标称大小的一帧数据来表示。利用该帧,现在需要在帧内确定起始点以用于每个符号的开始,以及同时对符号之间的时间的最佳猜测。因此,对于“0”和“1”的符号的选择起两个重要作用:对于当对信号进行解码时,能够最佳地区分“1”和“0”是有用的。这类似于预先存在的协议。这里的新内容是,当表示整个传输的所有1和0的26个尖峰被组合成单个帧时,它们应该产生一个模板,该模板允许最佳地识别帧内的起始点和尖峰之间的实际时间(即传输的频率)。图57示出了用于“1”和“0”的这种符号部分的示例。纵轴表示电压(V)并且横轴表示“脉冲时序”时间(μs)。脉冲函数1302包括在预定时段或时间帧上具有不同极性的一系列脉冲1304、1306。脉冲函数1302对与如本文所讨论的可摄入标识符相关联的信息进行编码。正脉冲1304具有正极性(+0.5V)或幅度,并且负脉冲1306具有负极性(-0.5V)或幅度。脉冲函数1302由脉冲电感器电路720产生,并由充当发送天线的电感器来发送。脉冲协议可以是两相的或单相的。

  脉冲函数1302的第一图案或脉冲序列表示逻辑0,并且第二图案或脉冲序列表示逻辑1。脉冲中的两个1308、1310是其他脉冲1304、1306的幅度的两倍,因为它们是对于逻辑0和逻辑1的常见的。在接收器侧,广播频率是未知的、并且脉冲之间的时间也是未知的。接收器首先识别广播频率,然后通过跨越1000个点进行相关来识别比特(逻辑1的和逻辑0的)。接收器然后比较所接收的一系列脉冲(诸如脉冲函数1302),并拉伸和挤压模板直到存在数据包的起始点和频率的匹配为止。因此,接收器寻找特定的脉冲函数1302或一系列脉冲,并在正确的偏移处跨越许多点(例如1000个点)进行相关。逻辑1的和逻辑0的是正交的并且略微重叠,这允许接收器识别脉冲的频率和极性。

  注意,由于用于“1”的符号和用于“0”的符号二者每个都在第四时隙和第五时隙中具有尖峰,所以这些尖峰的幅度是其余尖峰、即仅在一个或另一个中存在的尖峰的幅度的两倍。因此,这些“双峰”允许建立如所接收的信号的奇偶性。

  下一步是执行卷积运算以基于数据的变换来产生另一图。如图59中所示,当将求和帧数据与组合尖峰模板卷积时,在完美对准时找到最高峰值,并且“旁瓣”在幅度上低得多。图59是求和帧模板的无噪声自卷积的图形表示,以说明旁瓣对于主瓣的相对幅度。纵轴表示电压(V),并且横轴表示“脉冲时序”时间(μs)。由接收器接收到的脉冲函数1502包括在预定时段或时间帧上具有不同极性的一系列脉冲1502。脉冲函数1502对与如本文所讨论的可摄入标识符相关联的信息进行编码。正脉冲1404具有正极性(+0.5V)或幅度,并且负脉冲1406具有负极性(-0.5V)或幅度。脉冲函数1502由脉冲电感器电路720产生,并由充当发送天线的电感器来发送。脉冲协议可以是两相的或单相的。参考脉冲1504的幅度远高于脉冲函数1502的脉冲序列。图58是在存在噪声的情况下用于最佳猜测频率的求和帧的图形表示,其噪声最大幅度是每个尖峰的最大幅度的1000倍高。根据本公开的一个方面,这可以由接收器电路900(图47)、930(图49)、950(图50)、960(图51)、970(图52)、990(图53)、1010(图54)、1100(图55)来产生。纵轴表示电压(V),并且横轴表示“脉冲时序”时间(μs)。由接收器接收到的脉冲函数1402包括在预定时段或时间帧上具有不同极性的一系列脉冲1404、1406。脉冲函数1402对与如本文所讨论的可摄入标识符相关联的信息进行编码。正脉冲1404具有正极性(+0.5V)或幅度,并且负脉冲1406具有负极性(-0.5V)或幅度。脉冲函数1402由脉冲电感器电路720产生,并由充当发送天线的电感器发送。脉冲协议可以是两相的或单相的。

  脉冲函数1402的第一图案或脉冲序列表示逻辑0,并且第二图案或脉冲序列表示逻辑1。脉冲1410是其他脉冲1404、1406的幅度的两倍,因为它是对于逻辑0和逻辑1的常见的,并且是用于新数据包的参考脉冲。在接收器侧,广播频率是未知的,并且脉冲之间的时间也是未知的。接收器首先识别广播频率,然后通过跨越1000个点进行相关来识别比特(逻辑1的和逻辑0的)。接收器然后比较所接收的脉冲序列(诸如脉冲函数1402),并拉伸和挤压模板直到存在数据包的起始点和频率的匹配为止。因此,接收器寻找特定的脉冲函数1402或一系列脉冲,并在正确的偏移处跨越许多点(例如1000个点)进行相关。逻辑1的和逻辑0的是正交的并且略微重叠,这允许接收器识别脉冲的频率和极性。

  当该求和帧与求和帧模板卷积时,结果是图56中所示的最大峰值。纵轴表示电压(mV),并且横轴表示“脉冲时序”时间(μs)。如本文所述,通过对电容器C(例如图43的C6)进行充电、然后在相对于占空比的非常短的放电周期上将电容器放电到电感器部分L(例如图43的L1)中来实现传输协议,如结合图38-图43中的脉冲电感器驱动器电路720所讨论的那样。例如,脉冲协议是位于128个位置处的一系列+/-或关/开序列。所有的能量被置于多个脉冲中,并且噪声被分布在更多数量的脉冲上,这改善了每比特噪声指数。因此,脉冲协议在本文中被称为“稀疏脉冲”码。

  回到图56,很明显已经发现频率在该搜索的分辨率内。为了更好地解析帧内的以及还有数据流内的数据包的频率和起始点,可以在发现的峰值周围以更精细的粒度来重复搜索过程,始终保持与最高相关积的组合。在图61中示出对于具有噪声的示例的这一点的结果。

  在该示例中,一旦(数据包的以及帧内的)频率和起始点是已知的,首先将每比特的64个片(slice)的每个求和,然后在适当的起始点将每个比特长度的帧与“0”模板和“1”模板进行卷积。(再次注意到这些模板大于75%是零,因为对于此协议,在组合片中,每4μs存在大约1μs宽度的尖峰——这消除了尖峰之间的噪声干扰解释。)两个中的更高的值声明该比特。

  图60示出了使用如与图56、图58和图61中所示的相同的数据的、每个比特长度的帧的输出和数据包的对应比特模式。根据本公开的一个方面,示出了由接收器电路900(图47)、930(图49)、950(图50)、960(图51)、970(图52)、990(图53)、1010(图54)、1100(图55)接收的40比特数据包1600。纵轴表示电压(V),并且横轴表示“脉冲时序”时间(μs)。尽管与信号幅度相比噪声在高水平,但数据清晰且易于读取。

  图61是根据本公开的一个方面的由接收器电路900(图47)、930(图49)、950(图50)、960(图51)、970(图52)、990(图53)、1010(图54)、1100(图55)接收的数据包1700的精细频谱。纵轴表示电压(mV),并且横轴表示“脉冲时序”时间(μs)。

  在另一方面,本文提出了第二尖峰协议定义。与先前的协议相比,该第二协议定义使发送器对电容器充电可用的时间量加倍,基本上使传输的尖峰的幅度加倍。其次,该第二协议改进了被用来找到频率的伪随机码,以使得“旁瓣”全部为0或-1。第三,如果该数据包全部为0、全部为1或者介于两者之间的任何之处,则此码被设计成很好地等同地工作。在其他方面,该第二协议定义以与先前版本类似的方式工作。

  在该第二示例的尖峰协议定义中,定义了两个“子码片”“A”和“B”,它们可以以某些方式组合以形成“0”和“1”码片。这里是一个示例定义:

  子码片定义:

  “A”子码片为{1 0 -1 0 -1 0 1 0 1 0 -1 0 1 0 -1 0 1 0 1 0 1 0 1}

  “B”子码片为{0 -1 0 -1 0 -1 0 -1 0 -1 0 1 0 -1 0 1 0 -1 0 -1 0 1 0}

  “0”码片是{A B}

  “1”码片是{B A}

  当进行解码时,“堆叠”长度为len(A)=len(B)

  选择上述序列,以使得当它们组合时,即,

  A+B={1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1 1 1}。

  {A+B}x{A+B}产生(自相关)模式,其具有23个单位高的中心峰值,且所有的其他旁瓣=-1(参见图68)。也可以使用不同长度的其他码,并且方面不限于此。例如,在19个单位长度处,码是{1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 -1 -1 1}。通常,两个子码片定义可以具有不同的模式,只要它们的求和的自相关产生中心峰值等于子码片的长度并且旁瓣不等于1的模式。

  进一步地,在此定义中:

  40比特数据包=前面是16比特前导码的24比特数据:

  前导码=[1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1];

  另外,连续的70个码片形成符号,其与比特相同。(在其他协议中,符号与比特没有一对一的关系)。增加每符号的码片数量会占用更多的时间(数据包更长),但如果传输时钟稳定,则存在进入每个符号的更多功率以及因此更低的比特误码率。

  进一步地,在此定义中:

  每个码片12+11=23个尖峰

  尖峰之间2x 4=8μs(当从比特=1转变为比特=0时除外)。当子码片帧被堆叠起来时,在23个尖峰之间将是4μs。

  23x 2x 4=184μs/码片

  70个码片/比特

  “A”子码片尖峰在从t=0开始的8μs间隔上;

  “B”子码片尖峰在从t=4μs开始的8μs间隔上;

  12.88ms/比特

  40比特/数据包,数据载荷=24比特

  515.2ms/数据包

  图64示出了曲线图1830中的“A”子码片和曲线图1840中的“B”子码片的图形表示。x轴是样本数,假设尖峰之间为8μs并且采样率=10MSPS。

  参考图65,基于第二尖峰协议的上述示例定义,根据以上描述组合A和B会产生“0”码片=[A B],如图曲线1850中所示的,并且“1”码片=[B A],如曲线图1860中所示的。

  为了产生“0”比特,依次广播70个“0”码片;为了产生“1”比特,依次广播70个“1”码片。以这种方式,整个数据包被广播。根据可摄入标识符的一些当前规范,标称地,传输每个比特花费12.88ms而传输数据包花费515.2ms。在更低的传输频率(例如低5%),传输数据包可能花费541ms,但是在更高的频率(例如高5%),传输数据包可能仅花费489ms。

  当对信号进行解码时,将足够的数据存储在帧中以确保捕获一个数据包,但不要太多以至于数据包之间的噪声超过信号。数据包之间的一些空比特的间隙可能是足够的,特别是如果数据包彼此同步的话。

  然后将数据“分片”成长度等于子码片的区段。然而,由于传输的频率并不完全清楚,因此子码片的确切长度也是未知的。确定每片的样本数或子样本数的频率的范围取决于假定的传输频率。因此,在标称频率,可能存在每码片1840个样本=每片1840个样本。在略低的频率,可能存在每片1840.1个样本,这意味着每10个片,将额外的样本“挤压”到片中。在稍高的频率,可能存在每片1839.99个样本,这意味着每100个片,样本已经“拉伸”。通过适当的拉伸和挤压,获得对于所有频率的相等长度的片。然后可以等同地处理这些片,而不用担心使用了多少样本和子样本来创建每个片。这个动作是拉伸-挤压分片过程。为了有效地完成拉伸挤压,生成存储指针阵列的模板,其描述对于每个频率的帧中用于每个片的起始点。术语模板指的是特定和预定的脉冲模式(或指针、片等),其充当要进行比较的参考。可选地,根据实施约束,可以使用算法来连续产生每个模板。

  然后将片堆叠并求和。在该示例中,由于每个片是1840个样本,所以将第一个片的第一个样本添加到第二个片的第一个样本,然后将第三个片的第一个样本添加到该总和,并且依此类推直到所有片的所有第一个样本都被求和到组合片的第一个样本中。以这种方式,产生组合片的所有1840个样本,每个样本是所有片的每个片中的所有相同数的样本的总和。

  在没有噪声的情况下,该组合片可以看起来像图66中所示的曲线图。该组合片可以具有SNR=5000。

  对“A”子码片和“B”子码片求和产生“模板”,其被用在解码中以找到数据包的起始点和正确的频率。在图67中示出该模板。请注意,23个尖峰之间的间隔为40个样本或4μs。由于总是存在相同数量的A和B码片,因此总和的幅度在标称上总是相等的(噪声将导致这些幅度在实际中变化)。

  下一步是将组合片与组合片的模板进行卷积,以找到针对每个假定频率的最佳匹配起始点。在图68中示出了用于最佳匹配组合片(匹配上面所示的组合片)的典型低噪声卷积。该曲线图显示了模板卷积和与片数的关系。

  注意,当模板与最佳拟合组合片对齐时,幅度为23。当片偏差了4μs的等同值时,幅度为-1。在所有其他偏差下,幅度为零。对于每个假定频率,保留两个值:峰值的幅度和样本数。注意,将该相关得分的绝对值与其他进行比较。如果最佳拟合得分为负,则在连续计算中将数据集合中的每个数据点乘以-1。

  计算并存储针对每个假定频率的最大卷积值。这些值与假定频率之间的关系的曲线图是“频谱”。图69中示出的是对于该SNR=5000示例的频谱:(最佳卷积和与“频率”的关系)。

  该示例示出频率靠近标称值,该标称值是501。如果峰值更靠近1,则频率低于标称(例如标称长度-1);如果它更靠近1000,则频率高于标称(例如标称长度+1)。从最高峰值,我们得知两件事:组合片内的实际广播频率和(来自图68中的前一图表的)起始索引。

  下一步是产生(或从存储器中取出)对于该频率和该起始索引的指针。指针是数字列表,每个数字表示针对每个片的起始点和模板。

  然后,指针和模板被用来为每个片产生两个子码片得分:“A”子码片得分和“B”子码片得分。

  在图70中所示的是对于极低噪声情况的针对每个片的“A”子码片得分(X轴:片数,Y轴:相关值)。请注意,由于在此示例中存在非常小的噪声,因此很容易看到数据包的开头和结尾。在数据包的开始处放大,在图71中示出A码片得分(X轴:片数,Y轴:与“A模板”值的相关)。

  在图72中示出将A子码片和B子码片相关值两者绘制在一起。很容易看出,当A子码片得分高时,B子码片得分低,并且反之亦然。注意,在该示例中,A子码片得分大于B子码片得分。这是因为A子码片中的尖峰比B子码片中的尖峰多一个,从而产生为奇数的“组合”码片(当被堆叠在一起时),因此允许所有的-1旁瓣,如上面在图68的最佳拟合组合片中所示的。

  下一步是使用子码片得分为每个片生成“0”和“1”码片得分。根据某些方面,这里是公式:

  

  因此,“0”码片是A(n)子码片+B(n+1)子码片的总和,而“1”码片是B(n)子码片+A(n+1)子码片的总和。注意,0码片和1码片得分之间的差被用于解码,而两者的总和被用于寻找数据包起始点。

  图73示出了根据片数的“0”码片值的曲线图。

  图74示出了根据片数的0码片和1码片得分二者的曲线图。再次注意,当1码片得分高时,另一个为低。登记(即确定数据包的确切起始点)在这里是至关重要的:如果一个偏离了一个片,则所有0码片都变为1,并且反之亦然。通过以已知比特序列、即“前导码”而开始数据包来解决该问题。

  解码中的下一步是针对每个片数计算两个“比特得分”,一个是对子码片的每个比特长度的所有0子码片求和,另一个是对1子码片的每个比特长度的所有1子码片求和。下面示出对于此的MATLAB代码,作为如何实现此步骤的示例:

  

  注意,产生两个比特长度得分:一个得分使用码片得分的差,并且第二个得分基于码片得分的总和。后者变成数据包包络。肯定的是,本文中使用的帧表示正在被分析的数据的区段,这应该包含数据包。因此,在帧中,数据包将被噪声包围。

  图75示出了比特长度得分与片数之间的关系的曲线图。注意,虽然第二比特长度得分表示了被用来对数据包进行解码的比特长度得分的包络,但是比特长度得分随着每个片数翻转。使用下面的算法来找到确切的起点:对产生正确前导码的起始点进行奖励,同时向具有有效比特的片给予分数。因此,使用第一比特长度得分(对于前导码比特)和第二比特长度得分(对于数据包比特)的组合来找到数据包的最佳估计。

  在下面示出用于遍及片进行搜索以进行该计算的示例的MATLAB代码:

  

  此时,已确定数据包的最佳估计。检查前导码以查看它是否正确。如果它正确,则记录数据载荷,并且假设正确。依据信号的SNR(见下文),确定处于相同或相似频率的一定数量的数据包,并且如果它们匹配,则假定数据包是正确的。可选地,如果SNR低于特定的数,则可以组合许多这些比特长度得分以产生组合了相邻数据包的元比特长度得分,从而产生对单个数据包的更好估计。

  图76示出了低噪声数据包的曲线图。示出了两条线:更深的线是比特长度得分,而更浅的线是如所解释的比特值。现在,可以看出在存在各种噪声量的情况下这些相同的参数看起来如何。在所有以下示例中,SNR被测量为Vmax/V noise rms,其中Vmax是尖峰幅度,并且V noise rms=sqrt(mean(noise.*noise)(MATLAB表示法)。以下是说明了这一点的相关MATLAB代码:

  noise=2.0*rand(1,length(signal))-1.0;

  noiseRMS=sqrt(mean(noise.*noise));

  vMax=000.0192;

  inData=1.0*signal*vMax/max(signal);

  log_vMaxOverVn=10.0*log(vMax/noiseRMS)

  simData=inData+noise;

  图77示出了在不同信噪比下的最佳拟合组合片的四个曲线图。曲线图1900示出了对于SNR=5dB的最佳拟合组合片。曲线图1910示出了对于SNR=-15dB的最佳拟合组合片。曲线图1920示出了对于SNR=-24dB的最佳拟合组合片。曲线图1930示出了对于SNR=-34dB的最佳拟合组合片。

  通过将“最佳拟合总和”与模板卷积来产生下一个关键参数以确定组合的总和内的最佳猜测起始点。

  图78示出了“bestThisSums”的各种曲线图,其是对于各种SNR“最佳拟合总和”与“模板”卷积。在每种情况下,曲线图具有“最佳猜测”,即产生最大峰值的频率。曲线图2000示出了对于SNR=5dB的这种“bestThisSums”的卷积。每个频率将产生峰值:最高峰值是正确的频率(参见对于每个频率的峰值的曲线图的“频谱”)。峰值的位置(最高总体峰值)指示起始索引。因此,当帧被分解成片时,该起始索引被用于使A子码片模板和B子码片模板进行相关以产生用于每个片的子码片得分。还可以假设峰值的位置决定在每个片内每个子码片的起始点的登记。

  曲线图2010示出了对于SNR=-15dB的“bestThisSums”。曲线图2020示出了对于SNR=-24dB的“bestThisSums”。曲线图2010示出了对于SNR=-34dB的“bestThisSums”。请注意,即使在-34dB的情况下(其表示尖峰的峰值幅度为背景噪声的峰值幅度的~2%的数据集合),仍然可以轻松地找到相关值。在这种情况下,正确的峰值(~3000)约为下一个最近峰值(~-1000)的三倍。

  针对每个频率绘制最佳bestThisSums值产生类似于“频谱”的东西,即最佳拟合相关与频率数的关系。图79示出了不同SNR下的各种频谱图。曲线图2100示出了对于SNR=5dB的频谱。曲线图2110示出了对于SNR=-15dB的频谱。曲线图2120示出了对于SNR=-24dB的频谱。在-24dB时,尖峰幅度为峰值噪声幅度的~5%。最佳相关峰值与下一个最佳峰值的比率为~7。曲线图2130示出了对于SNR=-34dB的频谱。即使在这种噪声水平下,也以非常高的精度对该信号进行解码。

  再次地,在单个数据包的检测精度开始显着滑动的点处,峰值是下一个最大峰值的~3倍。一旦该比率下降到低于4或5,开始在频谱级(以查看峰值噪声比是否优于~5)和比特长度得分级二者来组合数据包以提高解码精度可能会有所帮助。

  在图80中示出被用于在这些各种SNR水平下成功地对数据包解码的比特长度得分。曲线图2200示出了对于SNR=5dB的比特得分。曲线图2210示出了对于SNR=-15dB的比特得分。曲线图2220示出了对于SNR=-24dB的比特得分。曲线图2230示出了对于SNR=-34dB的比特得分。曲线图2230是被成功解码的,其中SNR=-33.9dB,对应于尖峰幅度=最大噪声幅度的1.95%。通过组合数据包或每码片使用更多子码片,可以找到并解码包括相对于背景噪声的较小幅度尖峰的信号。

  在尖峰协议的第三个示例的定义中,不是仅利用2个子码片,而是可以利用N个正交码片来以更多种方式进行组合,其中N是在每个码片本身中预定义的单位的数量。在这种情况下,N=23,但是也可以使用其他大小(例如N=19或17)。在该示例中,与先前描述的第一个协议相比,该第三个定义将用于在放电之间发送器对电容器充电可用的时间量增加到23倍,大大增加了被传输的尖峰的幅度(给定诸如在摄入传感器上的限流充电系统)。其次,该协议定义改进了用于找到频率的伪随机码,以使得“旁瓣”全部为0或-1(与第二个协议中相同)。第三,每个数据包由相同的23个唯一符号组成,但这23个符号的出现顺序决定了信息。(第一个尖峰协议要求数据包中的相同数量的0和1以正常工作。)在其他方面,协议以与之前的版本相似的方式工作。

  在这里定义的是对于该第三个示例的协议定义的码片定义:

  %“A”子码片尖峰在从t=0开始的92μs间隔上;

  %“B”子码片尖峰在从t=4μs开始的92μs间隔上;

  %“C”子码片尖峰在从t=8μs开始的92μs间隔上;

  %...

  %“W”子码片尖峰在从t=88μs开始的92μs间隔上;

  %240个码片/符号(例如连续的240个“A”码片构成“A”符号)

  %44.16ms/符号

  %23个符号/数据包,数据载荷=2

  %270.5ms/数据包

  “A”码片为{1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}

  “B”码片为{0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}

  “C”码片为{0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}

  “D”码片为{0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}

  “E”码片为{0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}

  “F”码片为{0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}

  “G”码片为{0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}

  “H”码片为{0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}

  “I”码片为{0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0}

  “J”码片为{0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0}

  “K”码片为{0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0}

  “L”码片为{0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0}

  “M”码片为{0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0}

  “N”码片为{0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0}

  “O”码片为{0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0}

  “P”码片为{0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0}

  “Q”码片为{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0}

  “R”码片为{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0}

  “S”码片为{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0}

  “T”码片为{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0}

  “U”码片为{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0}

  “V”码片为{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0}

  “W”码片为{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1}

  当进行解码时,“堆叠”长度为长度(A)=长度(B)=...=长度(W)

  选择上述序列,以便当组合出23个符号时(240个A码片构成A符号,240个B码片构成B符号等),即,{A+B+C+...+W}={1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -11 -1 1 1 1}{sum(A:W)}x{sum(A:W)}产生(自相关)模式,其具有23个单位高的中心峰值和所有其他旁瓣=-1(参见图68)。也可以使用许多不同长度的其他码。例如,在19个单位长的情况下,码是{1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 -1 -1 1}。

  该协议的独特特征之一是数据包恰好由23个符号A-W组成。每个符号由一些连续数量的相关码片组成。在这种情况下,每符号的240个码片产生一个数据包,其持续时间与先前的协议类似。每符号使用更多的码片在码片被累加时增加每个符号的幅度,并且平均更多噪声,从而降低其平均幅度。信息以符号出现的顺序被包含。因此有23!(23的阶乘)等于~1021个唯一码,大约70比特的信息。这些“比特”被用于数据包前导码、地址和数据、或其他目的。例如:

  前导码=A F K P T

  ID:000=BC DE GH IJ LM NO QR SU VW

  ID:001=BC DE GH IJ LM NO QR SU WV

  ID:010=BC DE GH IJ LM NO QR SV UW

  ID:011=BC DE GH IJ LM NO QR SV WU

  ID:100=BC DE GH IJ LM NO QR SW UV

  ID:101=BC DE GH IJ LM NO QR SW VU

  以下是子码片、码片、符号和比特的该协议的定义:

  每码片有23个子码片(与模板中的尖峰的数量相同)。每个子码片处于用于出现尖峰的在时间上的等间隔的位置处;尖峰可以是+1或-1。

  每符号有240个码片(也可以更多或更少)。

  每数据包有23个唯一符号。

  符号和比特之间的关系稍微复杂一些,并且取决于有多少符号(如果在每种情况下有的话)被用于前导码、地址和数据字段。

  例如,为了传递上述前导码和地址=二进制的(101),该数据包将被简化为:

  数据包={A F K P T B C D E G H I J L M N O Q R S W V U}

  增加每符号的码片数量消耗更多时间(数据包更长),但是如果传输时钟是稳定的,则有更多的功率进入每个符号并且因此具有较低的误比特率。稍后将讨论尖峰片算法如何解决数据包内的频率变化。

  图81示出了前四个“A”码片。x轴是样本#(样本数),假设尖峰之间为92μs且采样率=10MSPS。

  图82示出了如所传输的信号的曲线图,假设每符号240个码片。注意,在图82中,信号看起来类似于23比特的模板模式,只是尖峰更宽。这是因为23比特的模板模式的每个“比特”是240个相同的尖峰:全为+1或全为-1。

  为了得到“A”符号,依次广播240个“A”码片;为了得到“B”符号,依次广播240个“B”码片。以这种方式,整个数据包被广播。标称上,传输每个符号花费44.16ms并且传输数据包花费541ms。在较低的传输频率(例如低5%),传输数据包可能花费568ms,但是在更高的频率(例如高5%),仅为514ms。

  当对信号进行解码时,在帧中存储足够的数据以确保捕获一个数据包,但不要太多以至于数据包之间的噪声超过信号。数据包之间的一些空比特的间隙可能是足够的,特别是如果数据包彼此同步的话。

  然后将数据“分片”成长度等于子码片的区段。然而,由于传输的频率并不完全清楚,因此子码片的确切长度也是未知的。确定每片的样本#或子样本#的频率范围取决于假定的传输频率。因此,在标称频率,每码片可能存在920个样本=每片920个样本。在略低的频率,每片可能存在920.1个样本,这意味着每10个片,将额外的样本“挤压”到片中。在稍高的频率,每片可能存在919.99个样本,这意味着每100个片,样本已经“拉伸”。通过适当的拉伸和挤压,获得对于所有频率的相等长度的片。然后可以等同地处理这些片,而不用担心使用了多少样本和子样本来创建每个片。这个动作是拉伸-挤压分片过程。为了有效地完成拉伸-挤压,生成模板,其存储指针阵列,该指针阵列描述在对于每个频率的帧中用于每个片的起始点。

  然后将片堆叠并求和。在该示例中,由于每个片是920个样本,所以将第一个片的第一个样本添加到第二个片的第一个样本,然后将第三个片的第一个样本添加到该总和,并且依此类推直到所有片的所有第一个样本都被求和到组合片的第一个样本中。以这种方式,产生组合片的所有920个样本,每个样本是所有片的每个片中的所有相同数的样本的总和。

  在没有噪声的情况下,该组合片可以看起来像图66中所示的,图66示出了具有SNR=5000的组合片。注意,协议3中的组合片看起来与协议2中的组合片完全相同。实际上,如果数据包的持续时间是相同的,并且由数据包传输的能量的量是相同的,则这两个组合片确实是相同的。差别在于,在协议3中,23*4μs=92μs的电荷泵送发生在每个尖峰之间,而在协议2中,2*4μs=8μs的电荷泵送发生在每个尖峰之间。因此,协议3中每个尖峰的幅度大约是协议2中每个尖峰的幅度的十倍。现在,如果每个系统中的模拟前端是“理想的”,并且每个系统中的模数转换器也是“理想的”,则,在组合片中的尖峰数量和总可用能量固定的情况下,来自协议2和协议3的组合片应该没有差别。但是现实并不理想,并且可能存在的情况是尖峰的幅度增加10倍,这意味着ADC的最低有效位在尖峰期间足够频繁地翻转,以使得当针对时间上的23个位置中的每一个来累加240个尖峰时,则观察到一组可检测的尖峰。此外,在尖峰之间具有92μs鼓励对尖峰片算法的使用,该算法利用这一事实并消除这些92μs尖峰之间的噪声。与先前描述的协议2可能的75%减少相比,这使噪声贡献增加了近99%。稍后我们将探索这种变化。

  对所有的“A”码片一直到“W”码片求和产生“模板”,其在解码中被使用以找到数据包的起始点和正确的频率。这与协议2中使用的模板相同(参见图67)。

  注意,23个尖峰之间的间隔是40个样本或4μs。由于总是存在相同数量的A和B码片,因此总和的幅度在标称上总是相等的(噪声将导致这些幅度在实际中变化)。

  下一步是将组合片与组合片的模板进行卷积,以找到针对每个假定频率的最佳匹配起始点。再次在图68中示出了针对最佳匹配的组合片(匹配上面所示的组合片)的典型低噪声卷积。

  注意,当模板与最佳拟合组合片对齐时,幅度为23。当片偏差了4μs的等同值时,幅度为-1。在所有的其他偏差下,幅度为零。对于每个假定频率,保留两个值:峰值的幅度和样本数。注意,将该相关得分的绝对值与其他的进行比较。如果最佳拟合得分为负,则在连续计算中将数据集合中的每个数据点乘以-1。该过程与协议2的过程相同。

  计算针对每个假定频率的最大卷积值。这些值与假定频率的关系的图是“频谱”。在该示例中,再次参见图69的SNR=5000的频谱图。

  该示例示出频率接近标称值,该标称值是501。如果峰值更接近1,则频率低于标称;如果峰值接近1000,则频率高于标称。从最高峰值,我们得知两件事:在组合片中的(来自前面的图)起始索引和实际广播频率。

  下一步是产生(或从存储器中取出)用于该频率和该起始索引的指针。指针是数字的列表,每个数字表示用于每个片的起始点和模板。

  然后使用指针和模板生成针对每个片的23个码片得分:“A”码片得分一直到“W”码片得分。每个码片得分是该片与用于该码片的模板进行卷积的相关总和。因此,用于“A”码片的模板在时间样本数1处是单个尖峰(例如...)。用于B码片的模板是在样本数41处(即,在t=4μs处,假设每秒10^6个样本)的单个尖峰(即,在低噪声系统中通过线圈从放电的电容器接收到的预期信号)。

  在图83中所示的是对于极低噪声情况的针对每个片的“A”子码片得分。X轴表示片数,并且Y轴表示相关值。请注意,由于在此示例中存在非常小的噪声,因此很容易看到A码片全部出现在数据包的开头。

  图84示出了针对极低噪声情况的针对每个片的F码片得分。类似地,作为数据包中的第二个符号,当期望数据包中的第二个符号出现时,针对每个片的F码片得分高。

  图85示出了所有的A码片一直到W码片得分与片数的关系的图。在低噪声情况下,很容易看出每个符号的值在每当它们不存在时大约为零。这是因为所有码片共享相同的登记(registration)或起始点,并且因此在给定该登记的情况下,每个符号与每个其他符号正交。因此,与其他协议的关键差别在于,所有的数据包能量都被用于找到频率和片内登记点。对于任何给定的片内登记点,所有的符号都彼此正交。虽然可能讲得通,如果需要例如140比特的信息,则简单地以不同的排列来重复23个符号的数据包。当然这将行得通,并且所有的数据包能量将再次被用来找到频率,但是现在,相对于该数据包的能量的量,每符号能量将是一半。实现相同目标的更好方法是找到具有相似自相关模式的25符号系统。25符号数据包可以产生84个比特。在这种情况下,符号能量/数据包能量将仅减少8%。因此,每个码片得分具有23个数字,每个数字是针对单个片的符号的相关总和。

  最终,每片的这些码片得分中的仅一个将被用在最佳猜测数据包的计算中。这意味着,在~1μs时段中的信号连同在该1μs期间出现的噪声一起被收集。但是,在每个片的其他91μs中出现的噪声完全被排除在外。然而,替代实施例可以是对针对每个片的所有的23个码片得分进行平均,并从每个码片得分中减去其他码片得分的平均值。然而,该替代实施例然后将收集并使用每片的在更多的22微秒中的噪声。也许在某些情况下,这可能是一个优势。

  无论哪种方式,下一步是使用码片得分来生成针对每个片的符号长度得分。再次地,针对每个片存在23个符号得分,每个符号得分表示该片和接下来的239个片的码片得分的总和。这是公式:

  

  图86示出了每个符号长度得分与片数的关系的图。此时,下一步是确定针对每个片的数据包长度得分。为此,通过将针对每个片的最大符号长度得分声明为该符号来开始。当噪音很小时,这很简单:符号中的一个具有非常大的得分,其他符号具有非常小的得分。然后,从定义数据包的适当的23个时间点来累加这些最大符号长度得分,并且确定针对每个片的“数据包得分”。当为了最大数据包得分而遍历所有的候选片时,还必须检查23个所选符号是否是唯一的,即每个符号“最大”一次且仅一次。当为了最大数据包得分而将片搜遍时,可以忽略在第一次切入时不是最大的大多数那些。如果具有最大数据包得分的片没有识别23个唯一符号(由于噪声),则使用纠错算法来找到具有23个唯一符号的最佳猜测数据包。

  下面在示例的MATLAB代码中示出运行这种算法的一种方式:

  

  首先,将针对23个数据包位置中的每一个的23个符号得分存储在矩阵中。然后对该矩阵进行排序,以便找到对于每个位置的最高符号长度得分。找到对于所有位置的高符号长度得分,并且声明该符号用于该位置。然后从对于其他22个位置的竞争中移除该符号。然后找到其余22个位置之中的下一个最高符号长度得分,并声明对于该位置的该符号,并且从对于所有其他位置的竞争中移除该符号。上述算法是完成此过程的一种方式,但可能还有其他更有效的方式来纠错。例如,如果存在前导码,则该信息可以被用于找到最佳猜测数据包和对猜测的准确度的估计。最终,如果需要纠错,那么对于该片数的数据包得分将更低。然而,它可能仍然是最好的总体数据包得分。

  因此,已经确定了数据包的最佳估计。依据信号的SNR,确定在相同或相似频率处的一定数量的数据包,并且如果它们匹配,则假定数据包是正确的。可选地,如果SNR低于某个数,则可以组合许多这些比特长度得分以产生组合了相邻数据包的元符号长度得分,从而产生单个数据包的更好估计。

  图87是示出低噪声(-5.5dB)数据包的图。示出了两条线:具有刚低于10的值的逐渐变化的橙色线2270是该位置处的归一化的比特长度得分,并且具有范围从1到23的值的快速变化的(蓝色)线2280是如所解释的符号值。

  现在,可以确定在存在各种噪声量的情况下这些相同参数看起来如何。在以下所有示例中,SNR被测量为Vmax/V noise rms,其中Vmax是尖峰幅度,并且V noise rms=sqrt(mean(noise.*noise))(MATLAB表示法)。以下是相关的MATLAB代码:

  noise=2.0*rand(1,length(signal))-1.0;

  noiseRMS=sqrt(mean(noise.*noise));

  vMax=000.0192;

  inData=1.0*signal*vMax/max(signal);

  log_vMaxOverVn=10.0*log(vMax/noiseRMS)

  simData=inData+noise;

  在一些方面,(并且先前提到)利用符号长度拉伸/挤压过程的重要变化。在此过程中,数据帧被分成重叠的符号长度片。可选地,将数据帧分成长度等于符号长度的1.5倍的片,并且这些片以0.5倍的符号长度增加。在这种情况下,可以在连续的片计算上使用子片以减少计算量。这种变化保证了单个符号的所有能量都将包含在单个片中。虽然此过程在找到正确的频率时可能没有太大作用,但在对信号进行解码时可能会有所帮助。无论哪种方式,然后将这些片中的每一个拉伸或挤压到标称长度(在该示例中,为920个样本长)的组合片中。图88中示出了正确频率的低噪声示例。在这里,示出了符号长度片的第一组合片。

  注意,仅出现了一个峰值。这是因为第一片仅捕获第一个符号的一部分而没有第二个符号。第二片按一定百分比与第一片重叠。在这种情况下,该百分比是50%。这样做的目的是确保这些片中的一个捕获大部分的符号信息并且可以找到峰值。

  在图89中示出了符号长度片的第二组合片总和。请注意,在第一片中出现的相同峰值(靠近索引=400)也在第二片中出现。此外,还可以看到下一个符号(靠近索引=200)的一部分。

  图90分别在曲线图2270和2280中示出了在存在噪声的情况下相同的第一片和第二片总和的两个图。曲线图2270示出了在SNR=7dB的情况下符号长度片的第一片。请注意,这是一组不同的数据,并且峰值出现在此组合片的另一不同索引上。类似地,曲线图2280示出了在SNR=7dB的情况下符号长度片的第二片。请注意,在此组合片中,在背景噪声之上两个峰值可见。

  由于预期在这些符号长度帧的每一个中仅示出一个或至多两个峰值,因此模板是单个峰值的模板,如图91中所示。图91示出了被用于符号长度片的模板。当该模板与图90的两个图中所示的组合片卷积时,结果如图92中所示。图92示出了曲线图2270中所示的组合片与图91中所示的模板的卷积。它类似于图68中的结果。

  图93示出了曲线图2280中所示的组合片与图91中所示的模板的卷积。它类似于图68中的结果。

  在该挤压/拉伸片变化中,预期会看到两个峰值。这两个峰值是理想地要收集的仅有的信息,并且其余的可以被忽略,其只是噪音。以这种方式——通过消除不存在信号之处的噪声,可以改善系统的总体信噪比。事实上,通过在后面的计算中仅使用这些峰值中的一个,从分析中消除了在传输期间存在的大致98%的噪声。因此对于每个符号长度片:

  将1.5倍的符号长度的数据挤压/拉伸成标称长度片(在这种情况下为920个数据点)(1.5倍被用来确保每个峰值全部都在一个组合片中);

  将组合片与由单个尖峰组成的模板卷积。

  将由卷积产生的彼此相距至少35μs的最高两个峰值、连同它们的索引一起存储在存储器中(索引和幅值二者都保持)。将两个峰值中的每一个的绝对值的总和添加到被称为频谱(频率)的变量上。因此,将每个符号长度片中的最高两个峰值的幅值(绝对值)中的每一个相加在一起,以产生与所有其他频率的值相比较以找到正确频率的值。可以将这些频谱值根据频率来绘制,如在图94中对于相同的噪声情况所示的。图94示出了频谱:根据频率的、对于每个符号长度片的两个峰值的幅值的总和。它类似于图69。

  注意,与图69相比,该频谱峰值更宽且更平滑。这是因为,由于一次仅分析一个符号,所以滤波具有更宽的带宽。(平滑一部分归因于这里仅绘制了幅值的事实;较早的频谱图包括数据集合的奇偶性。)它缺乏具有23尖峰模板的全帧拉伸/挤压分析的特性。另一方面,已经从分析中消除了大量噪音。在23尖峰模板中,每个尖峰的宽度大致为1μs,间隔为4μs。在尖峰之间,模板值为零。因此,在每个卷积中,75%的噪声被消除——在模板中尖峰之间的空间。然而,在符号长度拉伸/挤压方法中,模板是1μs宽的单个尖峰,并且被使用两次。在这种情况下,包括了2μs的噪声并且消除了90μs或98%的噪声。

  为了看到当噪声水平甚至更高时这如何有利于频率的发现,图95中示出的是对于帧长度拉伸/挤压分析和符号长度拉伸/挤压分析二者的频谱。

  图95的曲线图2300示出了帧长度片根据频率的频谱。SNR=-10.6dB。它是使用被用来生成图69中的图的相同算法而计算的。

  图95的曲线图2310示出了符号长度片根据频率的频谱。SNR=-10.6dB。它是使用被用来生成图94的图的相同算法而计算的。

  注意,在上述比较中,产生了正确答案(索引=501)。然而,很明显,曲线图2330中的峰值是更平滑的曲线,并且更确定存在信号。

  图96中示出的是来自具有更多噪声运行的结果。曲线图2320示出了帧长度片根据频率的频谱。SNR=-13.5dB。它是使用被用来生成图69的图的相同算法而计算的。

  曲线图2330示出了符号长度片根据频率的频谱。SNR=-13.5dB,但每符号只有120个码片。它是使用被用来生成图94的图的相同算法而计算的。

  注意,在帧长度的情况下,正确答案(501)出现在索引600和520附近的峰值之后的第三位置。因此,该数据包未被成功解码。然而,基于曲线图2330中的符号长度的符号长度片的频谱确切地找到了正确的频率。

  参考图97,曲线图2340中示出的是帧长度片根据频率的频谱。SNR=-17.5dB,但每符号只有120个码片。它是使用被用来生成图69的图的相同算法而计算的。

  曲线图2350示出了符号长度片根据频率的频谱。SNR=-17.5dB,但每符号具有120个码片。它是使用被用来生成图94的图的相同算法而计算的。

  当SNR进一步降低时,基于曲线图2340中的帧长度片的频谱未接近于识别正确频率。另一方面,基于曲线图2350中的符号长度片的频谱估计频率为505个单位而不是目标501个单位,足够接近于成功地对数据包进行解码。

  为了看它如何在更细粒度级上工作,图98的曲线图2360中示出的是与曲线图2280(参见图90)相同的第二片、相同的数据集合,但是在高了10个单位的频率。在曲线图2360中,示出的是符号长度片的第二片,其中SNR=7dB,但是频率是511个单位而不是501个单位。注意,尖峰中包含的大部分信息被保留。峰值仅是略低。

  曲线图2370中示出的是符号长度片的第二片,其中SNR=7dB,但频率在521个单位而不是501个单位。基于此,可以很容易地看出如何通过在更多索引上扩展尖峰来降低峰值的幅值。当搜索频率偏离了10个单位时,这几乎察觉不到,但当它偏离了20个单位时更明显。

  参考图99,曲线图2380中示出的是符号长度片的第二片,其中SNR=7dB,但频率在551个单位而不是501个单位。

  在曲线图2390中,示出的是符号长度片的第二片,其中SNR=7dB,但是频率在571个单位而不是501个单位。注意,当频率偏离70个单位时,峰值的幅值为当频率完全正确时的大致一半。

  这里应该注意,如果不是允许将所有23个符号随机放置在数据包内以产生23!个码,而是坚持前三个符号是固定的、且其他符号各自配对以使得两个有效符号之间的间隔总是相同的,则两符号宽的片将在保留上面示出的单符号宽的片的大部分优点的同时明显地更为具体。

  这种变化有几个好处。例如,符号长度片的概念使它自己适合于实时执行:消耗大量数据点并将其转换为较少数量的点,这些点稍后可以被用来找到数据包、找到其频率并对其信息进行解码——这是最初的片的主要目的。

  在这种情况下,数据包长度是250ms(与协议2相反,协议2为~500ms)。更长的数据包意味着更长的符号,这会使更多的能量进入每个符号中,并且因此更容易解码。在250ms,每个符号为120(每符号的码片)*920(每码片的样本)=每符号110,400个样本。在协议2中,该数量为每符号220,800个样本(在两种情况下,是标称的样本数,如所传输的确切的样本数可能比标称高或低1%、5%或甚至10%)。如果假设可以使用偏离标称频率范围的+/-1%,例如1000个频率桶(frequency bucket)。对于每个片,可以将220,800个样本转换为具有1000x 4个数据点的片。为了更高的准确度,可以从每个片保存最高的3个峰值或最高的4个峰值,将所保存的信息从4000点增加到例如8000点。然而,将220,000个样本转换到8000个点左右中,这是一个相当显着的压缩比。

  其次,当然,通过从最终分析中消除98%的噪声,信号和频率检测可以提高~6dB,这是显着的益处。进一步的变化——诸如两符号宽的片(在这两个符号之间具有已知间隔),可能产生进一步的益处。

  第三,这种变化是为了产生清楚地表明存在人工信号——而不是随机噪声——的频谱模式。当单个数据包产生了确定存在信号但不足以将它准确解码的足够信息时,这将允许找到并且然后组合携带相同信息的连续数据包,并在片级来组合这些数据包。从实际的角度来看,组合两个数据包(每个数据包表示使用两个数据集合之间的相关性的五百万个样本)将需要非常大量的乘法和加法并且可能会不起作用,因为将对每个都由噪声主导的两个信号进行比较。另一方面,分片过程在每个片中消除了98%的噪声,并且将来自一个数据包的50个片与来自另一个数据包的50个片进行比较将产生非常好的机会以所需的最小计算量将它们对齐。

  第四,在调整在数据包广播期间发生的传输时钟上的变化的过程中(漂移),符号长度片可能是有用的。当就漂移进行调整时,符号长度片需要仅在符号长度时间期间稳定的时钟。只要整个数据包上的漂移不超过2μs(在此示例中),符号就保持其正交性。

  来自第三个峰值协议定义的示例的数据结果

  用于分析协议3中的数据的算法是前面描述的算法的变化。最大的差别是严重依赖于1.5*符号长度片来找到频率。在所示的用来产生强结果的该解决方案中,该算法(在本文中被称为协议3符号分片器,或P3SS)被用在粗略频率模式中,以便利用其宽的、良好表现的频谱来快速扫描信号的频率。然后,使用P3SS的精细搜索被用来找到最佳猜测频率。在高噪声环境中,这种方法优于使用帧长度组合片方法,因为消除了额外的噪声(从75%的噪声消除到98%的噪声消除)。

  值得注意的是,在创建符号片(从240个片来组合)之后,仅保留最高的两个峰(至少分开35μs)的索引和峰值。将它们添加到针对该频率的、对于每个符号长度(或1.5*符号长度)片的其他最高的两个幅值。对于每个片的这些最高的两个幅值的总和成为该频率对“频谱”的贡献。所有其他信息——在采样和卷积数据的其他90μs中出现的所有噪声——都被抛弃。在图100中示出了在距探测器9英寸的距离处的用于粗略频率搜索的结果频谱。

  图100示出了在距检测器9英寸处的传感器仿真器的粗略频谱图。该图上的x轴表示,在中心处,每片的标称样本数是920。在X=0处,每片有919个样本;在X=200处,每片有921个样本。所示出的分辨率是每片0.01个样本。因此,较高的传输频率在左侧。峰值清楚地位于112处,这翻译为每片919+(112-1)*0.01=920.11个样本。

  此时,数据的帧被修整为仅包括数据包和3个附加符号,在假定的数据包位置的任一侧上有一个半。这从后续的分析中消除了更多噪音。

  使用该新值作为中心频率,和每片0.002个样本的分辨率,再次运行P3SS分析。在图101中示出所产生的精细频谱。

  图101示出了在距检测器9英寸处的传感器仿真器的精细频谱图。从精细频谱中可以看出,峰值在6个单位处被找到,并且最终长度为每片920.106个样本。请注意,更精细的分辨率被扩展到中心频率的任一侧上的两个粗略点。

  使用此作为最终频率,使用全数据包长度的组合片来找到精确登记。图102示出了使用利用P3SS找到的中心频率的组合片。例如,图102中示出的是距接收器9英寸的距离处的摄入传感器的关键输出。图102示出了来自与源距离9英寸处的检测器的组合帧长度片的图。在图102中,匹配模板被示出在较高的尖峰(蓝线)2400中,而组合片数据被示出在稍短的尖峰(红线)2410中。注意它们具有相反的奇偶性:该信息被用来将传入数据的奇偶性调整为与模板对应。

  将模板与组合片进行相关,结果得到图103中所示的“bestSums”图。图103是示出使用在与源距离9英寸处收集的数据的BestSums的图。

  使用来自第二P3SS的精细频率和该登记索引,计算符号,并且图104中所示的最终数据包是示出使用在与源距离9英寸处收集的数据的数据包符号和强度的图。

  在24英寸处使用相同的过程,结果如下:

  图105是示出距离检测器24英寸处的传感器仿真器的粗略频谱的图。

  使用920.11的粗略频率作为中心频率,运行P3SS2(具有已调整的粗略频率的、P3SS的第二变化),并且发现更精细的频谱,如图106所示。图106示出了距检测器24英寸处的传感器仿真器的精细频谱P3SS2。

  此时P3SS2每片偏离0.004个采样点的片长度,并且解码是不准确的。利用全帧片技术来重复精细搜索产生以下如在图107中示出的频谱。图107示出了距检测器24英寸处的传感器仿真器的精细全帧频谱。

  该全帧频谱给出了对最佳片长度的更好估计(920.104),并且这带来数据包的成功解码。在图108中示出中间的集合。图108示出了针对与源距离24英寸接收的信号、最佳组合全帧片连同最佳拟合模板的图。再次地,较高的尖峰表示模板并且较短的尖峰来自全帧片。

  图109是示出针对与源距离24英寸收集的数据,bestSums(模板与组合片的卷积结果)结果的图。使用来自图109的索引,符号被成功解码。在图110中示出了得到的符号和伴随它们的卷积和。

  图110是示出针对与源距离24英寸收集的数据,符号值和数据包结果的图。这些结果表明了用于摄入传感器通信的尖峰弯曲通信协议的效用。

  图111是示出使用与源距离24英寸处收集的数据的BestSums的图。

  利用脉冲协议的示例的接收器

  已经描述了脉冲“稀疏脉冲”函数的产生和传输,现在描述转向用于接收和解码由脉冲电感器驱动器电路720发送的信号的各种接收器电路。相应地,图47示出了根据本公开的一个方面的用于检测由可摄入标识符产生的电磁场的电压模式接收器900。电压模式接收器900包括谐振电路902、低噪声放大器908(LNA)和接收器处理器910,所述接收器处理器910包括用于处理所接收到的从可摄入标识符发送的已编码的电磁信号的电路和组件。谐振电路902包括接收电感器天线904和调谐电容器906以在操作频率fo谐振。接收电感器904以具有电感器904的路径的形状因子来接收电磁信号。

  应当理解,在图44-图46中,横轴可能不一定表示时间,因为信号可以被拉伸或挤压到固定数量的数据点中。如果信号处于标称频率,那么对应的数据点将对应于时间,但是单位可能不是以微秒,而是单位将被缩放到无论什么样的、码片的持续时间,这可能依据实现而改变。

  在图48中用图形示出了来自接收电感器904的脉冲响应。在频率(f)上的接收到的信号以电压形式出现在电容器906两端。响应曲线922在操作频率fo处具有最高幅度或能量。返回参考图47,调谐电容器906两端的电压v信号被施加到LNA908的输入。LNA 908的输出被施加到接收器处理器910,所述接收器处理器910处理并解码所接收的信号,以再现由可摄入标识符发送的数据912。

  图49示出了根据本公开的一个方面的用于检测由可摄入标识符产生的电磁场的电压模式接收器930。接收器930包括谐振电路932、低噪声放大器938(LNA)、窄带谐振器或晶体滤波器944、以及接收器处理器940,所述接收器处理器940包括用于处理所接收到的由可摄入标识符发送的已编码的电磁信号的组件。谐振电路932包括电感器天线934和调谐电容器936以在操作频率fo谐振。电感器934以具有电感器934的路径的形状因子来接收电磁信号。

  在图49中用图形示出了来自接收电感器934的脉冲响应。在频率(f)上的接收到的信号以电压形式出现在电容器936两端。响应曲线在操作频率fo处具有最高幅度或能量。调谐电容器936两端的电压v信号被施加到LNA 938。LNA938的输出被施加到谐振器或晶体滤波器944,其耦合至接收器处理器940。接收器处理器940处理和解码所接收的信号,以再现由可摄入标识符发送的数据942。

  谐振器或晶体滤波器944可以包括一个或多个耦合的谐振器或晶体以设置滤波器944的选择性。可以采用的其他类型的滤波器包括但不限于:集总电感器/电容器(LC)滤波器、平面滤波器、同轴滤波器、腔体滤波器、介质滤波器、电声滤波器和/或波导滤波器。

  接收器处理器910、940可以包括用来对传入脉冲进行滤波的模拟或数字带通滤波器。在脉冲非常短的情况下,每个脉冲的电压可以在时间上积分。例如,传输频率可以出现在处于~12.5kHz至~20kHz、或大于~24kHz以及高达~10MHz的范围的频率。尽管脉冲不是确定性的,但它们以~6kHz的重复率在128个脉冲上重复。电池准备就绪是随机的,并且电池阻抗(Z)和电压(VBAT)可能会波动。可以基于电池的当前状况来调整脉冲宽度和重复率。这些类型的协议可以适应于物联网型电路。

  结合图47和图49讨论的接收器处理器910、940被配置为使用稀疏脉冲模板和卷积技术来处理所接收到的由可摄入标识符发送的已编码的电磁模拟信号,以识别传输频率。在一个方面,接收器处理器910、940可以在前端处包括模数转换器(ADC),以从放大器电路908、938接收模拟稀疏脉冲。ADC将所接收的处于模拟电压形式的一系列稀疏脉冲数字化,并且输出表示电压的幅度的数字化的数字。然后将ADC的数字输出施加到处理器,诸如例如数字信号处理器(DSP),其被优化用于确定稀疏脉冲信号的传输频率,并对已编码的稀疏脉冲信号进行解码以提取或再现由可摄入标识符发送的数据912、942。DSP非常适用于连续测量、滤波和/或压缩稀疏脉冲模拟信号以及执行算法。可选地,通用微处理器也可以被配置成成功地执行数字信号处理算法。然而,专用DSP通常具有更好的功率效率,因此,因为功率消耗约束的缘故它们更适合于诸如移动电话之类的便携式设备。DSP通常使用能够同时获取多个数据和/或指令的特殊存储器架构。尽管可以采用DSP和通用微处理器,但是可以单独地或者与DSP和通用微处理器结合地采用诸如PLD、PGA、FPGA、ASIC和其他电路之类的专用电路或可重新配置电路,以执行接收器功能。

  除了结合图47-图49描述的电压模式接收器电路900、930之外,可以采用多个其他接收器电路来接收和解码由可摄入标识符发送的电磁模拟信号。图50示出了根据本公开的一个方面的电流模式接收器950。该电流模式接收器950包括接收电感器952,其耦合到提供低输出阻抗的跨阻放大器954(TIA)。该TIA 954耦合到放大器956,并且其输出耦合到接收器处理器958,非常类似于接收器处理器910、940(图47、图49)。该TIA 954有利于保持所接收到的脉冲的形状,以使得电感器的阻抗浮置或通过TIA 954耦合,并且在此基础上可以从TIA 954的输出来重建脉冲,并且该脉冲与TIA 954的任何寄生电容无关。

  图51示出了根据本公开的一个方面的另一接收器电路960。接收器960包括耦合到第一放大器964的接收电感器962。第一放大器964的输出耦合到第二放大器966。第二放大器966的输出耦合到接收器处理器967。在图51所示的示例中,接收器处理器967包括ADC968和DSP 969,以用于确定稀疏脉冲信号的传输频率,并对已编码的稀疏脉冲信号进行解码以提取或再现由可摄入标识符发送的数据。DSP还可以被实现成对稀疏脉冲模拟信号进行滤波并执行各种算法。

  图52示出了根据本发明的一个方面的接收器配置970,其包括相对于彼此正交地间隔开的接收电感器972、974、976以及对应的接收器978、980、982。接收电感器972、974、976具有整体细长的形状因子。接收电感器972、974、976和对应的接收器978、980、982沿X轴、Y轴、Z轴设置,以减轻对发送器的取向的依赖性。接收器978、980、982的输出耦合到多路复用器984。多路复用器984的输出耦合到包括ADC 988和DSP989的接收器处理器986。

  图53示出了根据本公开的一个方面的接收器配置990,其包括正交地间隔开的接收电感器992、994、996和对应的接收器998、1000、1002。接收电感器中的两个接收电感器992、994具有整体细长的形状因子,并且接收电感器中的一个接收电感器996具有整体扁平的形状因子。接收电感器992、994、996和对应的接收器998、1000、1002沿X轴、Y轴、Z轴设置,以减轻对发送器的取向的依赖性。接收器998、1000、1002的输出耦合到多路复用器1004。多路复用器1004的输出耦合到包括ADC 1008和DSP 1009的接收器处理器1006。

  图54示出了根据本公开的一个方面的包括多个接收器电感器L1-Ln和多个接收器放大器RX1-RXn的接收器配置1010。接收器电感器L1-Ln耦合到对应的接收器RX1-RXn的输入。接收器放大器RX1-RXn的输出耦合到多路复用器1012。多路复用器1012的输出耦合到接收器处理器1014。如前所讨论的,接收器处理器1014包括ADC 1016和耦合到ADC 1016的DSP1018。除了其他之外,多个接收器电感器L1-Ln和对应的多个接收器放大器RX1-RXn改善了信噪比(SNR)、取向依赖性。

  图55示出了根据本公开的一个方面的接收器电路1100。图55中所示的接收器电路1100包括前端模拟电路1101,其耦合到接收器处理器电路1103。前端模拟电路1101包括耦合到接收器放大器1102、1104、1106的接收器电感器1108、1110、1112。由脉冲驱动器电路(诸如图38和图39中所示的脉冲驱动器电路720、或图43中所示的脉冲驱动器电路726)发送的信号被接收器电感器1108、1110、1112接收到,其沿着X轴、Y轴、Z轴设置以减轻对发送器的取向的依赖性,并且该信号被对应的接收器放大器1102、1104、1106放大。如图55中所示,三个接收器电感器1108、1110、1112耦合到三个对应的接收器放大器1102、1104、1106。三个接收器放大器1102、1104、1106的输出被多路复用器1120多路复用。在各个方面,接收器处理器1100可以根据系统实现细节来从一个接收器电感器1108、两个接收器电感器1108、1110、或多于三个接收器电感器1108、1110、1112接收信号。

  多路复用器1120电耦合到一个或多个带通滤波器,如图55中所示,多路复用器1120电耦合到高带通滤波器1130和低带通滤波器1140,以对用来传输脉冲函数的广播频率进行滤波。附加的带通滤波器和放大器可以耦合到多路复用器1120以覆盖本文中所述的那些之间的频带。高频信号链和低频信号链提供用于可编程的增益,以覆盖所期望的水平或范围。在该特定方面,高带通滤波器1130使处于~500KHz至~1500KHz的频带中的频率通过,同时滤除来自带外频率的噪声。该高频带可以变化,并且可以包括例如~800KHz至~1200KHz的范围,并且在一些方面可以包括~1000KHz的频率。然后,通过的频率在被模数转换器1134(ADC)转换成数字信号之前被放大器1132放大,以用于输入到高功率处理器1180(被示出为DSP),该高功率处理器1180电耦合到高频信号链。

  示出了低带通滤波器1140,该低带通滤波器1140使处于~50KHz至~150KHz范围的较低频率通过,同时滤除带外频率。频带可以变化,并且可以包括例如处于~80KHz至~120KHz的范围的频率,并且在一些方面可以包括~100KHz的频率。通过的频率信号被放大器1142放大。还示出了加速计1150,其电耦合到第二多路复用器1160。多路复用器1160将来自加速计的信号与来自放大器1142的放大信号多路复用。然后由ADC1164来将经多路复用的信号转换成数字信号,该ADC 1164还电耦合到低功率处理器1170。

  在一个方面,可选地,加速计1150可以通过多路复用器1160与放大器1142的输出多路复用。可以实现数字加速计(诸如由Analog Devices制造的数字加速计)来代替加速计1150。通过使用数字加速计可以实现各种优点。例如,因为数字加度计将产生的信号已经是数字格式的信号,所以数字加速计1150可绕过ADC 1164并电耦合到低功率微控制器1170,在这种情况下将不再需要多路复用器1160。而且,数字信号可以被配置为在检测运动时将其自身接通,从而进一步节省功率。另外,可以实现连续步长计数。数字加速计可以包括FIFO缓冲器以帮助控制发送到低功率处理器1170的数据流。例如,数据可以在FIFO中缓冲直到满为止,此时可以触发处理器以从空闲状态唤醒并接收数据。

  低功率处理器1170可以是例如来自Texas Instruments(德州仪器)的MSP430微控制器。接收器1100的低功率处理器1170维持空闲状态,如前所述,该空闲状态需要最小的电流汲取,例如~10μA或更小、或~1μA或更小。

  高功率处理器1180可以是例如来自Texas Instruments的VC5509数字信号处理。高功率处理器1180在激活状态期间执行信号处理动作。如前所述,这些动作需要比空闲状态更大的电流量(例如30μA或更大的电流,比如50μA或更大的电流),并且例如可以包括诸如扫描传导地传输的信号、当接收到传导地传输的信号时对其进行处理、获得和/或处理生理数据等的动作。

  接收器1100可以包括用于处理数据信号的硬件加速器组件。可以代替例如DSP来实现硬件加速器组件。作为一种更专业的计算单元,它利用比更通用的DSP更少的晶体管(更低的成本和电力)来执行信号处理算法的各个方面。可以使用硬件的块来“加速”(一个或多个)重要特定功能的性能。用于硬件加速器的一些架构可以是通过微代码或超长指令字(VLIW)汇编语言来“可编程”。在使用过程中,可以通过调用函数库来访问它们的函数。

  硬件加速器(HWA)组件包括:HWA输入块,其用于接收要处理的输入信号和用于处理输入信号的指令;以及HWA处理块,其用于根据接收到的指令来处理输入信号并产生得到的输出信号。可以根据需要由HWA输出块来发送得到的输出信号。

  还在图55中示出的是电耦合到高功率处理器1180的快闪存储器1190。在一个方面,快闪存储器1190可以电耦合到低功率处理器1170,这可以提供更好的功率效率。

  无线通信元件1195被示出为电耦合到高功率处理器1180,并且可以包括例如BLUETOOTHTM无线通信收发器。在一个方面,无线通信元件1195电耦合到高功率处理器1180。在另一方面,无线通信元件1195电耦合到高功率处理器1180和低功率处理器1170。此外,无线通信元件1195可以被实现为具有其自己的电源,使得它可以例如通过微处理器而独立于接收器的其他组件来接通和断开。

  应当认识到,所述的要通过引用并入本文的任何专利、出版物或其他公开材料全部或部分地仅在所并入的材料不与现有定义、陈述或本公开中阐述的其他公开材料冲突的程度上并入本文中。因此,并且在必要的程度上,本文明确阐述的公开内容取代了通过引用并入本文的任何冲突材料。所述的要通过引用并入本文但与现有定义、陈述或本文所述的其他公开材料相冲突的任何材料或其部分仅在所并入的材料与现有的公开材料之间不发生冲突的程度上并入本文中。

  尽管在前面的描述中已经阐述了各种细节,但是应当理解,可以在没有这些具体细节的情况下实践可摄入事件标记的电磁感测和检测的各个方面。例如,为了简明和清楚起见,已经以框图的形式示出而不是详细示出所选方面。本文中提供的详细描述的一些部分可以按照对存储在计算机存储器中的数据进行操作的指令来呈现。本领域技术人员使用这些描述和表示来向本领域其他技术人员描述和传达他们工作的实质。通常,算法指的是引起期望结果的自洽步骤序列,其中“步骤”指的是物理量的操控,尽管不是必需的,但所述物理量可以采取能够被存储、转移、组合、比较和以其他方式操控的电信号或磁信号的形式。通常的用法是将这些信号称为比特、值、元素、符号、字符、术语、数字等。这些和类似的术语可以与适当的物理量相关联,并且仅仅是应用于这些量的方便标签。

  除非另外从前面的讨论中明显地明确阐述,否则应理解,在整个前述描述中,使用诸如“处理”或“计算”或“运算”或“确定”或“显示”等等之类的术语的讨论指的是计算机系统或类似电子计算设备的动作和过程,其将在计算机系统的寄存器和存储器内表示为物理(电子)量的数据操控和转换成类似地被表示为计算机系统存储器或寄存器或其他此类信息存储、传输或显示设备内的物理量的其他数据。

  值得注意的是,对“一个方面”、“方面”、“一方面”的任何引用意指结合该方面描述的特定特征、结构或特性被包括在至少一个方面中。因此,在整个说明书中各处出现的短语“在一个方面”、“在方面”、“在一个方面”未必所有都指代相同的方面。此外,特定特征、结构或特性可以在一个或多个方面中以任何合适的方式组合。

  尽管本文中已经描述了各个方面,但是可以实现对这些方面的许多修改、变化、替换、改变以及等同物,并且本领域技术人员将想到这些修改、变化、替换、改变和等同物。而且,在公开用于某些组件的材料的情况下,可以使用其他材料。因此,应该理解,前面的描述和所附权利要求旨在覆盖落入所公开方面的范围内的所有这些修改和变化。以下权利要求旨在覆盖所有这样的修改和变化。

  本文描述的各个方面中的一些或全部通常可以包括用于根据本文描述的技术的可摄入标识符的电磁感测和检测的技术。在一般意义上,本领域技术人员将认识到,可以通过广泛的硬件、软件、固件或其任何组合来单独和/或共同实现的本文描述的各个方面可以被视为组成各种类型的“电路”。因此,如这里使用的“电路”包括但不限于具有至少一个分立电路的电路、具有至少一个集成电路的电路、具有至少一个专用集成电路的电路、形成由计算机程序配置的通用计算设备(例如由至少部分地实行本文中所述的过程和/或设备的计算机程序来配置的通用计算机、或由至少部分地实行本文中所述的过程和/或设备的计算机程序来配置的微处理器)的电路、形成存储器设备(例如随机存取存储器的形式)的电路、和/或形成通信设备(例如调制解调器、通信交换机或光电设备)的电路。本领域技术人员将认识到,本文描述的主题可以以模拟或数字方式或其某种组合来实现。

  前面的详细描述已经通过使用框图、流程图和/或示例阐述了设备和/或过程的各个方面。在这样的框图、流程图和/或示例包含一个或多个功能和/或操作的范围内,本领域技术人员将理解,可以通过各种各样的硬件、软件、固件或其实际上的任何组合来单独地和/或共同地实现这样的框图、流程图或示例内的每个功能和/或操作。在一个方面,本文描述的主题的若干部分可以通过专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)或其他集成格式来实现。

  然而,本领域技术人员将认识到,可以在集成电路中将本文中公开的方面的一些方面全部或部分等效地实现为在一个或多个计算机上运行的一个或多个计算机程序(例如实现为在一个或多个计算机系统上运行的一个或多个程序)、实现为在一个或多个处理器上运行的一个或多个程序(例如实现为在一个或多个微处理器上运行的一个或多个程序)、实现为固件、或实现为其实际上的任何组合,并且根据本公开设计电路和/或为软件和/或固件编写代码将在本领域技术人员的技能范围内。另外,本领域技术人员将理解,本文描述的主题的机制能够被分配为处于各种各样的形式的程序产品,并且本文描述的主题的说明性方面适用,而不管被用来实际实行分配的信号承载介质的特定类型如何。信号承载介质的示例包括但不限于以下:可记录型的介质,诸如软盘、硬盘驱动器、光盘(CD)、数字视频盘(DVD)、数字磁带、计算机存储器等;以及传输型介质,诸如数字和/或模拟通信介质(例如光纤电缆、波导、有线通信链路、无线通信链路(例如发送器、接收器、传输逻辑、接收逻辑等)等)。

  本领域技术人员将认识到,为了概念清楚起见,本文描述的组件(例如操作)、设备、对象以及伴随它们的讨论被用作示例,并且预期了各种配置修改。因此,如这里所使用的,所阐述的特定示例和随附的讨论旨在代表它们的更一般类别。通常,任何特定示例的使用旨在代表其类别,并且不应限制性地理解不包含特定组件(例如操作)、设备和对象。

  关于本文中基本上任何复数和/或单数术语的使用,在适用于上下文和/或应用的情况下,本领域技术人员可以从复数变换成单数和/或从单数变换成复数。为清楚起见,本文中没有明确地阐述各种单数/复数排列。

  本文描述的主题有时示出被包含在不同的其他组件内或与不同的其他组件连接的不同组件。要理解的是,这样描绘的架构仅仅是示例性的,并且实际上可以实施实现相同的功能的许多其他架构。在概念意义上,用来实现相同功能的组件的任何布置有效地“关联”,以使得期望的功能被实现。因此,在本文中组合以实现特定功能的任何两个组件可以被视为彼此“相关联”,以使得实现期望的功能,而不管架构或中间组件如何。同样地,如此关联的任何两个组件也可以被视为彼此“可操作地连接”或“可操作地耦合”以实现期望的功能,并且能够如此关联的任何两个组件也可以被视为彼此“可操作地耦合”以实现期望的功能。可操作耦合的具体示例包括但不限于物理上可配对和/或物理上交互的组件、和/或无线可交互的、和/或无线交互的组件、和/或逻辑上交互、和/或逻辑上可交互的组件。

  可以使用表述“耦合”和“连接”连同它们的派生词来描述一些方面。应该理解,这些术语并不旨在作为彼此的同义词。例如,可以使用术语“连接”来描述一些方面,以指示两个或更多个元件彼此直接物理或电接触。在另一个示例中,可以使用术语“耦合”来描述一些方面,以指示两个或更多个元件彼此直接物理或电接触。然而,术语“耦合”还可以意指两个或更多个元件彼此不直接接触,但仍然彼此共同协作或交互。

  在一些情况下,一个或多个组件在本文中可以被称为“配置为”、“可配置为”、“可操作/操作用来”、“适配/可适配”、“能够”、“可符合/符合”等。除非上下文另有要求,否则本领域技术人员将认识到“被配置为”通常可以包含活动状态组件和/或非活动状态组件和/或备用状态组件。

  虽然已经示出和描述了本文描述的本主题的特定方面,但是对于本领域技术人员明显的是,基于本文的教导,可以在不脱离本文所描述的主题及其更广泛的方面的情况下进行改变和修改,并且因此,所附权利要求在其范围内包含在本文所述的主题的真实精神和范围内的所有这些变化和修改。本领域技术人员将理解,通常本文中使用的术语,尤其是所附权利要求(例如所附权利要求的主体)中的术语通常旨在作为“开放式”术语(例如术语“包括”应该被解释为“包括但不限于”,术语“具有”应该被解释为“至少具有”,术语“包括”应该被解释为“包括但不限于”等)。本领域技术人员将进一步理解,如果意图引入特定数量的权利要求陈述,则在权利要求中将明确地陈述这样的意图,并且在没有这样的陈述的情况下,不存在这样的意图。例如,为了帮助理解,以下所附权利要求可以包含介绍性短语“至少一个”和“一个或多个”的使用以引入权利要求陈述。然而,这样的短语的使用不应被解释为暗示由不定冠词“一”或“一个”引入的权利要求陈述将包含这样引入的权利要求陈述的任何特定权利要求限制成仅包含一个这样的陈述的权利要求,即使当相同的权利要求包括介绍性短语“一个或多个”或“至少一个”和诸如“一”或“一个”的不定冠词(例如“一”和/或“一个”通常应该被解释为意指“至少一个“或”一个或多个“)时;对于被用来引入权利要求陈述的定冠词的使用也是如此。

  此外,即使明确地引用了特定数量的引入的权利要求陈述,本领域技术人员也将认识到,这样的陈述通常应该被解释为至少意指所陈述的数字(例如,在没有其他修饰语的情况下,“两个陈述”的无修饰陈述通常意指至少两个陈述、或两个或更多个陈述)。此外,在使用类似于“A、B和C等中的至少一个”的惯例的那些情况下,通常这样的构造意图在本领域技术人员将理解该惯例的意义上(例如,“具有A、B和C中的至少一个的系统”将包括但不限于具有单独的A、单独的B、单独的C、A和B一起、A和C一起、B和C一起、和/或A、B和C一起等的系统)。在使用类似于“A、B或C等中的至少一个”的惯例的那些情况下,通常这样的构造意图在本领域技术人员将理解该惯例的意义上(例如,“具有A、B或C中的至少一个的系统”将包括但不限于具有单独的A、单独的B、单独的C、A和B一起、A和C一起、B和C一起、和/或A、B和C一起等的系统)。本领域技术人员将进一步理解,通常不管在说明书、权利要求书还是附图中给出两个或更多个替代术语的转折性词语和/或短语应该被理解为考虑包括术语中的一个、术语中的任一个或这两个术语的可能性,除非上下文另有规定。例如,短语“A或B”通常被理解为包括“A”或“B”或“A和B”的可能性。

  关于所附权利要求,本领域技术人员将理解,本文中陈述的操作通常可以以任何顺序来执行。而且,尽管以(一个或多个)序列给出了各种操作流程,但是应当理解,各种操作可以以除了所示出的那些之外的其他顺序来执行,或者可以同时执行。除非上下文另有指示,否则这样的替代排序的示例可以包括重叠、交错、中断、重新排序、增量、预备、补充、同时、反向或其他变体排序。此外,除非上下文另有指示,否则比如“响应于”,“与…相关”或其他过去时形式的形容词之类的术语通常不旨在排除这样的变体。

  在某些情况下,即使组件位于一个地区外,也可以在该地区中发生系统或方法的使用。例如,在分布式计算环境中,即使分布式计算系统的一些部分可以位于一个地区之外(例如,中继器、服务器、处理器、信号承载介质、发送计算机、接收计算机等位于地区之外),也可以在该地区中发生该系统的使用。

  即使系统或方法的组件在一个地区外定位和/或使用,该系统或方法的销售也可以在该地区中发生。此外,用于在一个地区中执行方法的系统的至少一部分的实现不排除在另一个地区中使用该系统。

  尽管本文已经描述了各个方面,但是可以实现对这些方面的许多修改、变化、替换、改变以及等同物,并且本领域技术人员将会想到这些修改、变化、替换、改变以及等同物。而且,在公开用于某些组件的材料的情况下,可以使用其他材料。因此,应该理解,前面的描述和所附权利要求旨在覆盖落入所公开的方面的范围内的所有这些修改和变化。以下权利要求旨在覆盖所有这些修改和变化。

  总之,已经描述了通过采用本文中描述的概念而产生的许多益处。已经出于说明和描述的目的呈现了对一个或多个方面的前述描述。其并非旨在穷举或限制所公开的精确形式。根据上述教导,修改或变化是可能的。一个或多个方面被选择和描述是为了说明原理和实际应用,从而使得本领域普通技术人员能够利用适合于预期的特定用途的各个方面和各种修改。在这里提交的权利要求旨在限定总体范围。

  在以下编号的条款中阐述本文中描述的主题的各个方面:

  1.一种电子装置,包括:控制装置;耦合到所述控制装置的驱动器电路,所述驱动器电路被配置为改变电导;耦合到所述控制装置的局部电源,所述局部电源被配置为:由于所述局部电源与导电流体接触而向所述控制装置和所述驱动器电路提供电压电势差,所述局部电源包括:电耦合到所述控制装置的第一材料;和电耦合到所述控制装置并与所述第一材料电隔离的第二材料;耦合到所述驱动器电路的电感器,其中所述驱动器电路被配置为通过所述电感器产生电流,并且其中通过所述电感器产生的电流的幅值被改变以产生由接收器远程可检测的编码信号。

  2.根据条款1所述的电子装置,其中,所述驱动器电路包括单端驱动器电路。

  3.根据条款1所述的电子装置,其中,所述驱动器电路包括推挽式H桥驱动器电路。

  4.根据条款1所述的电子装置,其中,所述驱动器电路包括:交叉耦合的晶体管;和耦合在所述交叉耦合的晶体管的漏极之间的电容器;其中所述电感器耦合在所述交叉耦合的晶体管的漏极之间。

  5.根据条款1所述的电子装置,还包括:电池倍压器电路;耦合到所述电池倍压器电路的脉冲发生器电路;以及耦合到所述脉冲发生器电路的电感器放电电路。

  6.根据条款5所述的电子装置,其中,所述电池倍压器电路包括:开关电容器级,其包括第一开关电容器和第二开关电容器,其中,所述开关电容器级接收输入电压并输出具有所述输入电压的两倍的幅值的输出电压;以及时钟级;其中所述时钟级接收脉冲串并产生相反相位的时钟脉冲,其中,所述相反相位的时钟脉冲使所述第一电容器和所述第二电容器交替地充电到等于所述输入电压的两倍的电压。

  7.根据条款5所述的电子电路,其中所述脉冲发生器电路包括:第一触发器电路和第二触发器电路;RC定时电路,其包括电阻器R和电容器C以在第二延迟触发器电路的输入处设置时间常数延迟τ;反相器,其耦合到第一未延迟触发器电路的输出;以及逻辑门,其具有耦合到所述反相器的输出的第一输入、耦合到所述第二触发器电路的输出的第二输入、以及耦合到电感器触发器电路的输出;第一振荡器,其耦合到所述第一触发器电路的输入并耦合到所述RC定时电路;以及耦合到所述电感器触发器电路的第二振荡器。

  8.根据条款5所述的电子电路,其中,所述电感器放电电路包括:电容器充电电路;耦合电路;以及用于对所述电感器充电和放电的充电电路和放电电路。

  9.根据条款1所述的电子电路,其中,所述驱动器电路被配置为实现脉冲通信协议。

  10.根据条款1所述的电子装置,其中,选择所述第一材料和所述第二材料以便由于所述第一材料和所述第二材料与所述导电流体接触而提供电压电势差。

  11.根据条款1所述的电子装置,包括电子开关,其中所述电子开关包括第一端子和第二端子以及控制端子,并且其中所述控制端子可操作地耦合到所述驱动器电路,所述第一端子耦合到所述电感器,并且所述第二端子耦合到所述第二材料,并且其中所述电感器耦合在所述第一材料和所述电子开关的第一端子之间,其中,所述驱动器电路被配置为改变所述电子开关在所述第一材料和所述第二材料之间的电导,以使得通过所述电感器产生电流(i)。

  12.根据条款1所述的电子装置,其中,所述电感器包括形成在半导体集成电路的单独的绝缘底部结构上的至少两个电感元件。

  13.根据条款12所述的电子装置,其中,所述至少两个电感元件通过形成在所述单独的绝缘底部结构之间的通孔来耦合。

  14.一种接收器电路,包括:谐振电路;耦合到所述谐振电路的低噪声电压放大器;以及耦合到所述低噪声电压放大器的输出的接收器处理器电路,所述接收器处理器被配置为接收表示脉冲通信信号的模拟信号,将所述模拟信号转换为数字信号,并对所述数字信号解码以再现作为所述脉冲通信信号而传输的数据。

  15.根据条款14所述的接收器,还包括耦合在所述低噪声放大器和所述接收器处理器电路之间的窄带谐振器。

  16.一种接收器电路,包括:接收电感器;耦合到接收线圈的跨阻放大器;耦合到所述跨阻放大器的输出的放大器;以及耦合到所述放大器的输出的接收器处理器电路,接收器处理器被配置为接收表示脉冲通信信号的模拟信号,将所述模拟信号转换为数字信号,并对所述数字信号进行解码以再现作为所述脉冲通信信号而传输的数据。

  17.根据条款16所述的接收器电路,其中,所述接收器处理器包括:模数转换器(ADC);以及耦合到ADC的输出的数字信号处理器。

  18.根据条款16所述的接收器,包括:相对于彼此正交地间隔开的至少三个接收电感器;耦合到对应的正交地间隔开的电感器的至少三个放大器;用来接收所述至少三个放大器的输出的多路复用器;耦合到所述多路复用器的输出的模数转换器(ADC);以及耦合到所述ADC的输出的数字信号处理器。

  19.根据条款18所述的接收器,其中,所述三个电感器中的至少一个具有整体细长的形状因子。

  20.根据条款18所述的接收器,其中,所述三个电感器中的至少一个具有整体扁平的形状因子。

  21.根据条款16所述的接收器,包括:耦合到所述多路复用器的输出的多个带通滤波器,其中,每个带通滤波器被调谐到不同的频带;耦合到对应的多个带通滤波器的多个放大器;多个模数转换器(ADC),其具有耦合到所述带通滤波器的输出的输入,并且具有耦合到所述数字信号处理器的输出。

  22.根据条款21所述的接收器,还包括无线通信元件。

  23.根据条款16所述的接收器,包括:多个接收电感器;耦合到多个电感器的多个对应的放大器;用来接收所述多个放大器的输出的多路复用器;耦合到所述多路复用器的输出的模数转换器(ADC);以及耦合到所述ADC的输出的数字信号处理器。

  24.根据条款23所述的接收器,其中,所述多个接收电感器以圆形图案来布置。

《可摄入事件标记的电磁感测和检测.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)