欢迎光临小豌豆知识网!
当前位置:首页 > 生活技术 > 医学兽医> 一种夹持器独创技术16515字

一种夹持器

2020-10-26 12:18:36

一种夹持器

  技术领域

  本实用新型涉及实验设备技术领域,尤其涉及一种夹持器。

  背景技术

  生物医学或者光学成像是目前热门的研究领域,而其中主要以活体生物组织为研究材料或对象的相关课题发展更是十分迅速。对自由移动的动物进行功能成像是研究者的一大有力手段,成像技术使得研究者可以实时观察生物组织(细胞)的功能活动,并将其与动物的整体行为匹配起来,从而揭示机体外在活动的生理机制。

  对生物组织成像的传统技术手段离不开大型的显微镜,不论是常见的单光子显微镜还是昂贵的双光子显微镜,相对于一般实验动物(小鼠、果蝇、大鼠、食蟹猴)的大小,它们的体积都十分庞大,无法随身携带,也无法满足研究者观察可自由移动的动物行为的需要。

  2011年,美国科学家在《Nature Methods》发表研究,详细介绍了重量只有1.9g的单光子微型显微镜,此后以此技术为核心的微型显微成像技术开始风靡全世界,广泛应用于神经科学、脑科学、心理学、医学、光子学等领域的实验室,从而也推动了相关课题取得了数量极为可观的、极具说服力的实验数据。2019年1月的一项专利申请“一种实验动物可穿戴式微型在体成像系统(申请号201910002009.9)”也正是基于此技术改进而来。

  微型显微镜成像技术的关键部件是自聚焦透镜(Grin Lens)。自聚焦透镜是指其折射率分布是沿径向渐变的柱状光学透镜,具有聚焦和成像功能,早期广泛应用于电信通讯领域,价格低廉,但光学成像研究中使用的自聚焦透镜对于其折射率、准直、耦合聚焦性能以及透光波长限制等参数都有更高的特殊要求,其成本也自然更加昂贵,所以如何能高效利用自聚焦显微镜,以较低的成本获得更高的实验成功率是很重要的问题。为了消除埋植后长期成像的副作用(如炎症),中国科学技术大学曾提出一项给自聚焦透镜包被特殊材料的专利申请。但影响最终成功率的最重要因素其实是前期埋植自聚焦透镜的手术操作,如何成功埋植自聚焦透镜更是重中之重。

  现有夹持器的结构存在以下缺陷:夹持尖端与固定杆相互垂直,不利于手术操作,尤其是在脑组织中的自聚焦透镜埋植操作时极大地缩短了操作距离,导致操作空间缩小,在进行固定自聚焦透镜的植入位置操作时,夹持器的夹持尖端主体部分会影响固定材料的涂抹,极易造成夹持器的夹持尖端与自聚焦透镜被固定材料涂抹在一起,难以分离,不利于手术操作,降低了自聚焦透镜埋植手术的成功率。

  实用新型内容

  本实用新型的目的在于提出一种夹持器,该夹持器能提高自聚焦透镜埋植手术的成功率。

  为达此目的,本实用新型采用以下技术方案:

  一种夹持器,包括固定杆、夹持尖端和用于与立体定位仪连接的连接件,所述连接件连接在所述固定杆的后端,所述夹持尖端连接在所述固定杆的前端,并在远离所述固定杆的一端设有用于夹持待夹持件的夹持结构,所述夹持尖端的长度方向与所述固定杆的长度方向相平行。

  在一些实施例中,所述夹持结构为张开度可调的夹持固定孔。

  在一些实施例中,所述夹持尖端包括夹持尖端主体,所述夹持尖端主体的一端连接所述固定杆,另一端连接两个相对设置的夹持臂,两个所述夹持臂之间的空隙形成所述夹持固定孔;所述夹持器还包括第一调节螺丝,所述第一调节螺丝穿设两个所述夹持臂中并与两个所述夹持臂螺纹连接。

  在一些实施例中,其中一个所述夹持臂在朝向另一所述夹持臂的侧面上设有横截面为半圆形的凹槽,所述凹槽贯穿至所述夹持臂的端面。

  在一些实施例中,所述夹持固定孔的内表面覆盖有一层硅胶垫。

  在一些实施例中,所述连接件沿所述固定杆长度方向的位置可调。

  在一些实施例中,所述夹持器还包括第二调节螺丝,所述连接件套设在所述固定杆上且能沿所述固定杆上下滑动,并通过第二调节螺丝与所述固定杆固定连接。

  在一些实施例中,所述连接件包括相连的第一连接主体和第二连接主体,所述第一连接主体与所述固定杆连接,所述第二连接主体能与所述立体定位仪可拆卸连接。

  在一些实施例中,所述连接件还包括第一固定螺丝,所述第二连接主体的长度方向与所述固定杆的长度方向垂直,所述第二连接主体上设有沿其长度方向排列的多个连接孔,所述第一固定螺丝选择性地穿设于其中一个所述连接孔中。

  在一些实施例中,所述夹持尖端与所述固定杆可拆卸连接;和/或,所述连接件与所述固定杆可拆卸连接。

  本实用新型夹持器至少具有以下有益效果:通过设计夹持尖端的长度方向与固定杆的长度方向相平行,增大了夹持尖端周围的可操作空间,从而在进行固定自聚焦透镜的植入位置操作时能避免夹持尖端的主体部分影响固定材料的涂抹,由此降低了自聚焦透镜植入后的固定操作难度,大大增加自聚焦透镜埋植手术的成功率。

  附图说明

  图1为本实用新型实施方式提供的夹持器的结构示意图;

  附图标号说明:

  固定杆10,夹持尖端20,夹持尖端主体21,夹持臂22,连接件30,第一连接主体31,第二连接主体32,第一固定螺丝33,连接孔34,第一调节螺丝41,第二调节螺丝42,第二固定螺丝50。

  具体实施方式

  为了便于理解本实用新型,下面将参照相关附图对本实用新型进行更全面的描述。附图中给出了本实用新型的较佳的实施例。但是,本实用新型可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本实用新型的公开内容的理解更加透彻全面。

  如图1所示,一实施方式的夹持器包括固定杆10、夹持尖端20和用于与立体定位仪连接的连接件30,连接件30连接在固定杆10的后端,夹持尖端20连接在固定杆10的前端,并在远离固定杆10的一端设有用于夹持待夹持件的夹持结构,夹持尖端20的长度方向与固定杆10的长度方向相平行。

  上述夹持器通过设计夹持尖端20的长度方向与固定杆10的长度方向相平行,增大了夹持尖端20周围的可操作空间,从而在进行固定自聚焦透镜的植入位置操作时能避免夹持尖端20的主体部分影响固定材料的涂抹,由此降低了自聚焦透镜植入后的固定操作难度,大大增加自聚焦透镜埋植手术的成功率。

  其中,固定杆10是夹持器的结构主体,主要作用是连接、支撑连接件30和夹持尖端20,其稳固性和垂直度非常重要。可选地,在固定杆10的前端与夹持尖端20的连接处留有螺丝孔,以便与夹持尖端20连接,方便可拆卸。优选地,固定杆10整体采用优质不锈钢制成,经久耐用、不易损坏,且成本低廉。

  夹持尖端20是夹持器的关键部件,其与固定杆10成直线排布(即夹持尖端20的长度方向与固定杆10的长度方向相平行),而非常见的与固定杆10成90°角垂直排布。因为用于生物组织成像的自聚焦透镜的长度和直径不会过大,尤其是埋植入生物体内的自聚焦透镜,其尺寸更为精细小巧,以植入小鼠脑内的自聚焦透镜为例,一般长度为2mm~8mm,直径一般不超过2mm~3mm,夹持尖端20与固定杆10成直线排布的夹持器更有利于自聚焦透镜植入组织后的固定操作,大大简化手术操作难度,提高手术成功率。

  可选地,夹持尖端20整体可采用优质不锈钢制成,经久耐用、不易损坏,且成本低廉。

  在一些实施例中,夹持结构为张开度可调的夹持固定孔,以便适应不同厚度的被夹持件,增强夹持结构的适用性,同时能达到稳定的夹持效果。

  可选地,在一些实施例中,夹持尖端20包括夹持尖端主体21和夹持臂22,夹持尖端主体21主要是固定支撑的作用,夹持尖端主体21的一端连接固定杆10,另一端连接两个相对设置的夹持臂22,两个夹持臂22之间的空隙形成夹持固定孔;夹持器还包括第一调节螺丝41,该第一调节螺丝41穿设两个夹持臂22中并与两个夹持臂22螺纹连接。通过拧动第一调节螺丝41进行增大或缩窄夹持固定孔的张开程度,实现夹持松紧度的调节。需要注意的是,第一调节螺丝41的拧动阻尼十分重要,如果在拧紧或放松的时候阻尼过大,则很容易导致被夹持的自聚焦透镜本身碎裂或已植入的自聚焦透镜在拧松第一调节螺丝41时位置歪斜。

  优选地,夹持尖端主体21和夹持臂22为一体成型结构,即夹持尖端主体21和夹持臂22融合为一个整体,可以减少支撑和连接结构,增强连接强度,且便于加工。

  在一些实施例中,其中一个夹持臂22在朝向另一夹持臂22的侧面上设有横截面为半圆形的凹槽,凹槽贯穿至夹持臂22的端面。具体地,两个夹持臂22中一个为第一夹持臂22,另一个为第二夹持臂22,其中第一夹持臂22在其朝向第二夹持臂22的侧面上有横截面为半圆形的凹槽,且该凹槽贯穿至第一夹持臂22的端面,从而使夹持固定孔的横截面呈半圆形。可以理解的,横截面呈半圆形的夹持固定孔能更好地适配和夹持自聚焦透镜等外表面为弧面的被夹持件。可以理解的是,凹槽的直径可以根据要夹持的自聚焦透镜直径大小而定制。

  在一些实施例中,夹持固定孔的内表面覆盖有一层硅胶垫,以保护自聚焦透镜表面不被划伤。可以理解的是,自聚焦透镜本身为玻璃纤维材质,具有良好可定制的光学性能,为了防止腐蚀和延长使用寿命,生产厂家一般会在自聚焦透镜外表面镀上氧化膜,若在夹持过程中因为划伤破坏了氧化膜则得不偿失,因此在夹持固定孔的内表面覆盖一层硅胶垫可有效保护氧化膜以及自聚焦透镜本身。

  在一些实施例中,夹持尖端20与固定杆10可拆卸连接,由此在夹持不同尺寸的自聚焦透镜时可方便地进行拆卸、更换合适的夹持尖端20,使得夹持器可应用于不同规格的自聚焦透镜,通用性好。可选地,夹持尖端20与固定杆10之间可以通过螺纹连接或卡扣连接的方式实现可拆卸连接,或者也可以如图1所示的通过第二固定螺丝50将夹持尖端20与固定杆10连接在一起,通过可方便拆卸的第二固定螺丝50将夹持尖端20与固定杆10进行连接,由此在夹持不同尺寸的自聚焦透镜时可方便地进行拆卸、更换。

  连接件30的作用主要是将夹持器与生物组织成像研究中常用的立体定位仪连接在一起,方便夹持器配合立体定位仪使用,立体定位仪能提高操作精度和定位准确度以减小操作难度,解决了自聚焦透镜埋植时精度不够、定位不准、操作难度大等问题。目前的立体定位仪不论是用于脑组织立体定位还是外周组织三维坐标聚焦,其基本原理都是通过三维螺旋杆进行三个维度的前后、高低调节,并且几乎每一台定位仪都具有连接夹持器、注射泵等配件的接口。

  在一些实施例中,连接件30与固定杆10可拆卸连接,连接件30沿固定杆10长度方向的位置可调。可选地,夹持器还包括第二调节螺丝42,连接件30套设在固定杆10上且能沿固定杆10上下滑动,并通过第二调节螺丝42与固定杆10固定连接。连接件30沿固定杆10长度方向的位置可以通过拧动第二调节螺丝42来调节,以便在高低维度上配合具体研究的需要。

  如图1所示的实施例中,连接件30包括相连的第一连接主体31和第二连接主体32,第一连接主体31与固定杆10连接,第二连接主体32能与立体定位仪可拆卸连接。可选地,第一连接主体31套设在固定杆10上且第一连接主体31的侧壁上设有螺纹孔,第二调节螺丝42与该螺纹孔螺纹配合,第一连接主体31沿固定杆10长度方向的位置可以通过拧动第二调节螺丝42来调节,以便在高低维度上配合具体研究的需要。

  进一步地,连接件30还包括第一固定螺丝33,第二连接主体32的长度方向与固定杆10的长度方向垂直,第二连接主体32上设有沿其长度方向排列的多个连接孔34,第一固定螺丝33选择性地穿设于其中一个连接孔34中,从而实现将夹持器与定位仪连接在一起。

  可以理解的是,通过在第二连接主体32上开设至少两个连接孔34,第一固定螺丝33可以任意选择地穿设于其中一个连接孔34,这些距离固定杆10不同远近的连接孔34可以使立体定位仪获得更大的立体定位空间和距离。

  应当理解的是,本实用新型夹持器可以在生物组织成像的自聚焦透镜埋植操作中用于夹持自聚焦透镜,但其应用对象绝不限于自聚焦透镜一种零部件,其夹持尖端20也可以用于夹持光纤插芯针、给药套管等生物医学研究中常用的零部件,从而服务于光遗传学、行为学和药理学等领域的研究。

  综上所述,本实用新型夹持器更改了夹持尖端20与固定杆10之间的角度,使夹持尖端20与固定杆10成直线排布,而非常见的90°角垂直排布,由此增大了夹持尖端20周围的可操作空间,从而在进行固定自聚焦透镜的植入位置操作时能避免夹持尖端20的主体部分影响固定材料的涂抹,降低了自聚焦透镜植入后的固定操作难度,大大增加自聚焦透镜埋植手术的成功率。本实用新型夹持器可通过拧动第一调节螺丝41增大或缩窄夹持固定孔的张开程度以实现夹持松紧度的调节,提高了夹持自聚焦透镜的便利性和稳定性,并且能适用于大部分尺寸的生物组织成像中用到的自聚焦透镜,易于推广。

  需要说明的是,当一个部被称为“固定于”另一个部,它可以直接在另一个部上也可以存在居中的部。当一个部被认为是“连接”到另一个部,它可以是直接连接到另一个部或者可能同时存在居中部。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述,只是为了说明的目的,并不表示是唯一的实施方式。

  除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型的说明书中使用的术语只是为了描述具体的实施方式的目的,不是旨在限制本实用新型。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。

  以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

  以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。

《一种夹持器.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)