欢迎光临小豌豆知识网!
当前位置:首页 > 生活技术 > 医学兽医> 吡唑并嘧啶衍生物及其用途独创技术57675字

吡唑并嘧啶衍生物及其用途

2021-02-11 11:09:08

吡唑并嘧啶衍生物及其用途

  本申请主张如下优先权:

  CN201810167756.3,申请日2018-02-28;

  CN201811095822.7,申请日2018-09-19;

  CN201910015376.2,申请日2019-01-07。

技术领域

  本发明涉及多种致癌性融合激酶抑制剂,其用途和合成方法,具体涉及式(II)所示化合物、其互变异构体或其药学上可接受的盐在制备治疗实体瘤相关疾病的药物中的应用。

背景技术

  蛋白激酶与细胞的增殖、分化、代谢、凋亡等密切相关。蛋白激酶的致癌形式在多种不同的人类肿瘤类型中大量表达,并且对一些特定的激酶抑制剂产生高度响应。其中,间变性淋巴瘤激酶(Anaplastic lymphoma kinase,ALK)是属于胰岛素受体超家族的一种受体酪氨酸激酶(RTK),主要表达于中枢和周边神经系统中,在神经系统的正常发育和功能中发挥作用,在大量临床前和临床研究中得到了广泛研究。ALK是在一类间变性大细胞淋巴瘤(Anaplastic large cell lymphoma,ALCL)中作为一种由于染色体易位而导致的持续活化的致癌形式被首先发现的,其是由正常表达的蛋白核磷酸NPM的N端与ALK激酶结构域发生融合而形成的融合蛋白NPM-ALK。目前,多种ALK融合蛋白已被鉴定,并被认为是一些肿瘤(如炎症性肌纤维母细胞瘤)的强力致癌驱动因子,因此ALK融合蛋白也成为癌症治疗干预的重要靶标。目前已经有多种ALK抑制剂已经进入了临床试验并获准上市。其中,Crizotinib(克唑替尼)已于2011年获得批准,用于ALK阳性非小细胞肺癌(NSCLC)患者的治疗。2014年,Ceritinib(赛立替尼)已被批准用于治疗ALK阳性的转移性NSCLC患者。尽管ALK抑制剂在最初的临床中被证明有效,但在治疗的患者中总是观察到复发,出现了ALK获得性耐药突变。其中,脑转移瘤的出现是克唑替尼治疗患者疾病复发的一个明显原因。

  原肌球蛋白相关激酶(tropomyosin-related kinase,Trk)是一类神经生长因子受体(NGF),高度表达于神经细胞中。Trk家族由高度同源性的原肌球蛋白相关激酶A(tropomyosin-related kinase A,TrkA)、原肌球蛋白相关激酶B(TrkB)、原肌球蛋白相关激酶C(TrkC)组成,分别编码NTRK1、NTRK2和NTRK3,共涉及NGF、BDNF、NT-4和NT-3等4个配体,通过调节PI3K-AKT、RAS-RAF-ERK、PLCγ-PKC等主要信号通路,广泛参与了细胞的增殖、分化、存活以及神经元生长等重要生理活动。持续活化的致癌形式的Trk最早是做为致癌融合基因(TPM3-NTRK1)从结直肠癌中被首先发现的。致癌Trk基因融合不需要配体激活就可以促进癌细胞增殖、影响癌症相关的下游信号通路,如:ERK和AKT等。靶向TRK基因融合的药物如Entrectinib(RXDX-101)和Larotrectinib(LOXO-101),在最初的临床 中也被证明有效。但是,在持续作用下,治疗的患者中也产生了获得性耐药突变。新的靶向TRK基因融合的药物如TPX-0005和LOXO-195部分解决了耐药突变问题。

  Ros1激酶是一类受体酪氨酸激酶,其对正常的生理功能具有重要的影响。持续活化的致癌形式的Ros1融合蛋白在多种人类癌症中也被发现,其中包括胶质母细胞瘤、非小细胞肺癌、结直肠癌等。靶向Ros1融合蛋白的多种药物,如克唑替尼,以及在临床上被证实有效,但是持续给药后,也在患者中发现了获得性耐药突变。

  因此,对于一些癌症的临床治疗,迫切需要一类针对多种致癌性融合激酶及其突变具有抑制作用的化合物。

  

  发明内容

  本发明提供了式(II)所示化合物、其异构体或其药学上可接受的盐,

  

  其中,

  T1、T2、T3、T4、T5和T6分别独立地选自CR3和N;

  W选自CR4和N;

  X1和X2分别独立地选自CR5R6;

  R1选自H、F、Cl、Br、I、OH、NH2、CN和任选被1、2或3个Ra取代的C1-6烷基;

  R2选自H和任选被1、2或3个Rb取代的C1-6烷基;

  R3和R4分别独立地选自H、F、Cl、Br、I、OH和NH2;

  R5和R6分别独立地选自H、F、Cl、Br、I、OH、NH2和C1-6烷基;

  L1选自-C1-3烷基-、-C3-6环烷基-和-4~6元杂环烷基-,所述-C1-3烷基-、-C3-6环烷基-和-4~6元杂环烷基-任选被1、2或3个Rc取代;

  L2选自-C1-3烷基-、-C1-3烷基-O-、-N(Rd)-、-C1-3烷基-N(Rd)-和-O-;

  Ra分别独立地选自H、F、Cl、Br、I、OH和NH2;

  Rb选自H、F、Cl、Br、I、OH和NH2;

  Rc选自H、F、Cl、Br、I、OH、NH2、CN、C1-3烷基和C1-3烷基-C=O-,所述C1-3烷基和C1-3烷基-C=O-任选被1、2或3个R取代;

  Rd选自H和C1-3烷基;

  R分别独立地选自F、Cl、Br、I、OH和NH2;

  带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在;

  所述4~6元杂环烷基分别包含1、2、3或4个独立选自-NH-、-O-、-S-和N的杂原子或杂原子团。

  本发明的一些方案中,上述R1分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和CH3,其它变量如本发明所定义。

  本发明的一些方案中,上述R2选自H和CH3,其它变量如本发明所定义。

  本发明的一些方案中,上述R5和R6分别独立地选自H、F、Cl、Br、I、OH、NH2和CH3,其它变量如本发明所定义。

  本发明的一些方案中,上述Rc选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH3CH2和CH3C(=O),所述CH3、CH3CH2和CH3C(=O)任选被1、2或3个R取代,其它变量如本发明所定义。

  本发明的一些方案中,上述Rc选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH2F、CHF2、CF3、CH3CH2和CH3C(=O),其它变量如本发明所定义。

  本发明的一些方案中,上述L1选自-CH2-、-CH2CH2-、-环丙烷基-、-环丁烷基-、-环戊烷基-、-恶丁环基-、-四氢呋喃基-、-四氢吡喃基-、-吡咯烷基-和-哌啶基-,所述-CH2-、-CH2CH2-、-环丙烷基-、-环丁烷基-、-环戊烷基-、-恶丁环基-、-四氢呋喃基-、-四氢吡喃基-、-吡咯烷基-和-哌啶基-任选被1、2或3个Rc取代,其它变量如本发明所定义。

  本发明的一些方案中,上述L1选自-CH2-、-CH(CH3)-、C(CH3)2-、-CH2CH2-、其它变量如本发明所定义。

  本发明的一些方案中,上述L1选自-CH2-、-CH2CH2-、C(CH3)2-、-CH(CH3)-、其它变量如本发明所定义。

  本发明的一些方案中,上述L1选自-CH2-、-CH2CH2-、-CH(CH3)-、其它变量如本发明所定义。

  本发明的一些方案中,上述L2选自-CH2-、-CH2CH2-、-CH2CH2O-、-CH(CH3)O-、-O-、-NH-、-CH2NH-和-CH2O-,其它变量如本发明所定义。

  本发明的一些方案中,上述结构片段选自其它变量如本发明所定义。

  本发明的一些方案中,上述结构片段选自其它变量如本发明所定义。

  本发明的一些方案中,上述结构片段选自其它变量如本发明所定义。

  本发明的一些方案中,上述结构片段选自其它变量如本发明所定义。

  本发明还提供了式(I)所示化合物、其异构体或其药学上可接受的盐,

  

  其中,

  T选自CH和N;

  R1分别独立的选自H、F、Cl、Br、I、OH、NH2、CN和任选被1、2或3个Ra取代的C1-6烷基;

  R2选自H和任选被1、2或3个Rb取代的C1-6烷基;

  L1选自-C(Rc)(Rd)-;

  L2选自-(CH2)n-和-(CH2)n-O-;

  m选自1、2和3;

  n分别独立地选自1、2和3;

  Ra分别独立地选自H、F、Cl、Br、I、OH和NH2;

  Rb选自H、F、Cl、Br、I、OH和NH2;

  Rc和Rd分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和任选被1、2或3个R取代的C1-3烷基;或者,Rc和Rd连接在一起,形成一个任选被1、2或3个R取代的C3-6环烷基;

  R分别独立的选自H、F、Cl、Br、I、OH和NH2。

  本发明的一些方案中,上述R1分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和CH3,其它变量如本发明所定义。

  本发明的一些方案中,上述R2选自H和CH3,其它变量如本发明所定义。

  本发明的一些方案中,上述Rc和Rd分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和任选被1、2或3个R取代的CH3、CH2CH3,其它变量如本发明所定义。

  本发明的一些方案中,上述Rc和Rd分别独立地选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH2F、CHF2、CF3和CH2CH3,其它变量如本发明所定义。

  本发明的一些方案中,上述Rc和Rd连接在一起,形成一个任选被1、2或3个R取代的环丙烷基,其它变量如本发明所定义。

  本发明的一些方案中,上述L1选自-CH2-、其它变量如本发明所定义。

  本发明的一些方案中,上述L2选自-CH2-、-CH2CH2-、-CH2CH2-O-和-CH2-O-,其它变量如本发明所定义。

  本发明还有一些方案中是由上述变量任意组合而来。

  本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自:

  

  其中,

  R1、R2、L1和L2如本发明所定义。

  本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自:

  

  其中,

  R1、R2、W、L1和L2如本发明所定义。

  本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自:

  

  其中,

  n选自0和1;

  W、R1、R2、L1和L2如本发明所定义。

  本发明还提供了下式化合物、其异构体或其药学上可接受的盐,其选自:

  

  

  本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自

  

  

  

  本发明还提供了一种药物组合物,包括治疗有效量的上述化合物或其药学上可接受的盐作为活性成分以及药学上可接受的载体。

  本发明还提供了上述合物或其药学上可接受的盐或组合物在制备治疗与Trk、ALK和Ros1激酶相关疾病的药物中的应用。

  本发明的一些方案中,上述药物是用于治疗实体瘤的药物。

  技术效果:本发明的化合物在酶和细胞水平测试中展现了显著的抑制细胞增殖的效果,并在相应的动物体内药效实验中展现了显著的抑制肿瘤的效果。

  定义和说明

  除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。

  这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。

  术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对 无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机氨或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。

  本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。

  本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。

  除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。

  除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。

  除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。

  除非另有说明,“(D)”或者“(+)”表示右旋,“(L)”或者“(-)”表示左旋,“(DL)”或者“(±)”表示外消旋。

  除非另有说明,用楔形实线键和楔形虚线键表示一个立体中心的绝对构型,用直形实线键和直形虚线键表示立体中心的相对构型,用波浪线表示楔形实线键或楔形虚线键或用波浪线表示直形实线键和直形虚线键

  本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构 体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。

  除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。

  除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。

  可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚(3H),碘-125(125I)或C-14(14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。

  “任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。

  术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。

  当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代, 并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。

  当一个连接基团的数量为0时,比如-(CRR)0-,表示该连接基团为单键。

  当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。

  当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。

  除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-7元环”是指环绕排列5-7个原子的“环”。

  除非另有规定,术语“C1-6烷基”用于表示直链或支链的由1至6个碳原子组成的饱和碳氢基团。所述C1-6烷基包括C1-5、C1-4、C1-3、C1-2、C2-6、C2-4、C6和C5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基等。

  除非另有规定,术语“C1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C1-3烷基包括C1-2和C2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。

  除非另有规定,“C3-6环烷基”表示由3至6个碳原子组成的饱和环状碳氢基团,其为单环和双环体系,所述C3-6环烷基包括C3-5、C4-5和C5-6环烷基等;其可以是一价、二价或者多价。C3-6环烷基的实例包括,但不限于,环丙基、环丁基、环戊基、环己基等。

  除非另有规定,术语“4-6元杂环烷基”本身或者与其他术语联合分别表示由4至6个环原子组成的 饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。其包括单环和双环体系,其中双环体系包括螺环、并环和桥环。此外,就该“4-6元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述4-6元杂环烷基包括5-6元、4元、5元和6元杂环烷基等。4-6元杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基或高哌啶基等。

  除非另有规定,Cn-n+m或Cn-Cn+m包括n至n+m个碳的任何一种具体情况,例如C1-12包括C1、C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、和C12,也包括n至n+m中的任何一个范围,例如C1-12包括C1-3、C1-6、C1-9、C3-6、C3-9、C3-12、C6-9、C6-12、和C9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。

  术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲和取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。

  术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4′-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。

  本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。

  本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;HATU代表O-(7-氮杂苯 并三唑-1-基)-N,N,N′,N′-四甲基脲六氟磷酸盐;EDC代表N-(3-二甲基氨基丙基)-N′-乙基碳二亚胺盐酸盐;m-CPBA代表3-氯过氧苯甲酸;eq代表当量、等量;CDI代表羰基二咪唑;DCM代表二氯甲烷;PE代表石油醚;DIAD代表偶氮二羧酸二异丙酯;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;CBz代表苄氧羰基,是一种胺保护基团;BOC代表叔丁氧羰基是一种胺保护基团;HOAc代表乙酸;NaCNBH 3代表氰基硼氢化钠;r.t.代表室温;Rt代表保留时间;O/N代表过夜;THF代表四氢呋喃;Boc2O代表二-叔丁基二碳酸酯;TFA代表三氟乙酸;DIPEA代表二异丙基乙基胺;SOCl2代表氯化亚砜;CS2代表二硫化碳;TsOH代表对甲苯磺酸;NFSI代表N-氟-N-(苯磺酰基)苯磺酰胺;NCS代表1-氯吡咯烷-2,5-二酮;n-Bu4NF代表氟化四丁基铵;iPrOH代表2-丙醇;mp代表熔点;LDA代表二异丙基胺基锂;PPA代表多聚磷酸;PPh3代表三苯基膦;Pd(PPh3)4代表四(三苯基膦)钯。

  化合物经手工或者软件命名,市售化合物采用供应商目录名称。

附图说明

  图1:人结肠癌KM12裸鼠移植瘤模型;

  图2:人肺癌LU-01-0414皮下异种移植瘤模型。

  PO代表口服给药;QD代表每日一次;BID代表每日两次。

具体实施方式

  下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。

  实施例1:化合物WX001的合成

  

  步骤1:化合物1-2的合成

  将化合物1-1(15g,96.70mmol,1eq)溶于乙酸乙酯(300mL)中,再加入丙二酸亚异丙酯(13.94g,96.70mmol,1eq),三乙烯二胺(1.08g,9.67mmol,1.06mL,0.1eq)和N-羟基氨基甲酸叔丁酯(12.87g,96.70mmol,1eq),所得反应液在25℃下搅拌16小时。将反应液用水洗涤两次,每次200mL,再用饱和食盐水100mL清洗一次。有机相用无水硫酸钠干燥,过滤除去干燥剂,滤液减压除去溶剂得粗品。粗品过柱纯化(石油醚∶乙酸乙酯=3∶1),得到化合物1-2。1H NMR(400MHz,CDCl3)δ:7.98(d,J=2.8Hz,1H),7.52-7.48(m,1H),5.65(dd,J=3.6,10.0Hz,1H),3.95(s,3H),3.33(dd,J=9.6,18.0Hz,1H),2.74(dd,J=3.6,16.0Hz,1H),1.50(s,9H).LCMS m/z=313.3[M+H]+.

  步骤2:化合物1-3的合成

  将化合物1-2(21.40g,68.53mmol,1eq)溶于四氢呋喃(300mL)中,缓慢的加入硼氢化锂(4.48g,205.58mmol,3eq),在25℃下搅拌0.1小时。向反应液中加入水200mL,然后用乙酸乙酯萃取两次,每次50mL。合并有机相用饱和食盐水100mL洗涤,然后用无水硫酸钠干燥,过滤除去干燥剂,滤液旋干得粗品化合物1-3。1H NMR(400MHz,CDCl3)δ:7.88(d,J=3.2Hz,1H),7.67-7.64(dd,J=2.8,8.8Hz,1H),5.46-5.42(m,1H),3.91(s,3H),3.86-3.71(m,2H),2.24-2.14(m,1H),2.08-2.00(m,1H),1.41(s,9H).LCMS m/z=317.3[M+H]+.

  步骤3:化合物1-4的合成

  将化合物1-3(14.52g,45.90mmol,1eq)和三苯基膦(30.10g,114.76mmol,2.5eq)溶于四氢呋喃(150mL)中,所得反应液用冰水浴冷却到5℃,然后滴加偶氮二甲酸二异丙酯(27.85g,137.71mmol,26.77mL,3eq),滴毕,撤去冰浴,在25℃下搅拌0.1小时。将反应液旋干,残留物过柱纯化(石油醚∶乙酸乙酯=50∶1~30∶1~10∶1~5∶1)得到化合物1-4。1H NMR(400MHz,CDCl3)δ:7.88(d,J=3.2Hz,1H),7.52-7.50(m,1H),5.38-5.35(m,1H),4.13-4.03(m,1H),3.94(s,3H),3.89-3.82(m,1H),2.84-2.76(m,1H),2.12-2.03(m,1H),1.50(s,9H).LCMS m/z=299.3[M+H]+.

  步骤4:化合物1-5的合成

  将化合物1-4(3.00g,10.06mmol,1eq)溶于氯化氢甲醇溶液(4M,12.57mL,5eq)中,在25℃下搅拌3小时。将反应液旋干。得到化合物1-5。1H NMR(400MHz,CD3OD)δ:8.17(d,J=2.8Hz,1H),7.81-7.79(m,1H),5.21(t,J=8.0Hz,1H),4.60-4.54(m,1H),4.40-4.32(m,1H),4.04(s,3H),2.96-2.80(m,2H).LCMS m/z=199.3[M+H]+.

  步骤5:化合物1-6的合成

  在长管中依次加入5-氯吡唑并[1,5-a]嘧啶-3-羧酸乙酯(1.92g,8.52mmol,1eq),化合物1-5(2.20g,9.38mmol,1.1eq)和正丁醇(5mL),再加入N,N-二异丙基乙胺(6.61g,51.14mmol,8.91mL,6eq),所得反 应液90℃搅拌3.5小时。将反应液浓缩,加入水30mL,然后用乙酸乙酯30mL萃取。分出有机相并用饱和食盐水20mL清洗一次,然后用无水硫酸钠干燥,过滤除去干燥剂,滤液减压除去溶剂得粗品。粗品过柱纯化(石油醚∶乙酸乙酯=100∶0~10∶1~5∶1~2∶3),得到化合物1-6。 1H NMR(400MHz,CDCl3)δ:8.48(d,J=7.6Hz,1H),8.39(s,1H),7.92(d,J=3.2Hz,1H),7.58-7.55(m,1H),7.03(d,J=7.6Hz,1H),6.06(dd,J=5.2,8.8Hz,1H),4.33-4.24(m,2H),4.22-4.18(m,1H),4.01(s,3H),3.93-3.87(m,1H),2.94-2.90(m,1H),2.36-2.30(m,1H),1.27(t,J=6.8Hz,3H).LCMS m/z=388.3[M+H]+.

  步骤6:化合物1-7的合成

  将化合物1-6(3.9g,10.07mmol,1eq)溶于乙腈(100mL)中,加入碘化钠(4.53g,30.20mmol,3eq),搅拌下滴加三甲基氯硅烷(3.28g,30.20mmol,3.83mL,3eq)。滴毕,所得反应液在氮气保护下75℃搅拌回流0.5小时。向反应液中加入水50mL析出固体,过滤,滤饼40℃真空干燥得到化合物1-7。1H NMR(400MHz,CD3OD)δ:8.69(d,J=7.6Hz,1H),8.30(s,1H),7.63-7.60(m,1H),7.38(t,J=3.2Hz,1H),7.10(d,J=5.6,1H),5.79-5.75(m,1H),4.26-4.19(m,2H),2.98-2.90(m,1H),2.35-2.29(m,1H),1.25(t,J=7.2Hz,3H).LCMS m/z=374.3[M+H]+.

  步骤7:化合物1-8的合成

  将化合物1-7(0.6g,1.61mmol,1eq)和三乙胺(442.34mg,4.37mmol,608.45μL,2.72eq)溶于无水二氯甲烷(20mL)中,冰水浴中降温至5℃,再滴加入三氟甲磺酸酐(1.22g,4.31mmol,710.64μL,2.68eq)。滴毕,所得反应液在氮气保护下自然升温至25℃搅拌2小时。反应体系用水20mL和饱和食盐水15mL洗涤,然后用无水硫酸钠干燥后,过滤除去干燥剂,滤液旋干得到化合物1-8。1H NMR(400MHz,CDCl3)δ:8.53(d,J=7.6Hz,1H),8.43(s,1H),8.14(d,J=2.8Hz,1H),7.87(dd,J=2.8,7.6Hz,1H),7.05(d,J=7.2Hz,1H),6.10(dd,J=5.6,8.8Hz,1H),4.37-4.24(m,3H),3.95-3.88(m,1H),3.12-3.04(m,1H),2.50-2.41(m,1H),1.28(t,J=7.2Hz,3H).LCMS m/z=506.3[M+H]+。

  步骤8:化合物1-9的合成

  将化合物1-8(3.00g,5.94mmol,1eq)溶于水(60mL)和甲苯(120mL)的混合液中,加入二异丙胺(1.50g,14.84mmol,2.10mL,2.5eq),双(三苯基膦)二氯化钯(833.28mg,1.19mmol,0.2eq)和碘化亚铜(226.10mg,1.19mmol,0.2eq),最后加入化合物(R)-N-BOC-3-氨基-1-丁炔(4.02g,23.74mmol,4eq),所得反应混合液在氮气保护下100℃反应16小时。将反应液过滤,滤饼用乙酸乙酯20mL洗涤,收集滤液,分出有机相并用无水硫酸钠干燥,过滤除去干燥剂,滤液旋干得到粗品。粗品过柱纯化(石油醚∶乙酸乙酯=10∶1~5∶1~1∶1)得到化合物1-9。1H NMR(400MHz,CDCl3)δ:8.52(dJ=7.6Hz,1H),8.38(d,J=3.6Hz 1H),8.36-8.33(m,1H),7.65-7.62(m,1H),7.05(t,J=7.6Hz,1H),6.44-6.38(m,1H),5.76-5.54(brs,1H),4.91-4.76(m,1H),4.36-4.24(m,2H),3.93-3.83(m,1H),3.08-3.04(m,1H),2.41-2.29(m,1H),1.60-1.54(m,3H),1.43(s,9H),1.32-1.29(m 3H).LCMS m/z=525.5[M+H]+.

  步骤9:化合物1-10的合成

  将化合物1-9(1.1g,2.10mmol,1eq)溶于乙醇(20mL)中,加入钯/碳(2.10mmol,10%纯度,1eq)和碳酸钠(444mg,4.19mmol,2eq)。反应液用氢气置换,然后在氢气压力15psi,温度25℃下搅拌1.5小时。将反应液过滤,滤液旋干得到712mg粗品。制备板分离纯化(石油醚∶乙酸乙酯=1∶1.5)得到化合物1-10。直接用于下一步反应。LCMS m/z=529.5[M+H]+。

  步骤10:化合物1-11的合成

  化合物1-10(10mg,18.92μmol,1eq)溶解于甲醇(1mL),再加入配置好的氢氧化钠溶液(3M,37.84μL,6eq)和水(0.04mL)。所得反应液在60℃搅拌1.5小时。将同批次的8锅反应液合并到一起,用1mol/L的稀盐酸中和到PH等于7,然后旋干得到粗品。粗产品经过高效液相制备分离得到化合物1-11。LCMS m/z=501.2[M+H]+,401.4[M-100+H]+。

  步骤11:化合物1-12的合成

  将化合物1-11(8.6mg,17.18μmol,1eq)溶于氯化氢的乙酸乙酯溶液(3M,0.6mL,104.76eq)中,20℃下搅拌1小时。将同批次的另一锅反应液合并到一起后旋干得到化合物1-12,粗品直接用于下一步反应。LCMS m/z=401.3[M+H]+。

  步骤12:化合物WX001的合成

  将化合物1-12(13.8mg,34.47μmol,1eq)溶于N,N-二甲基甲酰胺(5mL)中,加入五氟苯基二苯基磷酸酯(19.86mg,51.70μmol,1.5eq),再加入N,N-二异丙基乙胺(11.14mg,86.16μmol,15.01uL,2.5eq),25℃搅拌1小时。向反应液中加入二氯甲烷30mL,然后用水10mL×3洗涤溶剂。有机相旋干后溶解于甲基叔丁基醚130mL中,然后用水10mL×3洗涤。有机相浓缩后得到粗品。粗品HPLC(盐酸体系)分离得到化合物WX001的盐酸盐。1H NMR(400MHz,CD3OD)δ:8.83(s,1H),8.79(d,J=7.2Hz,1H),8.29(s,1H),7.05(d,J=7.2Hz,1H),6.24-6.21(m,1H),4.63(t,J=7.2Hz,1H),4.30-4.25(m,1H),3.96-4.03(m,1H),3.84-3.78(m,1H),3.35-3.30(m,2H),3.20-3.13(m,1H),2.50-2.69(m,2H),2.04-1.99(m,1H),1.44(d,J=6.4Hz,3H).LCMS m/z=385.2[M+H]+。

  将化合物001的盐酸盐溶解到甲醇中,搅拌下加入碱性树脂(型号:AmberliteIRA-400),0.5h后,用PH检测呈碱性,过滤掉树脂直接浓缩干得到化合物WX001。

  实施例2~4:化合物WX002,WX002A和WX002B的合成

  

  步骤1-6:化合物1-2至1-7的合成参考实施例1中步骤1~步骤6

  步骤7:化合物2-8的合成

  将化合物1-7溶于甲醇(30mL)中,再加入配置好的氢氧化钠(385.68mg,9.64mmol,4eq)的水(3mL)溶液,所得反应液在60℃氮气保护下搅拌反应16小时。将反应液冷却到室温,用2M的盐酸溶液调节pH值到约等于7,然后直接旋干得到化合物2-8,直接用于下一步。LCMS m/z=346.2[M+H]+。

  步骤8:化合物2-9的合成

  将化合物2-8溶解于N,N-二甲基甲酰胺(8mL)中,然后加入N,N-二异丙基乙胺(449.36mg,3.48mmol,605.60μL,3.5eq)和O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(453.26mg,1.19mmol,1.2eq),搅拌0.5小时,然后加入(1-(羟甲基)环丙基氨基盐酸盐(159.59mg,1.29mmol,1.3eq,HCl)。所得反应液在25℃反应3小时。将反应液倒入到80mL饱和氯化铵水溶液中,然后用二氯甲烷60mL×3进行萃取,合并有机相后用60mL×3的饱和食盐水进行洗涤。有机相用适量无水硫酸钠干燥,过滤除去干燥剂,滤液浓缩得到粗品。粗品中加入2mL水,然后冻干得到化合物2-9,直接用于下一步反应。LCMS m/z=415.3[M+H]+.

  步骤9:化合物WX002A和WX002B的合成

  将化合物2-9(200mg,482.64μmol,1eq)溶解于四氢呋喃(2mL),然后加入三正丁基膦(195.29mg,965.28μmol,238.16μL,2eq),所得反应液冷却到0℃,然后加入偶氮二甲酰二哌啶(243.55mg,965.28μmol,2eq),所得反应液在25℃反应4小时。和另一批次合并后将反应液直接拉干。残留物依次用快速硅胶柱(石油醚/乙酸乙酯=0~90%)和制备板(乙酸乙酯∶甲醇=10∶1)进行纯化,得到化合物WX002。 WX002经过SFC进行拆分(柱子:DAICEL CHIRALCEL OD-H(250mm*30mm,5μm);流动相:A(CO 2)和B(甲醇,含0.1%氨水);梯度:B%=32%-32%,7.5min,得到WX002A和WX002B。

  WX002A:1H NMR(400MHz,CDCl3)δ:9.27(s,1H),8.42(d,J=7.6Hz,1H),8.30(s,1H),7.97(d,J=2.8Hz,1H),7.59-7.57(m,1H),6.79(d,J=8.0Hz,1H),6.11(t,J=8.4Hz,1H),4.88(d,J=10.8Hz,1H),4.53(t,J=8.0Hz,1H),.33.97-3.90(m,1H),3.84(d,J=10.8Hz,1H),3.08-3.01(m,1H),2.60-2.46(m,1H),2.39-2.33(m,1H),1.48-1.42(m,1H),0.95-0.90(m,1H),0.87-0.81(m,1H).LCMS m/z=397.3[M+H]+.

  SFC(柱子:Chiralcel OD-3,3μm,0.46cmid×10cmL;流动相:A(CO2)和B(MeOH,含0.05%异丙胺);梯度:B%=5~40%,5min;流速:4.0mL/min;波长:220nm;压力:100bar,Rt=2.14min,手性异构体过量100%。

  WX002B:1H NMR(400MHz,CDCl3)δ:9.27(s,1H),8.41(d,J=7.6Hz,1H),8.30(s,1H),7.97(d,J=2.8Hz,1H),7.59-7.56(m,1H),6.79(d,J=7.6Hz,1H),6.13-6.09(m,,1H),4.88(dd,J=10.8,1.6Hz,1H),4.53(t,J=8.0Hz,1H),3.97-3.90(m,1H),3.84(d,J=10.8Hz,1H),3.08-3.01(m,1H),2.60-2.49(m,1H),2.39-2.33(m,1H),1.48-1.42(m,1H),0.96-0.90(m,1H),0.87-0.81(m,1H).LCMS m/z=397.3[M+H]+.

  SFC(柱子:Chiralcel OD-3,3μm,0.46cmid×10cmL;流动相:A(CO2)和B(MeOH,含0.05%异丙胺);梯度:B%=5~40%,5min;流速:4.0mL/min;波长:220nm;压力:100bar,Rt=2.49min,手性异构体过量100%。

  实施例5~6:化合物WX003A,WX003B的合成

  

  步骤1:化合物3-2的合成

  将化合物3-1(20g,142.74mmol,1eq)和咪唑(19.44g,285.49mmol,2eq)溶解在二氯甲烷(250mL)中,然后在0℃下缓慢滴加叔丁基二甲基氯硅烷(25.82g,171.29mmol,20.99mL,1.2eq)的二氯甲烷(30mL)溶液,滴毕自然升温至25℃,反应15小时。补加咪唑(9.72g,142.74mmol,1eq)和叔丁基二甲基氯硅烷(10.76g,71.37mmol,8.75mL,0.5eq),继续在25℃搅拌反应12小时。反应完全后,将反应液倒入到300mL的饱和碳酸氢钠水溶液中,然后用二氯甲烷进行萃取,每次300mL。合并有机相,用饱和食盐水洗涤三次,每次200mL。分出有机相,用适量无水硫酸钠进行干燥,过滤除去干燥剂,滤液浓缩至干得到粗品。粗品过柱纯化得到化合物3-2。1H NMR:(400MHz,CDCl3)δ:10.39-10.37(m,1H),7.46(dd,J=3.2,8.0Hz,1H),7.20-7.11(m,1H),6.87-6.85(m,H),1.01(s,9H),0.26(dd,J=2.4,3.6Hz,6H).

  步骤2:化合物3-3的合成

  将化合物3-2溶解于乙酸乙酯(450mL)中,然后加入2,2-二甲基-1,3-二恶烷-4,6-二酮(13.48g,93.56mmol,1eq),N-羟基氨基甲酸叔丁酯(12.46g,93.56mmol,1eq)和1,4-二氮杂二环[2.2.2]辛烷(1.05g,9.36mmol,1.03mL,0.1eq)。所得反应液在氮气保护下,在25℃下搅拌反应18小时。反应完成后,将反应液用水(50mL)和饱和食盐水(50mL×2)洗涤。有机相用适量无水硫酸钠干燥。过滤除去干燥剂,滤 液浓缩至干得黄色油状粗品。粗品过柱纯化得到化合物3-3。

  1H NMR:(400MHz,CDCl3)δ:7.16(dd,J=3.2,9.2Hz,1H),6.92-6.87(m,1H),6.77(dd,J=4.8,8.8Hz,1H),5.75(dd,J=3.2,9.6Hz,1H),3.31-3.25(m,1H),2.71(dd,J=3.2,17.6Hz,1H),1.51(s,9H),1..01(s,9H),0.27(d,J=12.4Hz,6H).LCMS m/z=434[M+23]+,311.9[M-100+H]+.

  步骤3:化合物3-4的合成

  将化合物3-3(2.01g,4.88mmol,1eq)溶解于四氢呋喃(20mL)中,然后加入硼氢化锂(319.18mg,14.65mmol,3eq),所得反应液在12℃搅拌反应0.5小时。反应完全后,向反应液中缓慢加入10mL饱和氯化铵淬灭反应。继续搅拌20分钟,加入乙酸乙酯萃取(50mL×3)。合并有机相,用适量无水硫酸钠干燥,过滤除去干燥剂,滤液浓缩至干得到化合物3-4。1H NMR(400MHz,CDCl3)δ:7.50(br s,1H),7.42-7.32(m,1H),6.87-6.77(m,1H),6.76-6.63(m,1H),5.53-5.42(m,1H),3.90-3.71(m,2H),3.25(br s,1H),2.32-2.16(m,1H),2.10-2.01(m,1H),1.44-1.36(m,9H),1.07-0.98(m,9H),0.27(d,J=1.2Hz,6H).LCMS m/z=438.1[M+23]+,316[M-100+H]+.

  步骤4:化合物3-5的合成

  将化合物3-4(23g,55.35mmol,1eq)和三苯基膦(36.29g,138.36mmol,2.5eq)溶解于无水四氢呋喃(300mL)中,所得溶液冷却到0-5℃,然后滴加偶氮二甲酸二异丙酯(33.57g,166.04mmol,32.28mL,3eq)。滴毕,撤去冰浴,在25℃下反应4小时。反应完全后,过滤,滤液浓缩至干得黄色油状液体,向其中加入120mL混合溶剂(乙酸乙酯/石油醚=1∶8),搅拌均匀,静置过滤,滤饼用50mL混合溶剂(乙酸乙酯/石油醚=8∶1)淋洗。收集滤液,浓缩至干干得粗品。粗品过柱纯化得到化合物3-5。1H NMR(400MHz,CDCl3)δ:7.17(dd,J=3.2,9.6Hz,1H),6.87-6.75(m,1H),6.74-6.66(m,1H),5.43(dd,J=4.4,8.4Hz,1H),4.08-4.02(m,1H),3.92(q,J=8.0Hz,1H),2.83-2.68(m,1H),2.19-2.08(m,1H),1.47(s,9H),1.03(s,9H),0.26(d,J=10.8Hz,6H).LCMS m/z=420.0[M+23]+,297.9[M-100+H]+.

  步骤5:化合物3-6的合成

  将化合物3-5(2.03g,5.11mmol,1eq)溶解于乙酸乙酯(20mL)中,加入氯化氢乙酸乙酯溶液(4M,7.66mL,6eq),所得反应液在14℃搅拌反应5小时。反应完全后,将反应液浓缩至干得到粗品。将粗品充分分散在乙酸乙酯/石油醚(10∶1)的混合溶液中(10mL),过滤收集固体,并在40℃下真空干燥得到化合物3-6。1H NMR:(400MHz,DMSO-d6)δ:7.32-7.26(m,1H),7.18-7.05(m,1H),7.00-6.88(m,1H),5.03-4.93(m,1H),4.36-4.26(m,1H),4.15-4.05(m,1H),2.84-2.71(m,1H),2.42-2.29(m,1H),1.00(s,9H),0.27(d,J=3.2Hz,6H).LCMS m/z=297.9[M+H]+。

  步骤6:化合物3-7的合成

  将化合物3-6(1.43g,4.28mmol,1eq)和5-氯吡唑并[1,5-a]嘧啶-3-甲酸乙酯(1.06g,4.71mmol,1.1eq)加入到二甲基亚砜(15mL)中,然后加入三乙胺(1.30g,12.85mmol,1.79mL,3eq),所得反应液 在氮气保护下,在75℃反应18小时。反应完全后,将反应液浓缩至干。残留物溶解于200mL乙酸乙酯,然后用水(30mL×3)和饱和食盐水(30mL)洗涤。有机相用适量无水硫酸钠干燥,过滤除去干燥剂,滤液浓缩至干得到黄色固体粗品。向粗品中加入10mL乙酸乙酯和10mL石油醚打浆,过滤收集固体,40℃下真空干燥得到化合物3-7。 1H NMR:(400MHz,CDCl3)δ:8.55(s,1H),8.39(d,J=8.0Hz,1H),8.33(s,1H),7.10-7.01(m,2H),6.95-6.91(m,1H),6.85(d,J=7.6Hz,1H),5.97(t,J=7.2Hz,1H),4.58-4.38(m,3H),4.04-3.93(m,1H),2.97-2.71(m,2H),1.41(t,J=7.2Hz,3H).LCMS m/z=373.0[M+H]+.

  步骤7:化合物3-8的合成

  将化合物3-7(300mg,805.69μmol,1eq),化合物(1-叔丁氧基羰基氨基)环丙基甲基甲磺酸酯(277.90mg,1.05mmol,1.3eq)和碳酸铯(525.02mg,1.61mmol,2eq)加入到N,N-二甲基甲酰胺(2mL)中,所得反应液在80℃搅拌反应5小时。反应完成后,将反应液冷却到室温,用乙酸乙酯(200mL)稀释反应液,垫硅藻土过滤,滤液用水(20mL×3)洗涤,有机相用适量无水硫酸钠干燥,过滤除去干燥剂,滤液浓缩至干得粗品。粗品过柱纯化得到化合物3-8。1H NMR(400MHz,CDCl3)δ:8.45(d,J=7.6Hz,1H),8.34(s,1H),7.21(dd,J=2.9,9.2Hz,1H),7.02(d,J=7.6Hz,1H),6.94-6.87(m,1H),6.84-6.78(m,1H),6.30-6.22(m,1H),5.91(br s,1H),4.38-4.25(m,2H),4.19-4.01(m,2H),3.97-3.80(m,1H),2.95-2.82(m,1H),2.48-2.37(m,1H),1..70-1.57(m,14H),1.07-0.78(m,4H).LCMS m/z=542.3[M+H]+.

  步骤8:化合物3-9的合成

  将化合物3-8(150mg,276.97μmol,1eq)溶解于甲醇(3mL)中,然后加入氢氧化钠溶液(2M,830.92μL,6eq),所得反应液在60℃下搅拌反应18小时。反应完全后,将反应液浓缩至干,残留物中加入水(5mL)搅拌充分溶解,然后用1M盐酸调节pH=4~5,用乙酸乙酯(20mL×3)萃取。合并有机相,用适量无水硫酸钠干燥,过滤除去干燥剂。滤液浓缩至干得粗品化合物3-9。LCMS m/z=514.1[M+H]+。

  步骤9:化合物3-10的合成

  将化合物3-9(143mg,278.47μmol,1eq)溶解于乙酸乙酯(3mL)中,然后加入氯化氢乙酸乙酯溶液(4M,69.62uL,1eq),所得反应液在13℃搅拌反应18小时。反应完全后,将反应液浓缩至干得产物3-10。LCMS m/z=414.1[M+H]+.

  步骤10:化合物3-11的合成

  将化合物3-10(128mg,309.63μmol,1eq)和N,N-二异丙基乙基胺(200.09mg,1.55mmol,269.66uL,5eq)加入到混合溶剂二氯甲烷(20mL)和N,N-二甲基甲酰胺(4mL)中,然后加入五氟苯基二苯基磷酸酯(154.66mg,402.51μmol,1.3eq),所得反应液在25℃下搅拌反应4小时。反应完全后,向反应液中加入3M的碳酸钠水溶液(3mL)并搅拌5分钟,然后加入乙酸乙酯(100mL)萃取。分出水层,有机相用饱和食盐水(15mL×3)洗涤,然后用适量无水硫酸钠干燥,过滤除去干燥剂,滤液浓缩至干得咖啡色油状液体。粗品过柱纯化(乙酸乙酯/石油醚=0~45%)得化合物3-11。LCMS m/z=396.1[M+H]+.

  步骤11:化合物WX003A和WX003B的合成

  将化合物3-11(180mg,455.25μmol,1eq)通过超临界流体色谱(SFC)分离(柱子:Phenomenex-Amylose-1(250mm*30mm,5μm);流动相:A(CO2)和B(乙醇,含0.1%氨水);梯度:B%=40%-40%,10min)得到化合物WX003A和WX003B。

  WX003A:1HNMR(400MHz,CDCl3)δ:9.51(s,1H),8.40(d,J=7.2Hz,1H),8.30(s,1H),7.21(dd,J=3.2,9.2Hz,1H),6.99-6.93(m,1H),6.83-6.75(m,2H),6.37-6.30(m,1H),4.53(t,J=7.6Hz,1H),4.41(dd,J=2.0,9.2Hz,1H),3.93-3.85(m,1H),3.73(d,J=9.2Hz,1H),3.08-2.97(m,1H),2.65-2.53(m,2H),1.32-1.28(m,1H),0.93-0.82(m,2H).LCMS m/z=396.2[M+H]+.SFC(柱子:Chiralpak AD-3 150×4.6mm I.D.,3μm;流动相:A(CO2)和B(乙醇,含0.05%二乙基胺);梯度:B%=40%,6min;流速:2.5mL/min;柱温:35℃),Rt=3.689min,异构体过量100%。

  WX003B:1HNMR(400MHz,CDCl3)δ:9.51(s,1H),8.40(d,J=7.2Hz,1H),8.30(s,1H),7.21(dd,J=3.2,9.2Hz,1H),6.99-6.93(m,1H),6.83-6.75(m,2H),6.37-6.30(m,1H),4.53(t,J=7.6Hz,1H),4.41(dd,J=2.0,9.2Hz,1H),3.93-3.85(m,1H),3.73(d,J=9.2Hz,1H),3.08-2.97(m,1H),2.65-2.53(m,2H),1.32-1.28(m,1H),0.93-0.82(m,2H).LCMS m/z=396.2[M+H]+.SFC(柱子:Chiralpak AD-3 150×4.6mm I.D.,3μm;流动相:A(CO2)和B(乙醇,含0.05%二乙基胺);梯度:B%=40%,6min;流速:2.5mL/min;柱温:35℃),Rt=4.561min,异构体过量99.74%。

  参照实施例2中步骤1~9的合成方法,合成下表中各实施例。下表中各实施例的SFC条件均为异恶唑基手性碳的拆分条件,结构式中其余手性碳为合成过程中相应原料直接引入。

  

  

  

  

  

  

  

  

  

  参照实施例3中步骤1~11的合成方法,合成下表中各实施例。

  

  实验例1:化合物对TrkA,TrkC,ALK,Ros1等激酶的抑制活性

  化合物对TrkA,TrkC,ALK,Ros1等激酶的抑制活性测试在Reaction Biology Corp.公司完成。在反应缓冲液(20mM Hepes(pH7.5),10mM MgCl2,1mM EGTA,0.02%Brij35,0.02mg/ml BSA,0.1mM Na3VO4,2mM DTT,1%DMSO)中依次加入一定浓度的底物、辅酶因子、激酶和测试化合物(10个剂量,3倍连续稀释液,2%DMSO最终浓度)并混匀,将混合物在室温下孵育20分钟,向反应混合液中加入一定浓度的33P-ATP开始反应,随后室温孵育120分钟。最后通过过滤-结合的方法来检测反应物的放射性。最终的激酶活性以测试样品中剩余的激酶活性占DMSO对照组的激酶活性的比例来表示。通过GraphPad软件拟合量效关系曲线并计算IC50。结果如表1:

  表1:激酶半数抑制浓度IC50(nM)

  

  

  “/”:未检测。

  结果表明:本发明化合物在多种激酶及其突变体中展现了较高的激酶抑制活性,展现了对多种激酶守门基团区突变(gatekeeper),溶剂前沿区突变(solvent front mutation)和DFG区突变的强烈抑制。

  实验例2:化合物对细胞增殖的抑制活性

  三磷酸腺苷(Adenosine Tri-Phosphate,ATP)是自然界中各种生命活动中共用的能量载体,是能量储存和转移的最小单位。CellTiter-GloTM活细胞检测试剂盒采用萤光素酶作检测物,发光过程中萤光素酶需要ATP的参与。向细胞培养基中加入CellTiter-GloTM试剂,测量发光值,光信号和体系中ATP量成正比,而ATP又和活细胞数正相关。因此通过使用CellTiter-Glo试剂盒检测ATP含量,可以检测出细胞的增殖情况。本测试中,细胞系为Ba/F3 LMNA-NTRK1-WT稳转细胞株,5000细胞数量/孔。

  IC50测定过程:

  1细胞培养和接种

  a)收获处于对数生长期的细胞并采用血小板计数器进行细胞计数。用台盼蓝排斥法检测细胞活力,确保细胞活力在90%以上。

  b)调整细胞浓度;分别添加90μL细胞悬液至96孔板中。

  c)将96孔板中的细胞置于37℃、5%CO2、95%湿度条件下培养过夜。

  2药物稀释和加药

  a)配制10倍药物溶液,最高浓度为10μM,9个浓度,3倍稀释(参考附录I),在接种有细胞的96孔板中每孔加入10μL药物溶液,每个药物浓度设置三个复孔。

  b)将已加药的96孔板中的细胞置于37℃、5%CO2、95%湿度条件下继续培养72小时,之后进行CTG(细胞增殖情况)分析。

  3终点读板

  a)融化CellTiter-GloTM试剂并平衡细胞板至室温30分钟。

  b)每孔加入等体积的CellTiter-GloTM试剂。

  c)在定轨摇床上振动5分钟使细胞裂解。

  d)将细胞板放置于室温20分钟以稳定冷光信号。

  e)读取冷光值。

  4数据处理

  使用GraphPad Prism 5.0软件分析数据,利用非线性S曲线回归来拟合数据得出剂量-效应曲线,并由此计算IC50值,数据见表2。

  表2细胞半数抑制浓度IC50(nM)

  

  

  “/”:未检测。

  结果表明:本发明化合物对Ba/F3 LMNA-NTRK1-WT稳转细胞株展现了较高的细胞增殖抑制活性。同时,对于Ba/F3 LMNA-NTRK1-F589L,Ba/F3 LMNA-NTRK1-G595R,BaF3 ETV6-NTRK3-G623R,Ba/F3 SLC34A2-ROS1-WT和Ba/F3 SLC34A2-ROS1-G2032R稳转细胞株展现了较高的细胞增殖抑制活性。

  实验例3:化合物在小鼠体内的cassette药代动力学测试

  实验目的:以7-9周雄性CD-1小鼠为受试动物,应用LC/MS/MS法测定单次静脉注射(IV)及灌胃(PO)cassette给予WX002A,TPX0005,Entrectinib(RXDX-101)和Larotrectinib(LOXO-101)后,不同时刻血浆和特定组织中WX002A,TPX0005,Entrectinib(RXDX-101)和Larotrectinib(LOXO-101)的药物浓度,研究本发明的化合物在小鼠体内的药代动力学行为,评价其药动学特征。

  药物配制:WX002A,TPX0005,Entrectinib(RXDX-101)和Larotrectinib(LOXO-101)均以5%DMSO+10%solutol+85%水为溶媒配成澄清溶液,用于IV(静注)和PO(灌胃)组给药。每个化合物的给药剂量为:IV 1mg/kg,给药体积为2mL/kg;PO剂量为3mg/kg,给药体积为3mL/kg。

  药代动力学参数结果见表3:

  表3小鼠体内cassette药代动力学测试结果

  

  

  “ND”:未检测到。

  结果表明:WX002A在小鼠中药代动力学性质较好。相比TPX0005,Entrectinib(RXDX-101)和Larotrectinib(LOXO-101),相同给药剂量下,口服给药后WX002A的系统总暴露量,给药0.5h和2h后,WX002A在脑中和脑脊液CSF中的暴露量均显著高于TPX0005,Entrectinib(RXDX-101)和Larotrectinib(LOXO-101)的相应暴露量。

  实验例4:化合物在小鼠体内的药代动力学测试

  实验目的:以7-9周雄性CD-1小鼠为受试动物,应用LC/MS/MS法测定单次静脉注射(IV)及灌胃(PO)给予化合物后,不同时刻血浆中化合物的药物浓度,研究本发明的化合物在小鼠体内的药代动力学行为,评价其药动学特征。

  药物配制:化合物均以5%DMSO+10%solutol+85%水为溶媒配成澄清溶液,用于IV(静注)和PO(灌胃)组给药。每个化合物的给药剂量为:IV 3mg/kg;PO剂量为10mg/kg。

  药代动力学参数结果见表4:

  

  实验例5:化合物在小鼠体内的药效测试

  实验目的:评价WX002A等受试药在人结肠癌细胞系KM12细胞皮下异种移植瘤在BALB/c小鼠模型上的体内药效。

  药物配制:化合物均以5%DMSO+10%solutol+85%水为溶媒配成澄清溶液,用于PO(灌胃)组给药。

  肿瘤测量:每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5×a×b2,a和b分别表示肿瘤的长径和短径。化合物的抑瘤疗效用TGI(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。结果见图1。

  统计分析:统计分析基于试验结束时相对肿瘤体积和肿瘤重量运用SPSS软件进行分析。多组间比较用one-way ANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey’s法进行分析,如果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。P<0.05认为有显著性差异。

  实验结果:在人结肠癌KM12裸鼠移植瘤模型中,受试物WX002A在低至3mg/kg的给药剂量下即具有显著抗肿瘤作用,并且抗肿瘤作用具有量效依赖的趋势(高剂量组与低剂量组相比p<0.05)。WX002A在3mg/kg给药剂量下的抗肿瘤效果(T/C=33.18%,TGI=71.23%)与化合物LOXO-101的高剂量组(60mg/kg)抗肿瘤效果(T/C=34.20%,TGI=69.73%)相当(P>0.05)。WX002A在15mg/kg给药剂量下的抗肿瘤效果(T/C=15.63%,TGI=88.61%)优于LOXO-101高剂量组(60mg/kg)(T/C=34.20%,TGI=69.73%),和在研化合物TPX-0005的高剂量组(3mg/kg)的抗肿瘤效果(T/C=16.80%,TGI=87.46%)相当(P>0.05)。

  实验例6:化合物在小鼠体内的药效测试

  实验目的:评价WX002A等受试药在人肺癌LU-01-0414皮下异种移植瘤在BALB/c小鼠模型上的体内药效。

  药物配制:化合物均以5%DMSO+10%solutol+85%水为溶媒配成澄清溶液,用于PO(灌胃)组给药。

  肿瘤测量:每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5×a×b2,a和b分别表示肿瘤的长径和短径。化合物的抑瘤疗效用TGI(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。结果见图2。

  统计分析:统计分析基于试验结束时相对肿瘤体积和肿瘤重量运用SPSS软件进行分析。多组间比较用one-way ANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey’s法进行分析,如果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。P<0.05认为有显著性差异。

  实验结果:在人肺癌LU-01-0414皮下异种移植瘤上给药14天时,WX002A在3、15和30mg/kg BID三个浓度下均有明显的抑制肿瘤生长的作用,T/C分别为9.57%、3.07%和1.87%,TGI分别为118.02%、126.88%和128.36%,且与溶剂对照组相比均为P<0.0001。Crizotinib在30、50mg/kg QD剂量组T/C =10.32%、4.89%,TGI=117.67%、124.09%,与溶剂对照相比p<0.0001,同样具有显著的抑瘤作用。上述结果提示在人LU-01-0414肺癌裸鼠移植瘤模型中,WX002A在低至3mg/kg的剂量即具有显著抗肿瘤作用,并且WX002A在3mg/kg剂量下与Crizotinib在30mg/kg剂量的抗肿瘤作用相当(p>0.05)。

《吡唑并嘧啶衍生物及其用途.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)