欢迎光临小豌豆知识网!
当前位置:首页 > 生活技术 > 医学兽医> 急性医学病况的治疗独创技术108549字

急性医学病况的治疗

2021-02-05 08:57:44

急性医学病况的治疗

  技术领域

  本发明涉及急性医学病况的治疗。更具体地,本发明涉及用于治疗急性医学病况的装置、系统和方法。

  背景技术

  如本文所指的急性医学病况是指受试者的生理状态的迅速恶化,其如果不及时治疗可能威胁生命。实例包括创伤,败血症,出血,严重的血友病,严重的狼疮发作,严重的克罗恩氏病发作,同种异体/自体(autograph)排斥,过敏反应和内毒素休克。因此,这些受试者需要紧急医疗护理以减轻痛苦并使发病率和死亡风险最小化。急性医学病况的治疗根据疾病而不同,并且取决于疾病的严重程度,这些治疗经常不成功。

  相反,慢性医学病况是特征在于延长的临床进程(在此期间,基础病理变化很小或进展缓慢)的那些。例如,关节炎(例如类风湿性关节炎),慢性胰腺炎,慢性阻塞性肺病或慢性心力衰竭。然而,具有慢性病况的受试者可能遭受基础疾病过程的急性加重,并且这通常被称为慢性加急性发作(acute-on-chronic episode)。急性和慢性医学病况之间的区别是本领域中众所周知的。

  脾脏含有机体的单核细胞群体的一半,使该器官成为炎症中的主要贡献者,尤其响应于内毒素休克[1]。脾脏由不同的神经分支神经支配,并且提出脾神经支配是98%交感神经的(综述于[2]中)。脾神经的电刺激与脾脏的血管应答相关[3]。已经提出,脾神经的电刺激可用于治疗与慢性免疫和炎性应答相关的疾病,例如,参见参考文献[4,5,6,7]。然而,尚未研究脾神经刺激在急性医学病况中促存活效应。

  需要鉴定治疗急性医学病况的进一步和改进的方式。

  发明概述

  发明人首次显示供应脾脏的神经、特别是脾动脉周围的神经(本文中称为脾动脉神经)的神经调节,在内毒素(LPS)休克模型中增加动物的存活。具体而言,发明人发现,脾神经的电刺激使在经LPS处理的动物中急剧下降的血压稳定,并且降低血压的最大降低。因此,脾神经的神经活动的刺激提供了用于治疗急性医学病况、特别是威胁生命的病况、诸如具有与休克相关的生理变化的那些和心血管功能障碍(例如创伤、出血和败血性休克)的方式。作为单次治疗,例如在急性临床环境中,这将特别有用。

  因此,本发明提供了用于治疗急性医学病况、诸如创伤、出血或败血性休克的方法,所述方法包括:施加电信号以刺激供应脾脏的神经的神经活动,使得所述电信号产生指示急性医学病况的治疗的生理参数的改善,其中所述神经与神经血管束(例如脾动脉神经)缔合,其中所述生理参数的改善是由以下组成的组中的任意项:将体温恢复至36摄氏度(℃)和38℃之间,心率恢复至60-100 bpm,全身动脉压恢复至90/60 mmHg和150/90mmHg之间,全身静脉压恢复至右心房中的约5 mmHg和左心房中的约8 mmHg,中央静脉压恢复至约3– 8 mmHg的范围内,肺压恢复至约15 mmHg,呼吸速率恢复至每分钟8-14次呼吸,氧饱和度增加至≥94%,氧气的动脉分压增加至12-15 kPa,二氧化碳的动脉分压恢复至4.4-6.1kPa,疼痛感减轻,尿输出量恢复至≥0.5 ml/kg/hr,增加意识水平,降低乳酸水平,改变血液葡萄糖水平,改变血液中的基础缺损水平,和改变动脉pH水平。

  本发明还提供了用于治疗急性医学病况、诸如创伤、出血或败血性休克的方法,所述方法包括:施加电信号以刺激供应脾脏的神经的神经活动,其中所述神经与神经血管束(例如脾动脉神经)缔合,使得所述电信号产生指示急性医学病况的治疗的生理参数的改善,其中所述生理参数的改善是由以下组成的组中的任意项:全身动脉血压的生理值恢复在90/60 mmHg和150/90 mmHg之间,和中央静脉压恢复在3-8 mmHg的范围内,肺压恢复至约15mmHg,恢复更低水平的肺血管阻力同时增加全身血管阻力和增加肺毛细管楔压,降低高水平的脂肪酶,降低高水平的淀粉酶。

  本发明还提供了用于刺激供应脾脏的神经的神经活动用于治疗急性医学病况的系统,其中所述神经与神经血管束(例如脾动脉神经)缔合。所述系统包括:至少一个电极,其与所述神经信号传导接触,和至少一个控制器,其与所述至少一个电极电耦合。所述至少一个控制器被配置为控制至少一个电极的操作以将电信号施加至所述神经。配置电信号,使得其产生指示急性医学病况的治疗的生理参数的改善。所述生理参数的改善是由以下组成的组中的任意项:体温恢复至36℃和38℃之间,心率恢复至60-100 bpm,全身动脉压恢复至90/60 mmHg和150/90mmHg之间,全身静脉压恢复至右心房中的约5 mmHg和左心房中的约8 mmHg,中央静脉压恢复至约3 – 8 mmHg的范围内,肺压恢复至约15 mmHg,呼吸速率恢复至每分钟8-14次呼吸,氧饱和度增加至≥94%,氧气的动脉分压增加至12-15 kPa,二氧化碳的动脉分压恢复至4.4-6.1 kPa,疼痛感减轻,尿输出量恢复至≥0.5 ml/kg/hr,增加意识水平,降低乳酸水平,改变血液葡萄糖水平,改变血液中的基础缺损水平,和改变动脉pH水平。

  本发明还提供了用于治疗受试者中的急性医学病况的计算机实现的方法。所述方法包括控制本发明的系统的至少一个电极的操作,以将信号施加至供应脾脏的神经,以刺激神经活动,使得可逆地刺激神经的神经活动,其中所述神经与神经血管束(例如脾动脉神经)缔合。

  本发明还提供了计算机,其包括处理器和携带可执行计算机程序的非暂时性计算机可读存储介质,所述可执行计算机程序包括代码部分,所述代码部分当在处理器上加载并运行时,引起处理器:施加电信号以刺激供给脾脏的神经的神经活动,使得所述电信号产生指示急性医学病况的治疗的生理参数的改善,其中所述神经与神经血管束(例如脾动脉神经)缔合。

  本发明还提供了神经刺激性电信号,其用于治疗急性医学病况的方法中,其中所述电信号是本文所述的任何电信号。

  本发明还提供了电波形,其用于治疗急性医学病况的方法中,其中所述电波形引起供应脾脏的神经的神经膜的可逆去极化,其中所述神经与神经血管束(例如脾动脉神经)缔合,使得在神经中从头生成动作电位。

  本发明还提供了带电颗粒,其用于治疗急性医学病况的方法中,其中所述带电颗粒引起供应脾脏的神经的神经膜的可逆去极化,其中所述神经与神经血管束(例如脾动脉神经)缔合,使得在修饰的神经中从头生成动作电位。

  本发明还提供了修饰的神经,本发明的系统的神经接口与所述修饰的神经信号传导接触,其中所述神经供应脾脏且与神经血管束(例如脾动脉神经)缔合,其中所述至少一个电极与所述神经信号传导接触,且因此可以将所述神经与处于其自然状态的神经区分开,且其中所述神经位于具有急性医疗病况的受试者中。

  本发明还提供了可通过根据本发明的方法刺激供应脾脏的神经的神经活动而获得的修饰的神经,其中所述神经与神经血管束、优选脾动脉神经缔合。

  本发明还提供了控制本发明的系统的方法,所述系统与供应脾脏的神经信号传导接触,其中所述神经与神经血管束(例如脾动脉神经)缔合,所述方法包括向所述系统发送控制指令的步骤,所述系统响应于所述控制指令而向神经施加信号。

  发明详述

  供应脾脏的神经

  脾脏的神经支配主要是交感神经的或去甲肾上腺素能的,其中肽神经元可能代表剩余神经元的主体。人脾脏主要由围绕脾动脉的脾神经丛(plexus)神经支配。脾动脉被神经组织覆盖,该神经组织源自腹腔神经丛,并作为脾神经丛与脾动脉一直继续至脾脏。脾神经丛在门处进入脾脏,在此处脾动脉在末梢分支处分叉,并且脾神经丛与这些分支一起继续进入脾脏的薄壁组织。

  脾神经丛包括几个神经簇(fascicle),其从腹腔动脉至脾脏绕开主要脾动脉,每个神经簇都包含一小束神经纤维。绕开脾神经的神经簇(或称为动脉周围神经簇)在本文中称为脾动脉神经。

  本发明涉及将电信号施加至供应脾脏的神经,且由此调节供应脾脏的神经的神经活动,其中所述神经与神经血管束缔合。优选地,所述神经是脾动脉神经。

  在一些实施方案中,所述神经是交感神经。

  在一些实施方案中,本发明可以涉及将电信号施加至一个脾动脉神经。在其他实施方案中,本发明可以涉及多个(即一束)脾动脉神经。

  在其他实施方案中,本发明可以涉及将电信号施加至至少一个脾动脉神经和脾动脉。在其他实施方案中,本发明可以涉及将电信号施加至所有脾动脉神经和脾动脉。

  供应脾脏的神经的刺激

  本发明涉及将电信号施加至供应脾脏的神经以刺激神经中的神经活动,其中所述神经与神经血管束(例如脾动脉神经)缔合。刺激是指神经的至少一部分的信号传导活动与神经的该部分中的基线神经活动相比增加,其中基线神经活动是在任何干预之前受试者中的神经的信号传导活动。换句话说,刺激导致产生神经活动,这增加神经的该部分中的总神经活动。

  神经的“神经活动”是指神经的信号传导活动,例如神经中的动作电位的振幅、频率和/或模式。如本文中在神经中的动作电位的上下文中所使用的术语“模式”意欲包括以下中的一种或多种:神经或其中神经元的亚组(例如簇(fascicules))中的局部场电位、复合动作电位、聚集动作电位以及动作电位的振幅、频率、曲线下面积和其他模式。

  刺激通常涉及增加神经活动,例如在所述的至少一部分中产生超过刺激点的动作电位。在沿着轴突的任一点,发挥功能的神经将具有钾和钠离子跨越神经膜的分布。在沿着轴突的一点的分布决定轴突在该点处的电膜电位,其进而影响钾和钠离子在相邻点处的分布,其进而决定轴突在该点处的电膜电位,等等。这是在其正常状态下操作的神经,其中动作电位沿着轴突从点传播到相邻点,并且其可以使用常规实验观察到。

  表征神经活动的刺激的一种方式是钾和钠离子在轴突中的一个或多个点处的分布,其不是凭借作为传播动作电位的结果的在邻近一个或多个神经点处的电膜电位而产生,而是凭借暂时外部电场的施加而产生。暂时外部电场人为地修改钾和钠离子在神经中的点内的分布,引起否则将不会发生的神经膜的去极化。由暂时外部电场引起的神经膜的去极化产生跨越该点的从头动作电位。这是在破坏状态下操作的神经,其可以通过钾和钠离子在轴突中的点(已被刺激的点)处的分布来观察到,所述点具有不受相邻点的电膜电位影响或不由其决定的电膜电位。

  神经活动的刺激因此被理解为增加神经活动持续超过信号施加点。因此,修饰信号施加点处的神经,因为神经膜通过电场可逆地去极化,使得产生从头动作电位并通过修饰的神经传播。因此,修饰信号施加点处的神经,因为产生从头动作电位。

  当所述信号是电信号时,该刺激基于电流(例如,带电颗粒,其可以是例如,与神经信号传导接触的电极中的一个或多个电子,或者神经外部或神经内部的一个或多个离子)对离子跨越神经膜的分布的影响。

  神经活动的刺激涵盖神经中的神经活动的完全刺激 - 即其中在整个神经中的总神经活动增加的实施方案。

  神经活动的刺激可以是部分刺激。部分刺激可以使得整个神经的总信号传导活动部分增加,或者神经的神经纤维的子集的总信号传导活动完全增加(即,神经的纤维的该子集中没有神经活动),或者与神经纤维的子集中的基线神经活动相比,神经的神经纤维的该子集的总信号传导部分增加。例如,神经活动增加≤5%、≤10%、≤15%、≤20%、≤25%、≤30%、≤35%、≤40%、≤45%、≤50%、≤60%、≤70%、≤80%、≤90%或≤95%,或神经的神经纤维的子集中的神经活动增加。神经活动可以通过本领域中已知的方法来测量,例如,通过轴突传播的动作电位的数目和/或反映动作电位的总和活动的局部场电位的振幅来测量。

  本发明的一个优点在于神经活动的刺激是可逆的。因此,神经活动的调节不是永久的。例如,停止信号的施加后,神经中的神经活动在1-60秒内、或在1-60分钟内、或在1-24小时内(例如在1-12小时、1-6小时、1-4小时、1-2小时内)或在1-7天(例如,1-4天、1-2天)内基本上返回至基线神经活动。在可逆刺激的一些情况下,神经活动基本上完全返回至基线神经活动。也就是说,停止信号的施加后的神经活动与施加信号前的神经活动基本上相同。因此,所述神经或所述神经的一部分已经重新获得其正常生理能力以传播动作电位。

  在其他实施方案中,神经活动的刺激可以是基本上持续的。如本文所用,“持续的”用于意指神经活动具有延长的效果。例如,在停止信号的施加后,神经中的神经活动保持与当施加信号时基本上相同 - 即信号施加期间和之后的神经活动是基本上相同的。可逆的调节是优选的。

  疗法中的应用

  本发明可用于治疗急性医学病况,并且具体而言,本发明可用作最后诉诸的干预选项。本发明尤其可用于治疗威胁生命的病况,诸如具有与休克相关的生理变化的那些,和心血管功能障碍。

  这些病况的实例包括创伤、出血和休克。

  创伤包括由外部原因引起的身体损伤,诸如钝性创伤(包括机动车碰撞,跌倒,头部损伤,割伤),穿透性创伤(诸如割伤,刺伤,刺穿),爆炸损伤,烧伤(由热、冷、电、化学物质、摩擦或辐射引起)及其组合。

  出血是由循环系统失血。出血包括,例如吐血(呕吐新鲜血液),咯血(从肺中咳出血液),血尿,脑出血,肺出血,产后出血和胃肠道出血。出血可能源于例如外伤性损伤或基础的医学病况。出血还包括手术中出血和手术后出血。

  休克包括例如败血性休克,过敏性休克,中毒性休克综合症,心源性休克,低血容量性休克和神经源性休克。本发明在治疗败血性休克中特别有用。

  本发明关于创伤、败血性休克、出血、严重的血友病、狼疮的严重发作、严重的克罗恩氏病的发作、同种异体/自体排斥、过敏反应和内毒素休克尤其感兴趣。

  病况的治疗可以以各种方式评价,但通常涉及确定受试者的一种或多种生理参数的改善。如本文所用,“确定的生理参数的改善”用于意指对于任何给定的生理参数,改善是受试者中该参数的值朝向正常值或该值的正常范围(即朝向健康受试者中的预期值)的变化。

  如本文所用,“确定的生理参数的恶化”用于意指对于任何给定的生理参数,恶化是受试者中该参数的值远离正常值或该值的正常范围(即远离健康受试者中的预期值)的变化。

  例如,急性医学病况可能伴有血压下降、头晕或头昏眼花、皮疹、恶心、肌肉疼痛、呼吸短促、少尿、肌肉疼痛和发冷、湿冷和苍白或斑点状皮肤。

  身体的生命体征对于评价急性医学病况特别有用,因为这些是指示身体的生命(维持生命)功能的状态的体征。生命体征可以是由以下组成的组中的一种或多种:全身性动脉压、体温、心率、呼吸率、氧饱和度和疼痛感。

  其他有用的生理参数可以是全身静脉压、肺动脉压(在本文中也称为肺压)、每小时尿输出量、意识水平、氧气的动脉分压和二氧化碳的动脉分压。

  本发明可以使用所述生理参数中的任何一种或组合。

  在具有急性医学病况的受试者中,指示急性医学疾病的治疗的生理参数的改善可以(取决于受试者表现出哪些异常值)是由以下组成的组中的一种或多种:体温恢复至36℃和38℃之间,心率恢复至60-100 bpm,全身动脉压恢复至90/60 mmHg和150/90mmHg之间,全身静脉压恢复至右心房中的约5 mmHg和左心房中的约8 mmHg,中央静脉压恢复至约3 – 8mmHg的范围内,肺压恢复至约15 mmHg,呼吸速率恢复至每分钟8-14次呼吸,氧饱和度增加至≥94%,氧气的动脉分压增加至12-15 kPa,二氧化碳的动脉分压恢复至4.4-6.1 kPa,疼痛感减轻,尿输出量恢复至≥0.5 ml/kg/hr,增加意识水平,降低乳酸水平,改变血液葡萄糖水平,改变血液中的基础缺损水平,和改变动脉pH水平。本发明可能没有导致所有这些生理参数的变化。

  本发明目的在于将血压(例如全身动脉压、全身静脉压、中央静脉压和肺动脉压)恢复至正常范围。如技术人员所知,当提及本领域中的血压时,除非另有指明,否则其通常是指全身循环中的动脉压(即,全身动脉压)。正常的全身动脉压被认为在90/60mmHg和120/80mmHg之间。低于该范围的全身动脉压值可能表明该个体患有休克。本发明目的在于将全身动脉压恢复至正常范围。因此,当受试者患有休克时,本发明目的在于增加全身动脉压。

  测定全身静脉压、中央静脉压和肺压也可用于本发明。测定这些压力通常需要使用侵入性工具,诸如导管。然而,可以使用超声测量(例如,下腔静脉的直径和表观心脏充盈压)来测定肺压。健康成人中的全身静脉压的正常范围通常在右心房为5 mmHg,且在左心房为8 mmHg。健康成人中的中央静脉压的正常范围被认为在约3 – 8 mmHg的范围内。健康成人中在静息时的肺压的正常范围通常为约15 mmHg。

  本发明的目的还在于将体温恢复至正常范围,即36℃和38℃之间。

  通常认为心率是60-100 bpm,但在急性医学病况中,心率通常增加。本发明目的在于将心率恢复至正常范围,即其目的在于降低心率。

  正常呼吸速率是每分钟8-14次呼吸,并且本发明目的在于将呼吸速率恢复至正常范围。

  海平面上的健康个体通常表现出96%至99%的氧饱和度(SO2)值,并且通常高于94%。如果该水平低于90%,则认为该水平低,导致低氧血症。低于80%的血氧水平可能损害器官功能,诸如脑和心脏。连续的低氧水平可能导致呼吸或心脏骤停。氧饱和度通常使用脉搏血氧定量法进行测量。

  健康个体中的氧气的动脉分压的正常范围通常为12-15 kPa。二氧化碳的动脉分压的正常范围通常为4.4-6.1 kPa。本发明目的在于将氧气的动脉分压和氧气的动脉分压恢复至正常范围。

  成人的正常尿排出量为0.5-1ml/kg/hr。在平均体型的成人中,这大约等于每小时30-60ml。本发明目的在于使尿排出量恢复到正常范围。

  可用于本发明的其他生理参数可以包括乳酸水平,血液葡萄糖,血液和动脉pH的基础缺损。这些参数可以通过生物化学分析来确定。

  用于确定任何给定参数的值的合适方法将被技术人员所理解。

  技术人员将理解,受试者中任何生理参数的基线不需要是固定或特定的值,而是可以在正常范围内波动,或者可以是具有相关误差和置信区间的平均值。例如,人的生命体征的正常范围随着年龄、重量、性别和整体健康而变化。用于确定基线值的合适方法对于技术人员是众所周知的。

  如本文所用,当确定在检测时由受试者表现出的该参数的值时,在受试者中确定生理参数。检测器(例如生理传感器子系统、生理数据处理模块、生理传感器等)是能够做出这种确定的任何元件。可以在根据本发明调节交感神经中的神经活动之前、期间和/或之后进行任何生理参数的检测。可以由人(例如,临床医生或护理人员)手动地进行检测,而使用或不使用不是本发明的系统的一部分的装置(诸如仪器)或是系统的一部分的检测器。在使用装置或检测器的情况下,可以自动进行检测。

  因此,在某些实施方案中,本发明进一步包括测定受试者的一种或多种生理参数的步骤,其中仅当测定的生理参数满足或超过预定义的阈值时才施加信号。在其中测定所述受试者的多于一种生理参数的此类实施方案中,当测定的生理参数中的任一种满足或超过其阈值时,或者仅当测定的生理参数的全部都满足或超过其阈值时,可以施加信号。在其中通过本发明的系统施加信号的某些实施方案中,所述系统进一步包括至少一个检测器,其经配置以测定所述受试者的一种或多种生理参数。

  在本发明的某些实施方案中,一种或多种检测的生理参数是由以下组成的组中的一种或多种:血压(例如,全身动脉压、全身静脉压和肺压),体温,心率,呼吸率,氧饱和度,疼痛感,每小时尿排出量,意识水平或乳酸水平,血液葡萄糖,血液的基础缺损和/或动脉pH。将理解的是,可以在并行实施方案中测定任何两种生理参数,耦合所述控制器以检测受试者中的动作电位耐受性的模式。

  例如,当解决休克的严重程度和对休克的医疗干预的应答时,一个重要因素是组织灌注,其在休克发作期间可以增加组织灌注。组织灌注可以与血压的降低和生理参数的许多其他变化相关,包括乳酸水平,以及在较小程度上的基础缺损和动脉pH,本发明的一些实施方案力图将其恢复至正常水平,如上所述。

  生理参数的预定义的阈值是必须由施加指定干预之前的一个或多个受试者表现出的该参数的最小(或最大)值。对于任何给定参数,阈值可以被定义为指示病理状态或疾病状态的值。所述阈值可以被定义为指示病理状态或疾病状态的开始的值。因此,根据预定义的阈值,本发明可以用作治疗。或者,所述阈值可以被定义为指示受试者的生理状态(受试者为例如睡眠的、餐后的或运动的)的值。任何给定生理参数的适当值将由技术人员简单地确定(例如,参考医疗实践标准)。

  如果受试者表现出的值超过阈值(也就是说,表现出的值比预定义的阈值更大的偏离该生理参数的正常或健康值),则超过给定生理参数的这种阈值。

  除了接受根据本发明的脾神经的神经调节以外,本发明的受试者还可以接受针对该病况的治疗和/或药物。例如,所述受试者可以给予静脉中的流体,给予静脉中的抗生素(例如青霉素、头孢菌素、四环素、大环内酯或氟喹诺酮),增加血压和/或到组织和器官的血液的药物,除去感染源(诸如脓肿)以及已经被感染严重破坏的任何组织,通过面罩给予的氧气,鼻子中的插管或从喉咙向下进入与呼吸机(通风机)(如果呼吸存在严重困难)连接的气管的导管。

  所述受试者可以接受抗炎药物(其通常将继续插入本发明的系统前发生的用药)。此类药物包括非甾体抗炎药(NSAID)、类固醇、5ASAs、改变疾病的抗炎药(DMARD)(诸如硫唑嘌呤、甲氨蝶呤和环孢菌素),生物药物(如英夫利昔单抗和阿达木单抗)以及新的口服DMARD、如Jak抑制剂。

  因此,本发明提供了这些治疗和/或药物与本发明的系统组合的用途。

  电信号的合适形式

  本发明使用经由至少一个电极施加的电信号,所述电极放置为与供应脾脏的神经信号传导接触,其中所述神经与神经血管束(例如脾动脉神经)缔合。如本文所用,“信号传导接触”是其中经由至少一个电极施加的电信号的至少一部分在神经处被接收的情况。

  所述电信号优选地提供单次治疗,例如在急性临床环境中。这并不是说电信号仅施加一次。在单次治疗期间,电信号可以连续或周期性地施加至神经。优选地,将电信号施加至神经,直至受试者的生理参数得到改善。

  根据本发明施加的电信号理想地是非破坏性的。如本文所用,“非破坏性信号”是这样的信号,当施加时,其不会不可逆地损伤神经的潜在的神经信号传导能力。也就是说,即使该传导实际上由于非破坏性信号的施加而被人工刺激,当信号的施加停止时,非破坏性信号的施加维持向其施加信号的神经或其纤维或其他神经组织传导动作电位的能力。

  根据本发明施加的电信号可以是电压或电流波形。

  所述电信号可以通过一个或多个电信号参数来表征。所述电信号参数包括波形、频率和振幅。

  可替代地或另外地,所述电信号可以通过将电信号施加至神经的模式来表征。施加的模式是指将电信号施加至神经的时机。施加的模式可以是连续施加或周期性施加。施加的模式可以包括信号施加的设置持续时间。

  连续施加是指其中以连续方式将电信号施加至神经的情况。在其中所述电信号是一系列脉冲的实施方案中,那些脉冲之间(即在脉冲宽度和相位持续时间之间)的间隙并不意味着没有连续施加信号。

  周期性施加是指以重复模式(例如,开-关模式)将电信号施加至神经的情况。

  波形

  供应脾脏的神经(其中所述神经与神经血管束(例如脾动脉神经)缔合)的调节(例如刺激)可以使用电信号来实现,所述电信号用于复制神经的正常神经活动。因此,电信号的波形可以包括一个或多个脉冲串,具有方形、锯齿形、正弦形、三角形、梯形、准梯形或复合脉冲。在其他实施方案中,波形可以是方形、正弦形、三角形、梯形、准梯形或复合波形。在其他实施方案中,所述波形可以是恒定振幅的波形。

  所述信号可以是双相的。术语“双相的”是指随着时间对神经施加正电荷和负电荷的信号。

  所述信号可以是对称的或不对称的。对称信号是这样的信号,其中当向神经施加正电荷时的波形与当向神经施加负电荷时的波形是对称的。不对称信号是这样的信号,其中当向神经施加正电荷时的波形与当向神经施加负电荷时的波形是不对称的。

  所述信号可能是电荷平衡的。电荷平衡的信号是指在信号的时段内向神经施加等量(或附近)正和负电荷的信号。

  振幅

  为了本发明的目的,在本文中以每相的电荷的方面来指代振幅。通过电信号施加至神经的每相的电荷被定义为电流在一相上(例如,在电荷平衡的双相脉冲的情况下,在双相脉冲的一相上)的积分。因此,通过电信号施加至神经的每相的电荷密度是至少一个电极和神经之间的每单位接触区域的每相的电荷,并且也是信号波形的一相上的电流密度的积分。换句话说,通过电信号施加至神经的每相的电荷密度是通过电信号施加至神经的每相的电荷除以至少一个电极(通常是阴极)和神经之间的接触面积。

  本发明所需的每相的电荷密度代表刺激供应脾脏的神经中的神经活动所需的能量量,其中所述神经与神经血管束(例如脾动脉神经)缔合以改善生理参数。

  发明人发现刺激猪脾动脉神经中的神经活动所需的每相的电荷密度为5 µC至150µC/cm2/相,并且在一些情况下,使用血管外袖套,为5 µC至180 µC/cm2/相(值可能受电极设计的轻微影响)。例如,通过电信号施加的每相的电荷密度可以是≤ 10 µC/cm2/相、≤ 15µC/cm2/相、≤ 20 µC/cm2/相、≤ 25 µC/cm2/相、≤ 30 µC/cm2/相、≤ 40 µC/cm2/相、≤ 50µC/cm2/相、≤ 75 µC/cm2/相、≤ 100 µC/cm2/相、≤ 125 µC/cm2/相、≤ 150 µC/cm2/相或≤ 180 µC/cm2/相。另外地或可替代地,通过电信号施加的每相的电荷密度可以是≥ 5 µC/cm2/相、≥ 10 µC/cm2/相、≥ 15 µC/cm2/相、≥ 20 µC/cm2/相、≥ 25 µC/cm2/相、≥ 30µC/cm2/相、≥ 40 µC/cm2/相、≥ 50 µC/cm2/相、≥ 75 µC/cm2/相、≥ 100 µC/cm2/相、≥125 µC/cm2/相或≥ 150 µC/cm2/相。上述上限和下限的任何组合也是可能的。

  发明人进一步发现,刺激人脾动脉神经中的神经活动所需的每相的电荷密度的指示估算值为近似70-1300 µC/cm2。例如,通过电信号施加的每相的电荷密度可以是≤ 80 µC/cm2/相、≤ 140 µC/cm2/相、≤ 170 µC/cm2/相、≤ 230 µC/cm2/相、≤ 250 µC/cm2/相、≤300 µC/cm2/相、≤ 350 µC/cm2/相、≤ 400 µC/cm2/相、≤ 450 µC/cm2/相、≤ 500µC/cm2/相、≤ 1100 µC/cm2/相或≤ 1300µC/cm2/相。另外地或可替代地,通过电信号施加的每相的电荷密度可以是≥ 70 µC/cm2/相、≥ 140 µC/cm2/相、≥ 170 µC/cm2/相、≥ 230 µC/cm2/相、≥ 250 µC/cm2/相、≥ 300 µC/cm2/相、≥ 350 µC/cm2/相、≥ 400 µC/cm2/相、≥ 450µC/cm2/相、≥ 500 µC/cm2/相、≥ 1100 µC/cm2/相或≥ 1300 µC/cm2/相。上限和下限的任何组合也是可能的。

  除了信号的频率、信号的施加模式以及至少一个电极和神经之间的接触区域,在任何给定时间段内通过电信号施加至神经的总电荷是信号的每相的电荷密度的结果。本文进一步讨论信号的频率、信号的施加模式以及至少一个电极和神经之间的接触区域。

  技术人员将理解,实现期望神经活动的刺激所必需的施加的电信号的振幅将取决于电极的定位和相关的电生理特征(例如阻抗)。确定用于在给定受试者内实现期望神经活动的调节的适当电流振幅在技术人员的能力之内。

  在本领域中当然将理解,施加至神经的电信号将在临床安全边缘内(例如,适合于维持神经信号传导功能,适合于维持神经完整性,以及适合于维持受试者的安全性)。通常通过临床前研究确定临床安全边缘内的电参数。

  周期性施加

  周期性施加是指其中电信号以重复模式施加至神经的情况。优选的重复模式是开-关模式,其中施加信号第一持续时间,本文中称为“开”持续时间,然后停止第二持续时间,本文中称为“关”持续时间,然后再次施加第一持续时间,然后再次停止第二持续时间,等。

  周期性开-关模式可以具有0.1至10s的开持续时间和0.5至30s的关持续时间。例如,所述开持续时间(是指将特定频率和振幅的脉冲递送至神经期间的时间)可以是≤0.2s、≤0.5 s、≤1 s、≤2 s、≤5 s或≤ 10 s。可替代地或另外地,所述开持续时间可以是≥0.1 s、≥0.2 s、≥0.5 s、≥1 s、≥2 s或≥5 s。所述开持续时间的上述上限和下限的任何组合也是可能的。例如,所述关持续时间(是指开时段之间的时间,在此期间没有向神经递送脉冲)可以是≤1 s、≤3 s、≤5 s、≤10 s、≤15 s、≤20 s、≤25 s或≤30 s。可替代地或另外地,所述关持续时间可以是≥0.5 s、≥1 s、≥2 s、≥5 s、≥10 s、≥15 s、≥20 s或≤25 s。所述关持续时间的上述上限和下限的任何组合也是可能的。

  周期性施加也可以被称为占空比施加。占空比代表在周期性模式的循环中将信号施加至神经的时间百分比。例如,20%的占空比可以代表具有2 s的开持续时间和10 s的关持续时间的周期性模式。或者,20%的占空比可以代表具有1 s的开持续时间和5 s的关持续时间的周期性模式。换句话说,周期性施加也可以被称为开-关模式刺激或爆发刺激。

  适用于本发明的占空比为0.1%至100%。

  持续时间

  持续特定持续时间施加信号,在此期间可以周期性或连续施加信号。临床医生可以确定持续时间,或者可以预先设定持续时间。

  临床医生可以响应于受试者的生理参数而在持续时间期间停止施加信号。优选地,将电信号施加至神经,直至受试者的生理参数得到改善。

  在一些实例中,所述持续时间可以是≤ 1 min、≤ 5 min、≤ 10 min、≤ 30 min或≤ 1小时。另外地或可替代地,所述持续时间可以是≥ 1 min、≥ 5 min、≥ 10 min或≥30 min。

  频率

  频率被定义为电波形的相位持续时间的倒数(即1/相)。

  发明人已经发现用于刺激供应脾脏的神经的优选频率,其中神经与神经血管束(例如脾动脉神经)缔合。具体而言,发明人已经发现对于其中周期性施加电信号的实施方案以及对于其中连续施加电信号的实施方案的优选频率。

  如前所示,其中周期性施加电信号的实施方案和其中连续施加电信号的实施方案使用不同的刺激参数提供不同的功能。可以使用连续刺激来诱导脾血管内的血流变化,其可以被检测到并在手术台上或围手术期用作成功电极放置和/或振幅确定的指标;并且可以将周期性刺激用作优选的治疗范例,由此在保持治疗效力的同时避免这种血流变化和/或其他可能的全身性作用。

  在其中周期性施加电信号的实施方案中,所述电信号具有≤300Hz、优选≤50Hz、更优选≤10Hz的频率。例如,所述电信号的频率可以是≤50Hz、≤100Hz、≤150Hz、≤200Hz、≤250Hz或≤300Hz。在其他实例中,所述电信号的频率可以是≤10 Hz、≤15 Hz、≤20 Hz、≤25 Hz、≤30 Hz、≤35 Hz、≤40 Hz、≤45 Hz或≤50 Hz。在进一步实例中,所述频率可以是≤1 Hz、≤2 Hz、≤5 Hz或≤10 Hz。另外地或可替代地,所述电信号的频率可以是≥10Hz、≥15 Hz、≥20 Hz、≥25 Hz、≥30 Hz、≥35 H、≥40 Hz、≥45 Hz或≥50 Hz。在其他实例中,所述电信号的频率可以是≥0.1 Hz、≥0.2 Hz、≥0.5 Hz、≥1 Hz、≥2 Hz或≥5 Hz。上述上限和下限的任何组合也是可能的。

  在其中连续施加电信号的实施方案中,所述电信号具有≤50Hz、优选≤10Hz、更优选≤2Hz、甚至更优选≤1Hz的频率。例如,所述频率可以是≤1 Hz、≤2 Hz、≤5 Hz或≤10Hz。在其他实例中,所述频率可以是≤0.1 Hz、≤0.2 Hz、≤0.3 Hz、≤0.4 Hz、≤0.5 Hz、≤0.6 Hz、≤0.7 Hz、≤0.8 Hz或≤0.9 Hz。另外地或可替代地,所述电信号的频率可以是≥0.1 Hz、≥0.2 Hz、≥0.5 Hz、≥1 Hz、≥2 Hz或≥5 Hz。上述上限和下限的任何组合也是可能的。

  在信号波形包括脉冲串的情况下,根据上述频率以一定间隔将脉冲施加至神经。例如,50 Hz的频率导致每秒向神经施加50个脉冲。

  电极和神经接口设计

  电信号经由至少一个与神经信号传导接触的电极施加至供应脾脏的神经,其中所述神经与神经血管束(例如脾动脉神经)缔合。至少一个电极可以位于神经接口上。

  在一些实施方案中,所述电极和/或神经接口被配置用于在至少一个脾动脉神经周围和/或脾动脉周围放置。在此类实施方案中,所述神经接口可以是袖套型接口,但可以使用部分或完全绕过神经的其他接口。

  在其他实施方案中,神经接口10被配置用于在至少一个脾动脉神经上和/或脾动脉上放置。在此类实施方案中,神经接口10可以是补片或夹子型接口。

  在其他实施方案中,神经接口10被配置用于在脾动脉中放置。在此类实施方案中,所述神经接口可以是导管或探头型接口。

  在其他实施方案中,神经接口10被配置用于在至少一个脾动脉神经中放置。在此类实施方案中,所述神经接口可以是引脚型接口。

  所述神经接口包括至少一个电极。所述电极可以由高电荷容量材料、诸如铂黑、氧化铱、氮化钛、钽、聚(乙烯二氧噻吩)及其合适的组合制成,或者用高电荷容量材料、诸如铂黑、氧化铱、氮化钛、钽、聚(乙烯二氧噻吩)及其合适的组合部分或全部涂覆。

  至少一个电极可以是柔性的扁平接口电极,以绕开神经和/或脾动脉(当神经接口10被固定在神经上)的实施方案中。然而,其他电极类型也适用于本发明中。

  适用于本发明的其他电极类型包括袖套电极(例如,螺旋(spiral)袖套、螺旋(helical)袖套或扁平接口);半袖套电极;网格,线性杆状引线,桨式引线或圆盘接触电极(包括多盘接触电极);钩形电极;吊索电极;簇内电极;玻璃吸电极;桨式电极;和经皮圆柱电极。

  至少一个电极可以包括第一电极11和第二电极12,在本文中被称为双极电极配置。图1显示示例性双极电极配置的示意图,其中将电极放置为与至少一个脾动脉神经和/或脾动脉信号传导接触。如本文其他地方所解释,可以通过在神经和/或动脉周围(即,部分或完全绕过)、在神经上和/或动脉上、或在脾神经中或在动脉中放置电极来实现合适的信号传导接触。

  如图1中所示,第一电极11和第二电极12沿着神经的纵轴定位。可以将电信号施加至电极,使得第一电极11是阳极,且第二电极12是阴极。或者,第一电极11可以是阴极,且第二电极12可以是阳极。

  在其他实施方案中,至少一个电极可以包括第一电极、第二电极和第三电极,在本文中被称为三极电极配置。

  如同双极配置一样,第一、第二和第三电极可以沿着神经的纵轴定位,并且在一个实例中,第二电极可以在第一电极和第三电极之间定位。

  电极可以通过非导电生物相容性材料至少部分地彼此绝缘。为此,神经接口可以包括不导电的生物相容性材料,当使用该装置时,所述不导电的生物相容性材料沿着神经横向间隔开。

  发明人已经发现用于将电信号施加至至少一个脾动脉神经的优选电极大小。所述电极的总表面积可以为0.1-0.3mm2。优选地,所述电极的总表面积小于0.2 cm2。

  在优选的电极配置中,第一电极11和第二电极12各自的宽度可以为1至4mm。例如,所述宽度可以为1mm至3mm,或2mm至4mm,或2mm至3mm。

  控制器

  参考图2,可以包括神经接口的本发明的系统50还可以包括至少一个控制器,例如微处理器60,其电耦合至神经接口10的至少一个电极并且被配置为控制至少一个电极的操作。至少一个控制器可以负责触发通过至少一个电极递送至神经的信号的开始和/或结束。任选地,至少一个控制器还可以负责产生和/或控制信号参数。

  至少一个控制器被配置为以开环方式操作,其中将预先定义的信号(如上所述)以预先定义的施加模式(也如上所述)用外部触发器递送至神经。

  至少一个控制器优选地被构建为在使用中在系统50中产生不依赖于任何输入的预先配置和/或操作者可选择的信号。预先配置和/或操作者可选择的信号可以是先前描述的电信号中的任一种。在其他实施方案中,至少一个控制器响应于外部信号,更优选地,响应于涉及受试者的一种或多种生理参数的信息(例如,数据),但仍然在先前描述的信号的范围内。

  至少一个控制器可以是系统50中的微处理器60,其适合于插入受试者中。

  可替代地或另外地,至少一个控制器可以是受试者外部的控制器。

  至少一个控制器可以在接收由操作者(诸如,医师或其中插入装置106的受试者)产生的信号后被触发。为此,系统50可以额外包括外部系统80,所述外部系统80包括控制器101。下面参考图2描述这种系统的实例。

  较宽系统100的外部系统80在系统50的外部并且在受试者的外部,并且包括控制器101。控制器101可用于控制系统50和/或为系统50外部供电。为此,控制器101可以包括供电单元102和/或编程单元103。外部系统80可以进一步包括电力传输天线104和数据传输天线105,如下文进一步描述。

  至少一个控制器,包括微处理器60和控制器101,可以是连接至携带可执行的计算机程序的存储器(即,非暂时性计算机可读存储介质)的处理器,所述可执行的计算机程序包含代码部分,所述代码部分当被加载并在处理器上运行时引起处理器至少控制至少一个电极的操作。通过控制,所述操作意指至少一个控制器引起至少一个电极使用先前描述的任何信号参数和施加模式将电信号施加至神经。

  神经刺激系统

  除了神经接口10和至少一个控制器以外,系统50可以包括信号发生器113,其被配置为响应于来自至少一个控制器的控制操作而将上述电信号递送至至少一个电极。所述信号发生器可以包括至少一个电流或电压源。

  信号发生器113可以电耦合至至少一个控制器和至少一个电极。在一些实施方案中,至少一个电极可以经由电引线107耦合至信号发生器113。在一些实施方案中,所述电引线可以耦合至先前描述的互连器。或者,信号发生器113可以与至少一个电极直接集成而没有引线。在任何情况下,系统50可以包括装置106,其可以被插入受试者中,并且可以包括DC电流阻断输出电路(或AC电流阻断输出电路),其任选地基于电容器和/或电感器,基于所有输出通道(例如,输出至至少一个电极或生理传感器111)。

  除了神经接口10、至少一个电极、至少一个控制器和信号发生器113以外,系统50可以包括以下组件中的一个或多个:可插入收发器110;电源112;存储器114(否则称为非暂时性计算机可读存储装置);生理传感器111;和生理数据处理模块115。生理传感器111和生理数据处理模块115在本文中称为检测器。

  系统50的各种组件优选地是单个物理装置的部分,其或者共有公共壳体,或者是通过电引线连接的互连组件的物理分离的集合,如图2中所示。然而,作为替代方案,本发明可以使用其中组件在物理上分离并且无线通信的系统。因此,例如,所述至少一个电极和可插入装置(例如,可插入装置106)可以是统一装置的部分,或者可以一起形成系统(例如,系统50)。在两种情况下,还可以存在另外的组件以形成较宽的系统(例如系统100)。

  例如,在一些实施方案中,所述可插入装置106中可以含有以下组件中的一个或多个:电源112;存储器114;和生理数据处理模块115。

  电源112可以包括电流源和/或电压源,用于为信号发生器113提供电力。电源112还可以为可插入装置106和/或系统50的其他组件(诸如微处理器60、存储器114和可插入收发器110)提供电力。电源112可以包括电池,所述电池可以是可充电的。

  应理解,在可插入装置中的电力的可用性受到限制,并且本发明已在考虑到这种约束的情况下设计。所述可插入装置106和/或系统50可以通过感应供电或可再充电电源供电。

  存储器114可以存储电力数据以及涉及一种或多种生理参数的数据。例如,存储器114可以存储涉及一种或多种信号的数据,所述信号指示通过检测器(例如,经由生理传感器111)检测到的一种或多种生理参数,和/或经由生理数据处理模块115测定的一种或多种相应的生理参数。另外或可替代地,存储器114可以存储电力数据以及涉及经由可插入收发器110来自外部系统80的一种或多种生理参数的数据。为此,可插入收发器110可以形成较宽系统100的通信子系统的一部分,如下面进一步讨论。

  生理数据处理模块115被配置为处理指示通过生理传感器111检测到的一种或多种生理参数的一种或多种信号,以测定一种或多种相应的生理参数。生理数据处理模块115可以被配置为减小涉及一种或多种生理参数的数据的大小,用于存储于存储器114中和/或用于经由可插入收发器110传输至外部系统。可插入收发器110可以包括一个或多个天线。所述可插入收发器100可以使用任何合适的信号传导方法,诸如RF、无线、红外等等,用于将信号传输至体外,例如传输至系统50是其一部分的较宽系统100。

  可替代地或另外地,生理数据处理模块115可以被配置为处理指示一种或多种生理参数的信号和/或处理测定的一种或多种生理参数,以确定受试者中的疾病的演变。

  生理数据处理模块115和至少一个生理传感器111可以形成生理传感器子系统,本文中也称为检测器,作为系统50的一部分、可插入装置106的一部分或在所述系统的外部。

  可能存在至少一个检测器,其被配置为检测与治疗相关的一种或多种生理参数。例如,所述检测器被配置用于使用电子、RF或光学(可见,红外)生物化学传感器检测生物分子浓度。

  存储器114可以存储涉及一种或多种生理参数的正常水平的生理数据。数据可以对其中插入系统50的受试者特异性的,并且可以从本领域中已知的各种测试收集。在接收指示从生理传感器111接收的生理参数的信号后,或者另外周期性地或在来自生理传感器111的需求后,生理数据处理器115可以比较由从生理传感器111接收的信号测定的生理参数与存储器114中存储的涉及生理参数的正常水平的数据,并确定接收的信号是否指示特定生理参数不足或过量,且因此指示受试者中的疾病的演变。

  可以在接收由操作者(例如,医师或其中插入系统50的受试者)产生的信号后触发微处理器60。为此,所述系统50可以是较宽系统100的一部分,所述较宽系统100包括外部系统80和控制器101,如下面进一步描述。

  超越神经刺激系统

  神经刺激系统50可以是较宽系统100的一部分,所述较宽系统100包括许多子系统,例如外部系统80,参见图2。外部系统80可以用于通过人皮肤和下面组织为神经刺激系统50供电和编程。

  除了控制器101以外,外部子系统80可以包括以下中的一种或多种:供电单元102,其用于将用于为可插入装置106供电的电源112的电池无线再充电;和,编程单元103,其被配置为与可插入收发器110通信。所述编程单元103和所述可插入收发器110可以形成通信子系统。在一些实施方案中,供电单元102与编程单元103一起被容纳。在其他实施方案中,它们可以被容纳在分开的装置中。

  所述外部子系统80还可以包括以下中的一种或多种:电力传输天线104;和数据传输天线105。电力传输天线104可以被配置为用于以低频(例如,从30 kHz至10 MHz)传输电磁场。数据传输天线105可以被配置为传输数据用于为可插入装置106编程或重新编程,并且除了电力传输天线104以外,所述数据传输天线105也可以用于以高频(例如,1 MHz至10GHz)传输电磁场。可插入收发器110的至少一个天线可以被配置为从由电力传输天线104产生的外部电磁场接收电力,其可以用于为电源112的可再充电电池充电。

  电力传输天线104、数据传输天线105和可插入收发器110的至少一个天线具有某些特性,诸如谐振频率和品质因数(Q)。天线的一种实施方式是具有或不具有铁氧体磁心的线圈,其形成具有定义电感的电感器。该电感器可以与谐振电容器和电阻损耗耦合以形成谐振电路。频率被设置为匹配由电力传输天线105产生的电磁场的频率。可插入收发器110的至少一个天线的第二天线可以在系统50中用于从/向外部系统80接收和传输数据。如果在系统50中使用多于一个天线,则这些天线彼此旋转30度,以在与电力传输天线104稍微错位期间实现更好程度的电力传输效率。

  外部系统80可以包括一个或多个外部身体穿戴的生理传感器121(未显示),以检测指示一种或多种生理参数的信号。所述信号可以经由可插入收发器110的至少一个天线传输至所述系统50。可替代地或另外地,所述信号可以经由可插入收发器110的至少一个天线传输至外部系统50,且然后传输至系统50。

  例如,在一个具体实施方案中,可插入装置外部的检测器可以包括非侵入性血流监测器,诸如超声流量计和/或非侵入性血压监测器,并且测定生理参数的变化,特别是上述生理参数。

  所述系统100可以包括安全保护特征,所述安全保护特征在以下示例性事件中中断对神经的电刺激:系统50的异常操作(例如,过压);来自插入的生理传感器111的异常读出值(例如,超过2摄氏度的温度增加或电极-组织接口处的电阻抗过高或过低);来自外部身体穿戴的生理传感器121 (未显示)的异常读出值;或由操作者(例如医师或受试者)检测到的对刺激的异常应答。安全预防措施特征可以经由控制器101实施并且通信至系统50,或者在系统50内内部实施。

  所述外部系统80可以包括致动器120(未显示),在被操作者(例如医师或受试者)按压后,所述致动器60将经由控制器101和相应的通信子系统递送信号,以触发系统50的微处理器113,以通过至少一个电极将信号递送至神经。

  外部系统80可以包括用于微控制器60或控制器101的显示器109,以提醒操作者(例如医师或受试者)系统或受试者的状态。显示器109可以是监视器,诸如LED监视器,或者可以是视觉指示器,诸如LED。

  本发明的系统100,包括外部系统80,但在特定系统50中,优选由生物稳定和生物相容的材料制成或用生物稳定和生物相容的材料涂覆。这意味着所述系统既受保护免于由于暴露于身体组织而导致的损害,又使所述系统引发宿主的不利反应(其可能最终导致排斥)的风险最小化。用于制造或涂覆所述系统的材料应当理想地抵抗生物膜的形成。合适的材料包括但不限于聚(3,4-乙烯二氧噻吩):对甲苯磺酸酯(PEDOT:PTS或PEDT)、聚(对二甲苯)聚合物(称为Parylenes)和聚四氟乙烯。

  本发明的可插入装置50将通常重量小于50 g。

  通用

  本文所述的方法可以通过软件以有形存储介质上的机器可读形式(例如,以包含计算机程序代码装置的计算机程序的形式,当该程序在计算机上运行时并且在该计算机程序可以在计算机可读介质上体现的情况下,所述计算机程序代码装置适于执行本文描述的任何方法的所有步骤)执行。有形(或非暂时性)存储介质的实例包括磁盘、拇指驱动器、存储卡等,并且不包括传播的信号。该软件可以适合于在并行处理器或串行处理器上执行,使得可以以任何合适的顺序或同时实施方法步骤。这承认固件和软件可以是有价值的、可单独交易的商品。它意欲涵盖在“哑”或标准硬件上运行或控制“哑”或标准硬件以实施期望的功能的软件。它还意欲涵盖“描述”或定义硬件的配置的软件,诸如HDL(硬件描述语言)软件,如用于设计硅芯片,或用于配置通用可编程芯片,以实施期望的功能。

  本领域技术人员将认识到,用于存储程序指令的存储设备可以跨网络分布。例如,远程计算机可以存储描述为软件的过程的实例。本地或终端计算机可以访问远程计算机并下载部分或全部软件以运行程序。或者,本地计算机可以根据需要下载软件的片段,或者在本地终端处执行一些软件指令,并且在远程计算机(或计算机网络)处执行一些软件指令。本领域技术人员还将认识到,通过利用本领域技术人员已知的常规技术,全部或部分软件指令可以通过专用电路、诸如DSP、可编程逻辑阵列等实施。

  除非另有说明,否则如本文所述的每个实施方案可以与如本文所述的另一个实施方案组合。术语“包含”涵盖“包括”以及“由……组成”,例如“包含”X的组合物可以仅由X组成,或者可以包括额外物质,例如X + Y。

  应当理解的是,上述益处和优点可以涉及一个实施方案或可以涉及几个实施方案。实施方案不限于解决任何或所有所述问题的那些或具有任何或所有所述益处和优点的那些。

  应当理解的是,优选实施方案的以上描述仅通过实例的方式给出,并且本领域技术人员可以做出各种修改。尽管上面已经以某种程度的特殊性或参考一个或多个单独的实施方案描述了各个实施方案,但本领域技术人员可以在不脱离本发明的范围的情况下对公开的实施方案进行多种改变。

  附图的简要说明

  本发明的实施方案将通过实例的方式参考以下附图进行描述,在所述附图中:

  图1举例说明神经刺激系统。

  图2举例说明包括神经刺激系统的较宽的系统。

  图3是猪左腹部的示意图,其突出显示脾神经丛(脾、神经、动脉和静脉)的解剖特征。显示在动脉周围脾神经(SpN)刺激的实验期间的袖套放置的位置。神经以黑色代表,且动脉和静脉以灰色代表。

  图4显示SpN沿着主要SpA(脾动脉)以及短胃和网膜动脉的解剖学和组织学分析。图4A是脾神经解剖学的示意图,其突出显示(虚线)其中进行组织学分析的区域。图4B至4D显示在不同水平的SpN切片,主要是脾动脉(图4B)、短胃(SG)动脉(图4C)和胃网膜(GEP)动脉(图4D),其用H&E染色。图4C和图4D中的神经由箭头指示。在图4D中,插图显示一个神经簇的高放大截图。图4E显示箱形图,其报告在不同位置(上小图)的SpN簇的数量的定量以及相同簇在不同位置中的平均直径分布(下小图)。图4F显示在不同位置的簇的数量及其相对平均直径。

  图5显示猪脾神经的组织学和电生理学特征。图5A是用甲苯胺蓝染色的SpA/SpN的半薄切片(0.5 µm厚度)的显微照片。图像中无法观察到髓鞘轴突。图5B代表当用动脉周围袖套(围绕整个SpN神经丛)或用少数簇的SpN束周围的小袖套以1 Hz刺激时从由动脉解剖出的数簇动脉周围脾神经记录的诱发的复合动作电位(eCAP)的迹线。迹线是10次应答的平均值。图5C显示eCAP的不同组分的传导速度的范围。图5D和5E显示通过刺激整个神经丛(图5D)或少量解剖的簇(图5E)而获得的SpN的强度-持续时间曲线。所述图还显示在不同的刺激振幅下获得阈值eCAP的相对电荷密度。所有刺激都以1 Hz进行,以限制神经中的刺激诱导的动作电位传导减慢。

  图6显示由SpN刺激引起的mSpA BF、mSpV BF、sMABP和HR的瞬时变化,这是刺激强度依赖性的。图6A显示在不同的电流振幅(在3.5和20 mA之间)SpN神经丛的1分钟刺激(对称双相脉冲,在10 Hz下400 µs PW)期间的mSpA BF的平均(n = 8)变化(相对于刺激的开始,从-30至+180 s)。图6B显示在不同电流振幅下的SpN神经丛的1分钟刺激(对称双相脉冲,在10 Hz下400 µs PW)期间达到的mSpA BF的最大降低。每行代表测试的动物。图6C显示在不同电流振幅和两种不同PW(400(黑色圆形)和200(黑色正方形)µs)的情况下,SpN神经丛的1分钟刺激(对称双相脉冲,在10 Hz下400 µs或200 µs PW)期间达到的mSpA BF的平均(n ≥ 3)最大降低。图6D显示在不同电流振幅(3.5至12 mA)下SpN神经丛的1分钟刺激(对称双相脉冲,10 Hz下400 µs PW)期间的mSpV BF的变化(相对于刺激开始,从-30至+180s)。图6E显示在不同电流振幅(3.5至20 mA)下SpN神经丛的1分钟刺激(对称双相脉冲,在10Hz下400 µs PW)期间的sMABP和HR的平均(n=3)变化(相对于刺激开始,从-30至+180 s)。图6F和6G概述在不同电流振幅下SpN神经丛(图6F)和一些解剖的SpN簇(图6G)的1分钟刺激(对称双相脉冲,在10 Hz下400 µs PW)期间的mSpA BF、sMABP、HR和RR的平均(n=3)最大变化。两个图都显示记录的eCAP(表示为相对于最大应答的%)的振幅(测量为峰间距)。SpA BF变化表示为以%计的距基线的最大减少,HR变化表示为每分钟心跳数(bpm),sMABP变化表示为mmHg,RR变化表示为每分钟呼吸数(bpm)。两个图还报告相对于所用刺激振幅的每相的电荷密度。

  图7显示在SpN刺激期间的mSpA BF、mSpV BF、sMABP和HR的变化是频率依赖性的。图7A显示在不同频率(0.25至100 Hz)下SpN神经丛的1分钟刺激(对称双相脉冲,在约36.9µC/cm2/相下400 µs PW)期间的mSpA BF的平均(n=3)变化(相对于刺激,从-30至+180 s)。图7B显示在不同频率(0.25至100 Hz)下SpN神经丛的1分钟刺激(对称双相脉冲,在约36.9µC/cm2/相下400 µs PW)期间观察到的mSpA BF的平均(n = 3)最大减少。在图7C至7D中,所述图显示在不同频率(0.25至100 Hz)下SpN神经丛的1分钟刺激(对称双相脉冲,在约36.9µC/cm2/相下400 µs PW)期间的mSpV BF、sMABP、HR的变化(表示为相对于刺激前基线的%)。图7A中的数据表示为平均值±s.d.。在图7A和7C至7D中,方框代表刺激时间窗口。

  图8显示在不同频率下少量解剖的SpN簇的局部和全身作用。具体而言,图8显示与用不同频率刺激从动脉解剖的少量SpN簇相关的局部和全身变化的代表性实验记录。显示来自代表性实验的HR、sMABP、刺激输入、eCAP、SpA BF原始数据和mSpA BF数据,其中频率范围为3至300 Hz。

  图9显示经由手术中脾超声波扫描术监测的SpA血流变化。图9的图像在SpN刺激期间从2只不同的动物获得。注意,与刺激前和刺激后(分别为顶部和底部小图)相比,刺激期间的多普勒迹线(中间小图)降低。

  图10显示SpN刺激促进存活。图10A是Kaplan-Meier图,其举例说明在体内LPS注射后2小时直至预定终点的存活时间的差异。图10B是箱形图,其举例说明LPS注射后30分钟的最低记录的平均动脉血压(MABP;计算为基线的%)。显示了SpN-T和假性组之间的显著性差异;P = 0.0296。图10C和10D是箱形图,其举例说明体内LPS注射后0.5小时的TNFα(图10C)和IL-6(图10D)浓度。显示了SpN-T和SpN-P组之间的显著差异;P = 0.0117。还显示了SpN-T和假性组之间的显著性差异;P = 0.0043。

  图11显示SpN刺激以类似于图10的方式促进存活,但具有额外数据。图11A是Kaplan-Meier图,其举例说明在LPS注射后2小时直至预定终点的存活时间的差异。图11B是箱形图,其举例说明LPS注射后30分钟的最低记录的平均动脉血压(MABP;计算为基线的%)。显示了SpN2S和假性组之间的显著性差异。图11C和11D是箱形图,其举例说明LPS注射后0.5小时的TNFα(图11C)和IL-6(图11D)浓度。

  图12显示SpN的刺激引起LPS-诱导的心血管变化的稳定。(A和B)在假性(A)或脾神经刺激(B)动物中,MABP、dABP、sABP、HR、mCVP、ET CO2、SpA mBF距基线(LPS注射前平均10min)的变化随着时间的代表性迹线。在刺激的动物中,LPS诱导的mCVP、HR和ABP的变化较小。MABP =平均动脉血压;dABP =舒张动脉血压;sABP =收缩动脉血压;HR =心率;mCVP =平均中心静脉压;ET CO2 =潮气末CO2体积;SpA mBF =脾动脉平均血流量。

  图13显示SpN的刺激引起LPS-诱导的心血管变化的稳定。(A)刺激引起与基线(LPS-注射前)相比肺血管阻力的降低。在进行LPS注射的假性(非刺激)动物中,LPS注射后PVS增加。(B) LPS-施用后,与假性动物相比,刺激引起SVR的更高增加。(C) LPS注射后,与假性动物相比,刺激引起PCWP的更强增加。PVS =肺血管阻力;SVR =全身血管阻力;PCWP =肺毛细血管楔压。

  图14显示,与假性(未刺激)动物相比,SpN的刺激减少LPS-诱导的全身脂肪酶的增加。

  图15显示人脾神经是含有缓慢传导轴突的动脉周围簇的神经丛。图15包括以下子切片:A)从供体新鲜分离的含有SpA、SpN、结缔组织、胰腺部分和淋巴结的人脾脾神经血管束(NVB)。将两个小的袖套电极(直径为650 µm)放置在选择的少数解剖的簇上。制备的示意图指示刺激和记录袖套的位置(a和b)。虚线指示其中取B和C中显示的部分的区域;(B)用苏木精和曙红(H&E)染色的人NVB的切片。SpN簇被环绕;(C)被分离用于电生理学研究的刺激的簇的切片。切片用H&E染色,并且显示神经簇(环绕)和脂肪/结缔组织;(D)当在刺激和记录袖套之间压伤神经之前(上小图)和之后(下小图)在1 Hz和400 µs PW下对人SpN施加单极、单相刺激时记录的eCAP。左方框指示刺激伪影,而右侧较大者指示其中应当观察到eCAP的区域,其中箭头指示eCAP;(E)人SpN的募集曲线定量eCAP振幅(表示为最大应答的%) vs刺激振幅。每个点代表以1 Hz和400 µs PW递送的8个连续的单极、单相脉冲的平均振幅;(F)从人、猪(猪)和大鼠SpN记录的所有eCAP组分的传导速度;(G)通过刺激解剖的簇获得的人SpN的强度-持续时间关系(黑色圆形)。数据代表在测试的不同PW触发可检测eCAP所需的最小电流。所述图还显示不同刺激的相应电荷密度(黑色三角形)(被称为右Y轴)。针对强度-持续时间和电荷密度数据绘制最小二乘回归曲线;和(H)以不同的PW刺激三种不同种类的SpN所需的电荷密度。数据用线性回归拟合。比例尺:B = 2 mm;C = 100 µm。

  图16显示A)具有缝线的人脾样品的实例,所述缝线指示接近腹腔的近端,(B)用于组织学的块中的组织切片的概念性表示,(C)来自所述块之一的苏木精和曙红(H&E)染色的载片,和(D)用于组织形态计量学估算的方法。

  图17显示脾神经血管束(NVB)的近端、中间和远端部分的(左)簇直径、(中间)外膜周围分布的簇(脾外侧动脉壁)以及(右)簇相比于距外膜的距离的百分比。

  图18显示来自猪脾神经血管束刺激的体内数据;(A)群体募集曲线,(B)强度-持续时间曲线。

  图19显示(A)来自猪中的计算机芯片上建模的募集曲线,其中x-轴代表在400 us脉冲下的电荷注入估算值,(B)与反映刺激振幅的x-轴相同,(C)来自人中的计算机芯片上建模的募集曲线,其中x-轴代表在400 us(蓝色)和1ms脉冲(红色)下的电荷注入估算值,(D)与反映刺激振幅(mA)的x-轴相同。

  用于实施本发明的模式

  研究1:脾动脉神经的表征

  材料和方法

  在安乐死的1小时内,在12只雌性猪尸体(体型22至120 kg)中进行脾脏及相关器官的总体解剖学研究。进行以下测量:脾脏的长度和宽度;腹腔动脉的长度(从主动脉到进入左胃和脾动脉的分支);脾动脉(SpA)的长度(从腹腔动脉的分支到进入脾实质);在腹腔动脉远端1 cm和脾门处测量的SpA直径;胰腺至脾脏的距离;胰腺至脾淋巴结的距离。此外,记录腹部迷走神经分支、腹腔神经节、内脏神经和脾神经的数量和过程。处理具有相关脾神经的SpA,用于苏木和曙红(H&E)组织学。

  从12只雌性猪尸体(体重22 kg,n=6;体重45 kg,n=6)收获具有完整脉管和神经支配的脾脏。安乐死的1小时内收获所有组织,并立即固定在10%中性缓冲的福尔马林中。将具有完整血管周围神经元网络的SpA从腹腔动脉分叉处的起点到脾门每隔5 mm进行切片。这产生5个切片,被定义为分叉;近端SpA;中间SpA;远端SpA和门位置。近端SpA切片对应于下面讨论的以下电刺激研究中的袖套放置的位置。

  在这五个位置中的每个,处理切片用于常规H&E染色。还处理近端、中间和远端SpA切片,用于免疫组织化学,并用于半薄切片,并用四氧化锇和甲苯胺蓝染色。

  H&E染色的切片的数字图像以2x放大倍数获取,并且适当的软件(图像J 1.50i)用于组织形态计量学分析,如下所详述。通过使用ROI管理器功能手动选择每个单个神经簇后,对动脉周围神经簇的数量进行计数,并且通过测量最小费雷特直径(µm)评价簇大小。

  计算总神经面积(以µm2计),并通过评价鉴定簇的动脉周长的百分比(将360度分布定义为100%)来定量动脉周围簇分布。通过绘制从每个簇至动脉壁的尽可能最短的垂直线,来测量每个簇至动脉外壁的距离。在近端、中间和远端SpA位置测量脾动脉的外径和内径。

  用酪氨酸羟化酶(TH)和乙酰胆碱转移酶(ChAT)的双重染色用于评价神经元表型。通过用神经丝200(NF200)和核染剂4',6'-二脒基-2-苯基吲哚(DAPI)复染,NF200-TH双阳性神经被认为是交感神经,而NF200-ChAT双阳性物被认为是副交感神经。为了确定传出神经相比于传入神经的比例,将相同位置用传出标志物TH和传入标志物降钙素基因相关肽(GCRP)双重染色。从每条神经以20x放大倍数随机捕获两个不同的数字图像,并使用适当的软件(AxioVision LE64)生成伪彩色复合物。

  通过免疫荧光染色以及从半薄切片评价SpN轴突的髓鞘形成。SpA和SpN的不同部分用针对神经丝、β-III微管蛋白和髓鞘碱性蛋白(MBP)的抗体染色。使用如上所述的适当软件生成伪彩色的复合图像。半薄切片用锇和甲苯胺蓝染色。以100x放大倍数获取数字图像,并在100 x 100 µm的区域中手动计数有髓鞘和无髓鞘的轴突的数量。每个神经重复该程序3次,并将这些的平均值用于进一步分析。此外,该程序用于推导轴突密度(轴突数/mm2)。

  所有统计分析都用市售的统计软件(JMP Pro 13.0.0)进行。由于非正态分布,使用Wilcoxon秩-总和检验在不同的猪大小和SpA位置之间比较所有组织形态计量测量值。统计学显著性被定义为P <0.05。

  结果

  神经血管结构仅沿着内脏表面进入和离开脾脏。具体地,主动脉的第一主要腹分支,腹腔动脉,分成肝动脉,SpA和LGA(图3)。SpA在门处进入脾脏,其位于脾基部远端的几厘米处。在门处,SpA立即分叉成朝向脾基部行进的一个背侧分支,以及沿着内脏表面朝向脾尖运行的一条腹侧分支。左胃网膜动脉从该腹侧SpA分支产生,该腹侧SpA分支近似在脾脏的中部和远端1/3之间的转换处。

  在脾基部,背侧SpA分支分成几个较小的动脉,被鉴定为短胃动脉,其朝向胃的较大弯曲处行进。尽管这些动脉被认为是SpA的末端分支,但它们能够通过具有LGA分支和左侧胃网膜动脉的吻合处提供供应脾脏的旁系血液。SpV沿着脾脏的内脏表面(从尖到门)与SpA平行运行。离开脾门后,脾静脉(SpV)紧密附着于SpA行进短距离,直到它沿着中间方向行进至排入肝门静脉,其进而排入尾腔静脉。这留下小空间,在其中,动脉和静脉被几毫米的软组织隔开运行。腹腔动脉分叉成SpA和LGA的紧接远端的该区域,已被鉴定为用于以下功能研究的最佳接口点。在该位置,SpA直径在30 kg动物中为1.5 – 3 mm;在60 kg动物中为2 – 4 mm;且在110 kg动物中为5 – 8 mm。

  SpN由沿着SpA朝向脾门运行的纤维的神经丛组成。难以确立这些神经的起源,尽管可以看到由CG产生的纤维,所述CG位于在腹腔动脉分叉成SpA和LGA的紧接尾端。来自先前主要在啮齿动物中进行的研究的数据确立,大多数SpN源自腹腔和肾上神经节。这尚未在大型动物物种中得到证明。

  在啮齿动物物种中,除了动脉周围的SpN,已经描述了其他神经对脾脏神经支配;更具体地,已经在大鼠和小鼠的胃-脾韧带内描述了顶端神经。这是一种交感神经(TH+),其可能起源于椎旁交感神经,并朝向胃脾韧带内的脾尖运行。

  所有组织学测量值都呈现于表1中。SpN-SpA距离是在45 kg猪中显著大于22 kg猪的唯一测量值(在中间SpA和远端SpA位置;P <0.001);因此,对于所有其他测量值,将来自所有猪的数据组合用于统计分析。从近端到远端,沿着SpA的动脉周围神经簇的数目减少;与所有其他位置相比,在分叉处的簇统计学显著更多(P < 0.0001)。在脾门处,神经簇显著大于在其他位置(P <0.0001)。SpA外径在近端SpA位置处显著大于中间和远端SpA位置(分别为P = 0.0162和P = 0.0158)。SpN/SpA距离也从近端至远端减小;在45 kg猪中,分叉处的距离显著大于所有其他位置(P <0.001)。同样在45 kg猪中,在门处的SpN/SpA距离显著大于近端、中间和远端SpA位置(P <0.008)。

  与中间和远端SpA位置相比,近端SpA处的圆周SpN分布显著更高(分别为P = 0.02和P = 0.15)。同样,在近端位置处的SpA周围,簇更均匀地圆周分布,而在中间和远端SpA处,分布模式更加双峰,其中簇在动脉的相对侧簇集。

  在猪中,沿着胃脾韧带内的短胃和胃-网膜动脉发现神经(图4)。这些神经似乎是主要的动脉周围SpN神经丛的连续体,并且朝向(或从)胃运行。在该位置,进行免疫组织化学分析,并且发现在任何位置处的SpN都是TH+和ChAT-。有趣的是,沿着主要SpA神经,鉴定对降钙素基因相关肽(CGRP)阳性的纤维,通常用作传入神经元标志物。

  在这两个区域中观察到的神经簇的数量和簇大小与沿着主要SpA观察到的那些相比小得多。在45-50 Kg养殖猪中沿着主要SpA以及沿着其他不同解剖位置的神经簇的数量和相对直径的定量显示于图4E和4F中。

  表1:12只雌性猪中SpN和SpA的组织学测量值。

  

  ¥45 kg猪中显著大于22kg猪。*显著不同于所有其他位置。∆显著不同于中间和远端SpA。显著性P <0.05。N/A:不可用。

  进一步的组织化学和免疫组织化学分析显示,SpN由> 99.9%的无髓鞘纤维构成。实际上,半薄切片的甲苯胺蓝染色没有显示有髓鞘轴突。与此相一致,针对髓鞘碱性蛋白(MBP)的染色揭示非常少量的阳性轴突(<0.01%)。两种评价髓鞘形成的技术均揭示SpN的研究切片中几乎完全没有髓鞘质,如图5中所举例说明。

  讨论

  此处进行的组织学分析显示,SpN构成沿着主要SpA以及短胃和胃网膜动脉的神经血管神经丛。簇的数量出乎意料地高。考虑到SpN轴突的平均大小(直径约2 µm),可以计算SpN神经丛在主要SpA的水平(中间切片)应当含有(最多)总共约150K轴突。这些轴突的一部分将对SpA内皮神经支配,而这些轴突的部分将反而进入脾脏,并在白浆和红浆之间以及白浆内的边缘区域水平与平滑肌或免疫细胞形成突触连接,如先前在其他物种中所描述[8,9,10,11,12]。如果考虑假设靶向体内的几个器官的人迷走神经(其具有与猪迷走神经相同的大小)含有约100k轴突,则轴突的数目看起来很高。SpN中的大量的轴突可能与猪中的脾脏大小(其具有比人的脾脏大近似2-3倍的体积)以及假设神经支配SpN的动脉长度相关。人SpN中的簇和轴突的数目可能不同。

  与人脾脏相比,猪(和其他哺乳动物,诸如狗)的脾脏也被认为含有较高比例的平滑肌细胞[13]。然而,几篇论文也已经显示,在应激条件(诸如呼吸暂停和体育锻炼)下,人脾脏能够收缩[14,15]。

  猪和人之间的脾动脉和静脉的脉管组织略微不同。在猪中,SpA和SpV密切近似朝向或离开脾脏运行。而且,SpV和SpA不像人中观察到的那些那样呈现环或卷绕。因此,只有接近于腹腔动脉的三叉点的SpA的短(近似1-1.5 cm)区段更好地与SpV分离。在下面刺激研究中,选择动脉的该区段作为最佳干预点。实际上,在该位置处接近神经血管束更安全,因此减少在解剖期间损害神经以及动脉和静脉的机会。

  研究2:脾动脉神经的电刺激

  材料和方法

  总共8头猪(体重在40-50 Kg之间)用于脾神经的组织学和电生理学表征。

  在实验当天,用通过肌肉内注射施用的氯胺酮(1.5 mg/kg)和咪达唑仑(0.5 mg/kg)使动物镇静。将静脉内导管置于一个耳静脉中,并通过静脉内施用的丙泊酚(2 mg/Kg)诱导麻醉。放置气管内管,并用七氟醚吸入剂与芬太尼的连续速率输注(CRI)(0.2 µg/Kg/min)的组合维持麻醉。

  在诱导全身麻醉后,将动物置于背侧卧位,用于在超声波扫描术引导下放置双侧留置颈静脉导管和一根股动脉导管。然后将经历SpN袖套植入的动物重新置于右侧卧位。

  SpN袖套植入的手术方法如下。支撑胸腰连接部并使用沙袋将其稍微抬高。适当的手术准备(修剪并用葡萄糖酸氯己定和乙醇无菌擦洗)后,将左侧腹无菌覆盖,暴露以倒数第二根肋骨为中心的20x25 cm区域。使用单极电烙术在倒数第二个肋间间隙制成15 cm皮肤切口。继续通过皮下组织和肋间肌肉组织进行切口,直到暴露腹膜。在腹膜后放置两个Finochietto肋骨牵开器,注意接合肋骨。在接下来的几分钟内,逐渐打开牵开器,导致左侧腹部暴露,测量近似10x8 cm。牵开器刀片用浸在羧甲基纤维素(CMC)中的纱布海绵覆盖。纵向切开腹膜并将其缝合至覆盖牵开器刀片的皮肤(Vicryl 2-0;Ford互锁缝合模式),以使操作期间脾破裂的风险最小化。使用仔细的数字操作,将脾脏取出,并沿着其内脏表面鉴定脾动脉(SpA)。在脾脏的中部,靠近SpA分支入左胃网膜动脉,仔细切开SpA的短区段,没有围绕的软组织,用于放置1 mm超声流量探头(Transonic)。探头放置后,将脾脏重新放置入腹部。

  通过将脾内脏基部向操作者稍微旋转,并在脾脏上轻柔地放置腹侧牵引,使用Metzembaum剪刀切开脾门处的脾脏韧带,暴露SpA。以其起点的背向方向(即,腹腔动脉分叉成左胃动脉(LGA)和SpA)追踪动脉。在该分叉的紧接远端,通过使用Metzenbaum剪刀的钝头解剖沿着周围分离动脉周围SpN网络完整的SpA的近似1 cm区段。将弯曲的混合器动脉钳从尾部到颅部插入动脉下方,使用直的Microdissection钳抓住引入手术区域的2.5 mm直径的CorTec袖套的一瓣。通过反转混合器钳的运动将袖套放置在SpA和完整的动脉周围SpN网络周围,注意当正确放置时并置袖套的两个瓣。然后释放脾脏和动脉上的张力。测试SpA和SpN (脾静脉)血流读数,且最后将肋骨牵开器部分关闭,并且暴露的切口用盐水浸渍的纱布海绵覆盖。

  实施电生理实验。这些通常需要解剖和袖套(使用500 µm直径的双极或三极CorTec袖套)在刺激袖套的远端(更靠近脾脏)几厘米处的一个或几个离散的SpN簇,以在刺激整个SpN神经丛或少数簇期间使得能够记录诱发的复合动作电位(eCAP)(参见图5)。而且,在刺激部位的上游或下游进行阻断神经信号传导的不同组合(例如,使用局部麻醉的局部施用或SpN簇的横切)。

  使用1800 2-通道微电极AC放大器(A-M系统)对记录的eCAP进行放大和过滤(100-1000 Hz)。使用示波器连续监测神经活动,并使用16通道PowerLab (AD Instruments)采集系统和LabChart 8软件使用20 kHz的采样率记录至计算机。通常对eCAP进行平均化(8个脉冲),并对平均应答的峰间距或曲线下面积(AUC)进行定量。从刺激和记录部位之间的距离和eCAP信号的潜伏期计算SpN的eCAP组分的传导速度。

  在整个手术中监测心电图(ECG)、心率(HR)、动脉血压、呼吸频率(RR)、脉搏血氧定量法、二氧化碳图、呼吸量测定法。用鼻内探针连续记录体温。在整个实验中分析动脉血气,以监测pH、葡萄糖、pO2和pCO2、K+水平。在记录纸上记录所有生理参数以及使用的七氟醚的水平(每5-10分钟)。生理数据也使用Powerlab采集系统和LabChart软件进行数字化。所有参数通常以0.1至2 kHz的频率采样。

  麻醉的深度通过眼睑反射、角膜反射、腹中眼球位置和颌音来评价。

  此外,生理参数以及双光谱指数监测系统(30和60之间的水平)用于调整麻醉水平。在一些情况下,使用大剂量的丙泊酚。

  在一些情况下,脾脏的手术中超声波扫描术用于实时监测SpN刺激期间SpA血流变化。对于该程序,使用手术中探头(i12L-RS线性手术中换能器4-10 MHz,29x10mm足迹,25mm视野;GE Vivid-i)。

  SpA血流变化通过彩色多普勒和连续波谱追踪法评价。彩色多普勒鉴定脾门远端2-3 cm处的脾脏实质内的SpA后,通过将窗口光标引导至SpA腔的中心来获得SpA流的连续波谱追踪。获得代表性信号后,在开始SpN刺激的同时将超声波扫描术探头和光标窗口留在原处。

  所有统计分析都用市售统计软件(JMP Pro 13.0.0或GraphPad Prism 5.0)进行。

  结果

  记录用动脉周围的袖套SpN刺激整个SpN神经丛或用较小袖套刺激少数簇期间生成的eCAP,生成eCAP,其特定的潜伏期取决于刺激部位和记录部位之间的距离(图5B)。eCAP的不同组分的传导速度范围显示于图5C中。整个神经丛或少数簇的刺激生成平均速度低于1 m/s的eCAP(图5C)。该传导速度与以下表征数据中的组织学发现一致,所述表征数据描述SpN为无髓鞘神经。激发刺激整个神经丛或少数簇的eCAP所必需的电流振幅和脉冲持续时间之间的关系显示于图5D和5E中(分别)。当用动脉周围的袖套刺激整个神经丛时,发现神经应答的阈值在7.692和15.58 µC/cm2/相之间。当用较小袖套刺激少数解剖簇时,发现阈值在5.796和11.594 µC/cm2/相之间。在这两种情况下,eCAP记录的电流密度的阈值均在较短的脉冲宽度(PW)下较低。

  在10 Hz和高于特定电流阈值的400 µs PW下SpN双相刺激1分钟一致地引起远端SpA内的瞬时血流减少,如经由血管周围流量探头所测量。递送的电流和流量减少之间存在明显的剂量-应答关系:振幅越高,观察到的血液流量减少越强烈(图6A)。在约4.5 mA(PW为400 µs)和约12 mA(脉冲宽度为200 µs))观察到血流变化阈值(被定义为与刺激前基线相比,平均SpA血流(mSpA BF)改变5%)(图6B和6C)。当计算引起血流变化的阈值的每相的电荷密度时,该值非常相似:在400 µs时为约13.8 µC/cm2/相,且在200 µs时为约18.46 µC/cm2/相。用12 mA和400 µs PW(36.9 µC/cm2/相)刺激引起SpA的平均最大BF比基线值降低约40%。

  平行地,通过使用置于脾基部处的多普勒流量探头记录SpV内的血流的记录,在该处静脉离开脾门。有趣的是,刺激(对称双相脉冲,400 Hz,10 Hz,持续1分钟)引起平均SpV血流(mSpV BF)的增加,这是电流振幅依赖性的。当与基线mSpV BF相比时,用12 mA和400 µs PW(36.9 µC/cm2/相)的刺激引起约200%的最大增加。mSpA BF的短暂降低也伴随着全身平均动脉血压(sMABP)的短暂增加。从基线的这种增加(平均在1-6 mmHg之间)再次与刺激强度相关(图6E)。用刺激观察到一致的sMABP变化,引起SpA流量下降20-30%。相比之下,HR仅受到最小影响(<3 bpm变化,或者增加或者减少),但只有在高刺激振幅(> 45 µC/cm2/相,引起3-10 bpm变化)时才更一致(图6G)。在测试的条件下,SpN刺激不影响呼吸率(RR)。

  在以不同电流振幅(1-50 mA,对应于3.076 – 153.8 µC/cm2/相)刺激1分钟(对称双相脉冲,10 Hz,400 µs PW)期间观察到的mSpA BF、sMABP、HR、RR的变化概述于图6F中。在图6F中,可以观察到这些变化的振幅与来自SpN的eCAP的记录(黑线和圆形)如何相关。募集的纤维数越高(测量为相比于最大记录应答的eCAP%),mSpA BF的降低和其他相关变化越强。

  从SpA解剖的离散SpN束的直接刺激(使用500 µm直径袖套)激发mSpA BF、sMABP和HR的类似变化。发生在1分钟期间(对称双相脉冲,1 Hz,400 µs PW)和不同的电流振幅(0.1-2.5 mA,对应于3.86 – 96.61 µC/cm2/相)的这些变化概述于图6G中。甚至在这种情况下,相关的变化也取决于通过刺激募集的纤维的比例(以黑色显示的eCAP)。在约153 µC/cm2/相(当刺激整个神经丛时)和在约70 µC/cm2/相时,获得最大eCAP(且因此获得最大变化)。如所预期,由于刺激的纤维总数较少且频率较低,当刺激少数簇时的变化振幅低于当刺激整个神经丛时获得的那些。

  mSpA中的血流变化也受到不同刺激频率的影响。当以不同的频率(0.25和100 Hz之间)进行刺激(对称双相脉冲,在约36.9 µC/cm2/相,400 µs PW,持续1分钟)时,30-50 Hz可靠地引起SpA中的最强血流减少(图7A)。在50 Hz以上(70和100 Hz之间),BF的减小实际上较小,在用10 Hz刺激获得的减小范围内(图7B)。还发现mSpV BF、sMABP和HR的变化取决于施加的刺激的频率。在30和50 Hz之间再次观察到最强的效果(图7C至7D)。

  当仅最大程度地(约70 µC/cm2/相)刺激从动脉解剖的少数簇时,再一次观察到这一点。在较低频率(1 Hz和以下),已经发生mSpA BF的更强降低,这是因为与频率分析期间用于整个神经丛的刺激振幅相比,神经纤维的募集更高。然而,一致地,在30 – 50 Hz之间观察到最大的降低(图8)。

  为了进一步证实观察到的SpA BF的变化是由于直接的神经元活化(而不是刺激平滑肌),在植入的SpN袖套(动脉周围袖套或解剖簇的袖套)周围局部施加利多卡因(2%利多卡因盐酸溶液)。利多卡因是快速电压门控的Na+通道的特异性阻断剂。利多卡因能够阻断SpA BF的变化。此外,能够将BF降低最多达80%的SpA的机械阻塞,不引起sMABP或HR的任何变化。此外,SpN的中央末端(靠近袖套)的横切并未消除对SpA血流、sMABP和HR的刺激作用。同样,在GEP和SG区段内的SpN的横切也不阻止这些变化。有趣的是,仅当切断SpN的外围末端(袖套的远端)时,所有这些作用才被消除。所有这些数据表明,SpA BF和SpV BF的变化是神经元驱动的,并且与SpA的收缩以及脾脏囊的收缩相关。另一方面,sMABP和HR的变化可能不是由于向大脑的神经元通路的活化,而是由于从脾脏向心脏的血液流出增加。

  在少数动物中,还使用脾门处的手术中超声波扫描术来监测刺激期间的SpA的血流变化。在通过彩色多普勒鉴定SpA之后,将BF的变化作为多普勒信号进行监测,如图9中所示。在10 Hz的刺激期间,可以容易地观察到BF的降低,如流量迹线的振幅和形状变化所指示。

  讨论

  脾神经刺激与mSpA BF和mSpV BF的瞬时局部变化以及脾收缩相关。这些变化是由于SpN的直接活化,而不是由于SpA的平滑肌的直接刺激。SpN刺激期间的脾脏收缩先前也已经在其他物种中报道[16]。动物之间观察到的mSpA BF的变化非常一致。该变异可能主要是由于不同动物中的SpN神经丛周围的袖套的适应不同。SpA BF的变化可以经由非侵袭性超声容易地监测,且因此在临床环境中也可用作标志物以评价SpN的有效刺激。

  SpN刺激期间观察到的瞬时变化显示为振幅和频率依赖性的。在以不同电流振幅刺激一分钟期间,在测试的最高电流振幅处观察到最强的mSpA BF降低,其也对应于记录的eCAP的峰值。当刺激整个SpN神经丛(用动脉周围袖套)时或当仅刺激置于较小袖套内的少数簇时,情况就是如此。从SpN神经丛和从SpN簇获得最大eCAP所需的总电荷密度的差异可以通过用使用的2.5 mm袖套部分覆盖神经丛来解释。实际上,在大多数猪中,该袖套仅导致270-300度的圆周覆盖范围。当仅将从动脉解剖的SpN的少数簇袖套时,覆盖范围几乎是全部。因此,为了限制获得SpN簇的最佳募集所需的电荷密度,将需要动脉的最佳圆周覆盖范围。

  在30和50 Hz之间的频率下观察到最强的变化(在mSpA BF和sMABP中)。尽管递送的脉冲总数可以是确定此变化的振幅的重要因素,但的确,当比较用以不同频率递送的相同数量的脉冲发生的变化时,30-50 Hz范围仍然引起最强烈的变化。这可以用先前报道的数据解释,该数据显示在30 Hz观察到来自猫脾脏的NA的最大释放[17, 18]。NA的更高释放可以解释在该刺激范围内观察到的变化的更高振幅。

  研究3:电刺激在体内LPS动物模型中的影响

  材料和方法

  动物

  总共18头猪(超过最初的38头)(年龄/体重)研究的该部分。这18头猪无一从分析排除。

  一般设计

  在作为另一个研究目标的一部分进行的初始刺激后三小时,18只动物接受2.5 µg/kg内毒素(纯化的来自大肠杆菌O111:B4的细胞膜的脂多糖;Sigma Aldrich)的静脉内注射,经5分钟的时段施用。通过对可用文献和个人经验的全面综述来选择该剂量。选择该剂量以引起败血性休克型模型。将在LPS注射前3小时接受SpN刺激的动物分为2组:SpNS不接受任何进一步的刺激,而SpN2S在LPS注射期间接受第二次SpN刺激。

  刺激参数包括1分钟持续时间,具有10 Hz的方形、双相、电荷平衡的对称脉冲,具有400 µs脉冲持续时间,且电流振幅对应于30-90 µC/Cm2/相的每相的电荷密度。施加刺激一次,且然后在体内注射LPS时之后3小时第二次重复刺激。

  在注射LPS前(基线)立即收集外周静脉血,且然后每半小时收集,直至注射后2小时。在此时间-窗口结束时,使猪安乐死或用于进一步的最终电生理学测试。对于所有这些时间点,都进行细胞因子分析(TNFα和IL 6)以及常规血液学和生物化学分析。将血清1:10稀释用于细胞因子分析。

  在LPS注射引起全身血压和/或心功能的临床变化的动物中,由麻醉师酌情给予标准的临床疗法,诸如加压素(i.v.施用的2.5 IU大剂量注射,并且根据需要重复)和抗心律不齐药物(利多卡因;2mg/kg i.v.和/或阿托品;40µg/kg;i.v.)。当平均全身动脉压无法保持> 40 mm Hg时或当动物完成预定的终点时,使动物安乐死。

  统计分析

  所有分析都用市售的统计软件(JMP Pro 13.0.0)进行。目视检查连续变量的正态性和离群值。当鉴定出异常值时,进行统计检验,包括和排除这些动物,如结果部分中所述。

  将细胞因子和白细胞水平的变化计算为在临LPS注射之前收集的基线样品的百分比。随后使用混合模型分析细胞因子和白细胞水平,以刺激组、时间和刺激组*时间为固定效应,且动物作为随机效应。成对Student氏t-检验用于事后分析。刺激组之间的存活时间的差异使用对数秩检验分析,并在Kaplan Meier图中绘制。在LPS注射后30分钟,使用双向ANOVA分析与事后所有对Student氏t-检验分析在不同治疗组之间比较细胞因子水平、白细胞和电解质;该检验还用于比较各组之间平均动脉血压的最大降低。统计学显著性被定义为P < 0.05。

  结果

  存活

  高剂量LPS的施用在LPS施用后5-10分钟内引起全身动脉血压的快速变化。在假性(非刺激)动物中,这些变化更强且更快。为了保持安全水平的血压(平均ABP> 40mmHg),许多动物需要干预(例如注射加压素)。然而,在大多数动物中,干预不足以恢复ABP的安全水平,并且动物需要安乐死。此外,很少动物显示快速性心律失常(Tachyarrhythmia)和严重的心动过速。经刺激的动物(尤其是接受2次脾神经刺激的那些)显示较低的振幅变化和更稳定的心血管应答。刺激和假性动物中LPS使用后记录的事件。

  表2描述LPS施用后的心血管变化。该表显示在LPS施用和向个体猪施用治疗之后在动物中观察到的平均动脉血压(MABP)的变化。该时间代表LPS注射后的时间。MASS = 外部胸部(心脏)按摩;VAS =加压素(2.5 µg/kg i.v.)的施用;ATR = 阿托品的施用;LID =利多卡因的施用;时间安乐死 = 从施用LPS至安乐死的时间(分钟数);预定终点为120分钟。

  表2:

  

  图10A和图11A中报告了注射后2小时的存活率。SpN-T vs. 假性之间的存活率存在统计学差异(P = 0.0194)。简而言之,LPS注射在5/6假性动物中在10-20分钟内引发严重的心血管损害,必需在达到预定终点之前进行安乐死(尽管治疗,但MAP < 40 mm Hg)。相反,在5/6 SpN-T刺激的动物和4/6 SpN-P刺激的动物中,包括平均动脉血压在内的重要参数在整个实验时段保持稳定;对于这些组,注射后2小时的MAP分别为基线值的95.3±13.5、85.9±7.5和86.8±9.7%。同样,SpN-T vs. 假手术之间的MAP的最大值降低也存在统计学显著性差异(P = 0.0296,图10B和图11B); 安乐死时的平均MAP在SpN-T组中为基线的87.1±23.5%(注射后平均存活时间1.8±0.5小时);在SpN-P组中为基线的62.7±33.0%(注射后平均存活时间1.4±0.8小时);且在假性组中为基线的48.6±37.9%(注射后平均存活时间0.9±0.7小时)。

  细胞因子定量:对于所有组,与基线相比,LPS注射导致所有注射后样品中的TNFα水平的显著增加(P < 0.001;图10C至10D和图11C至11D),其中在注射后1小时观察到峰值应答。在所有组中,注射后2小时的IL-6显著高于基线(P <0.0001)。

  当比较注射后0.5小时的细胞因子水平时,未发现假性和刺激组之间的TNFα水平和IL-6水平显著性不同(图10D、11C和11D)。

  讨论

  在体内施用LPS以模拟炎症应答,提供了测试SpN的效力的良好模型。在45-50 kg猪中施用LPS(2.5 µg/Kg体重)引起所有测试动物的血液中的细胞因子(TNFα和IL-6)的上调。具体而言,TNFα在注射后1h达到约12 ng/ml的峰值,而IL-6在LPS后2h达到约15 ng/ml。LPS还引起外周血组成的显著变化,其中循环淋巴细胞和嗜中性粒细胞减少(结果未显示)。实际上,在由LPS模拟的全身感染期间,白血细胞可能离开循环,以渗入组织和器官。在LPS之后,还观察到随着时间的血液尿素、肌酐和总胆红素的显著增加以及CK和ALP的增加(结果未显示)。所有这些变化都表明,该模型在动物之间是有效且可复制的。

  引人注目的是,在LPS施用后约10-15分钟,假性动物显示全身性MABP的非常快速和强烈的下降。全身性MABP的降低达到会快速危及生命的水平,因此需要施用加压素。然而,在大多数对照中,这不足以稳定地恢复正常sMABP。甚至当进行加压素的进一步注射时,LPS注射后30分钟也必须将4/6假性对照安乐死,因为它们的sMABP不能保持高于40 mmHg。出于同样的原因,在注射LPS后110分钟反而将假性动物之一安乐死。在一些情况下,还观察到心律不齐。

  相反,刺激的大多数动物(相对于LPS,在-3h时或-3h和0h时)没有显示sMABP的此类强烈的变化。它们中的大多数不需要任何药理学干预(即加压素)。然而,SpN刺激的这种促存活效应不能通过降低LPS-诱导的细胞因子的浓度来解释。实际上,当与假性动物相比时,在LPS注射后30分钟测量的TNFα和IL-6在经刺激的动物中没有降低。因此,即使该模型提供了SpN刺激能够调节对炎性刺激的应答的证据,这也不能简单地通过炎性应答的降低来解释。然而,必须考虑到,由于大多数对照必须在LPS施用后30分钟内安乐死,因此在刺激和假性动物之间无法进行细胞因子水平(在LPS后1、1.5和2h)的进一步比较。因此,有可能在TNFα和IL-6达到其峰值的后来时间点已经观察到细胞因子水平的差异。

  因此,数据表明促存活效应是由于其他一些机制的调节。

  概述

  总之,发明人发现,在体内LPS动物模型中,供应脾脏的神经且特别是脾动脉神经的神经刺激显示促存活效应。发明人还发现,脾动脉神经的电刺激使血压稳定,其在LPS-处理的动物中血压急剧下降,并且降低最大血压降低。因此,脾神经的神经活动的刺激尤其可用于治疗急性医学病况,诸如具有与休克和心血管功能障碍(例如创伤、出血和败血性休克)相关的生理变化的危及生命的病况。

  研究4:电刺激在体内LPS亚致死动物模型中的影响

  材料和方法

  动物

  总共8头雌性大白猪(60-70 Kg体重)用于研究的该部分。

  一般设计

  在研究当天,将一只动物用氯胺酮/咪达唑仑镇静。经由放置在耳(耳)静脉中的导管施用丙泊酚(2 mg/Kg)来诱导静脉内麻醉。然后将气管内插管插入气管,其主要目的是建立和维持通畅的气道,并使用氧气/空气混合物中携带的七氟烷维持全身麻醉。在诱导全身麻醉后,将动物用侵入性股动脉和颈静脉导管仪器化,用于监测血压以及提供液体/药物。然后将动物置于右侧卧位。睑板反射、角膜反射、中腹眼球位置和颌音(jaw tone)用于监测美学深度。眼球震颤以及流泪也被监测为麻醉的轻平面的可能迹象。在整个手术过程中,监测心电图(ECG)、心率(HR)、呼吸率(RR)、全身动脉血压(ABP)、中心静脉压(CVP)、脉搏血氧定量法、二氧化碳图、呼吸量测定法和体温。还将动物用连续心输出量测量系统(PICCO)以及插入肺动脉的导管进行仪器化,用于心输出量和肺楔压测量。所有生理参数以及激发的七氟烷的分数也记录在记录纸上(每5分钟),并经由Powerlab采集系统和Labchart软件连续记录。持续程序的持续时间,将动物用正压机械通气。然后经由外侧剖腹术进入脾动脉和神经。将袖套放置在近端脾动脉的水平处,以刺激脾神经。以10Hz用一定范围的振幅施加刺激2分钟。假性动物没有接受任何刺激。在刺激结束后三分钟,动物接受2.5 µg/kg内毒素(纯化的来自大肠杆菌O111:B4的细胞膜的脂多糖;Sigma Aldrich)的静脉内注射,经5分钟的时段施用。选择该剂量以在LPS施用后4至6小时的窗口中引起显著的心血管效应而无休克。从LPS注射起约30分钟,递送第二次刺激(或假性刺激)。

  刺激参数包括1分钟持续时间,具有10 Hz的方形、双相、电荷平衡的对称脉冲,具有400 µs脉冲持续时间(每相),且电流振幅对应于40-90 µC/Cm2的每相的电荷密度。

  在临LPS注射前(基线),收集外周静脉血,且然后每半小时收集外周静脉血,直至注射后4小时。在此时间-窗口结束时,使猪安乐死。对于所有这些时间点,都进行细胞因子分析(TNFα和IL 6)以及常规血液学和生物化学分析(包括脂肪酶和淀粉酶)。

  为了获得肺毛细血管楔压(PCWP),用PICCO系统连续测量心输出量,和在注射LPS之前以及在LPS后30 min使用肺动脉导管测量心输出量。

  结果

  刺激对心血管参数的影响

  LPS的施用引起ABP、CVP、HR和ET CO2的显著变化。有趣的是,进行脾神经电刺激的动物显示ABP、CVP和HR的较小振幅变化(图12 A和B)。

  LPS的注射还引起在LPS注射后30分钟的肺血管阻力(PVR)的显著增加。然而,当刺激动物时,观察到PVR的稳定和降低(图13A)。并行地,刺激引起全身血管阻力(SVR)与假性动物相比略微的增加(图13B)以及PCWP的更强增加(图13C)。

  最后,LPS注射引起脂肪酶的循环水平的显著上调。在脾神经刺激的动物中,这种增加小得多(图14)。

  讨论

  经受内毒素血症(亚致死剂量的全身性LPS致死剂量)的猪中的脾神经的刺激引起LPS触发的心血管变化的显著稳定。具体而言,增加的SVR和减少的PVR可能解释先前描述的败血性休克模型中的正输出。与此并行的是,LPS施用后CVP、ABP和HR的较小的振幅变化以及LPS-诱导的脂肪酶增加的减少,因此表明与假性动物相比,器官损伤的水平更低,且保护更强。

  人数据

  研究5:人脾神经的电生理特征:

  材料和方法

  人SpN样本

  将来自供体患者的含有脾神经血管束NVB的一个新鲜收获的组织保存在冰上的适合器官移植的溶液中用于运输。在到达后,将样本置于解剖显微镜下的冰冷克雷布氏溶液中,并且每个样品最少一个离散的SpN簇与SpA小心分离,且随后用分开近似10 mm放置的两个双极圆周袖套电极(0.65 mm直径,5.5 mm长度;CorTec GmbH)仪器化,以激发和记录CAP。在所有植入中,簇电极覆盖率估计为100%。

  记录

  使用示波器连续监测神经活动,并经由1401数字采集系统和Spike2软件(CambridgeElectronic Design Ltd)进行数字记录,其中采样率设置为20 kHz。将激发的CAP平均化(8个脉冲),并且定量平均应答的峰间振幅。从测量的刺激部位和记录部位之间的距离和eCAP信号的潜伏期(从刺激伪影的峰到eCAP的峰测量)计算eCAP组分的传导速度。

  结果

  与猪样品相比,人SpA呈现更复杂的过程,如先前所述(Michels 1942)。此外,将脾NVB嵌入大量结缔组织和脂肪中(图15A),使得从结构的整个圆周进行记录有挑战性。然而,使用解剖显微镜,几个神经簇是可见的,且后来通过样本的组织学切片原样证实(图15B)。在用刺激和记录袖套电极对这些簇中的一些仪器化(图15A,上下图)后,刺激生成清晰的eCAP(图15D,上迹线)。为了在实验结束时证实记录的有效性,将所述簇在刺激电极和记录电极之间压碎,并且尝试重新记录(图15D,下迹线)。当在特定的脉冲持续时间(例如100、200、400、800和1000μs;PW)施加刺激并增加振幅时,获得典型的募集曲线(图15E)。

  计算的传导速度表明无髓鞘纤维的典型值,其中与猪(0.7 m/s)和大鼠(0.72 m/s) SpN相比,范围和平均传导速度为0.49 m/s (图15F)。另外,人SpN的eCAP记录显示神经募集的电流振幅和脉冲持续时间之间的典型的强度-持续时间关系(图15G)。eCAP阈值记录的计算的电荷密度值的线性回归显示,斜率显著不同于零(P = 0.0084),其中最低PW(100µs)要求13.44 µC/cm2,且最长PW (2000 µs)要求14.7 µC/cm2。重要的是,发现人SpN簇的电荷密度的斜率与猪簇的电荷密度的斜率相似(图15H)。另外,解剖的人簇的神经活化的电荷密度要求比在任何PW下活化猪SpN簇所需的电荷密度高1.5-2倍(图15H)。

  讨论

  人SpN具有与其他哺乳动物(猪和啮齿动物)相似的解剖、形态学和电生理学特征。人SpN由无髓鞘的轴突构成,如传导速度所证实。因此,适当地假设在猪中优化的刺激参数(频率和波形)也将适合于人脾神经。然而,需要从整个NVB计算电荷的要求。

  研究6:人脾脏解剖的组织形态计量学表征

  该研究的目标是发展对人脾脏解剖学的理解,并使用组织学估算脾神经血管束(NVB)的近似值(参见表2)。对从移植患者接受的脾组织进行该研究。计算管腔直径、动脉壁、簇直径(平均费雷特直径)以及每个簇距外膜(外侧脾动脉壁)的近似距离的组织形态计量学估算值。

  材料和方法:

  由Addenbrooke医院(Cambridge, UK)的移植患者提供五份人脾NVB。切除后尽可能快地将组织浸入10%中性缓冲的福尔马林(NBF)中。拍摄组织的照片,其中存在尺子用于大体测量(参见图16A)。将样品分成0.5cm-1.5cm的连续块用于组织学检查(参见图16B)。保留动脉周围的组织以包含在该块中。将切片包埋并切片,使得每次都对每个块的相同面(即,脾脏的近端或远端)进行采样。切片通常为4-5 um厚,并用苏木精和曙红染剂(H&E)染色(参见图16C)。最后,由病理学家进行组织的质量检查,并且以x20扫描载玻片。应当注意,根据文献,占组织收缩的10%。然而,动脉直径代表零压力。在从移植患者接受的所有样品中都注意到大量的脂肪组织,并且发现所述簇被掩埋在厚脂肪组织层中。

  表2. 人脾神经血管束的估算范围(~7mm至10mm)

  

  为了定量目的,将脾组织分为三个部分:近端、中间和远端。这些部分各自由几个部分组成。近端靠近图16A中用缝线指示的腹腔,而远端靠近脾脏。这些中的两者不可能是神经接口放置的干预部位。具有环的中间部分可能是干预部位。

  总之,如图17中所示,簇直径在20-400um的范围内。对于簇分布,发现神经纤维的近似一半在0-1mm区域内,30%在1-2mm内,15%在2-3mm内,并且剩余的在约3-4mm区域内。

  研究7:从猪至人脾神经血管束的转化电荷要求

  材料和方法:

  使用来自猪和人脾脏组织学的组织学数据创建3D Finite Element Model计算机模拟。这基本上由脾动脉(管腔+动脉壁)和血管外组织构成。‘血管外组织’由‘脂肪组织’和‘结缔组织’构成,其中神经嵌入组织中。对于猪,使用在Cortec袖套(代表体内袖套)中具有分裂的模型。对于人模型,使用具有三臂结构的袖套。使用的袖套的直径为9mm。

  考虑到猪和人组织学之间的差异:猪中的簇在动脉周围均匀分布并且紧密相邻,而人中的簇看起来更分散;并且b)猪中的组织学表明血管外可忽略不计的脂肪组织,与人中的显著量相反。

  为了将刺激参数的估算值从猪转化为人,在以下两个阶段中进行建模:

  阶段(a):在Sim4Life模拟工具中开发3D Finite Element Models (FEM)。

  Sim4Life用于开发代表性的神经和动脉模型(基于组织学和图像定量),袖套和电极(由CAD定义的规格)以及3D电压场。

  阶段(b):在同一工具中分析FEM解决方案。Sim4Life用于使用Sundt神经模型沿着轴突插入电压[19],并且轴突模拟估算强度-持续时间和群体募集曲线。

  结果

  图18A代表来自五只动物的猪脾神经血管束的体内短期数据。在<50 mA、400us和10 Hz下,对于电荷要求,来自五只动物的范围被估算为近似20-160 uC/cm2。对于以灰色代表的第三只动物,电荷要求在30 mA、400us和10 Hz下为近似100 uC/cm2,这与计算机芯片上的模拟数据良好相关(参见图19A)。使用计算机芯片上相比于体内的相关性作为猪中的计算模型的验证,使用两个脉冲宽度的组织学切片将电荷要求转化为人脾神经血管束。数据呈现于图19C-D和表3中。

  表3:人模型对于两个脉冲宽度(即400 us和1ms脉冲)的电荷估算值

  

  据估计,在人急性模型中募集100%的电荷要求可能在近似80-1300 µC/cm2 (使用400uS脉冲宽度,12 mm2表面积)和70-1100 µC/cm2(使用1ms脉冲宽度)之间变化。在350 µC/cm2下指示近似70%的募集。额外的30%募集要求电荷要求超过由可植入装置可能容纳的指数增加。例如,可以看到100%的募集可能在70-1300 µC/cm2之间变化,对于80%募集在70-450 µC/cm2之间变化,对于50%募集在70-250 µC/cm2之间变化,且对于30%募集在70-170 µC/cm2之间变化。

  讨论

  与猪相比,人中的神经纤维更分散。如组织学概况分析所指示的在脾动脉周围散布的簇的范围可以在近似1-3mm的范围内。组织形态计量学数据进一步用于优化刺激参数,并且使用计算建模工具将电荷要求从猪转化至人。使用Sundt c-纤维模型,表明对于100%募集而言,人的电荷要求在近似70-1000 µC/cm2的范围内。

  参考文献

  

《急性医学病况的治疗.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)