欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 掺有钛酸钡的聚合物电容器复合薄膜及其制备方法独创技术8583字

掺有钛酸钡的聚合物电容器复合薄膜及其制备方法

2021-02-16 20:07:49

掺有钛酸钡的聚合物电容器复合薄膜及其制备方法

  技术领域

  本发明属于聚合物电容器领域,具体涉及一种掺有钛酸钡的聚合物电容器复合薄膜及其制备方法。

  背景技术

  随着能源需求量的增大,如何有效存储能源成为一个重点问题。聚合物基介电电容器作为常见的储能元件,具有很好的应用前景,可应用于混合动力汽车、脉冲功率系统、电力武器系统等。聚合物介质作为电容器核心部分,它的性能优劣决定了整个电容器的性能。目前,常用的储能介质以有机聚合物为主,有机电介质具有优异的机械性能、电性能,良好的可加工性能,但由于其介电常数较低,导致有机介质储能密度不高;而无机类介质具有极高的介电常数,但其加工性能较差,击穿场强低。因此目前大多数的研究都是在有机聚合物基体中掺杂一定量的无机电介质,提高整体的介电常数,进而提高放电能量密度。但由于材料性能的差异,无机介质经常发生团聚现象,导致储能密度大大下降,如何改善无机介质的分散性,进而提高储能密度成为一个关键点。

  发明内容

  本发明的目的在于克服现有技术中的缺陷,提供一种掺有钛酸钡的聚合物电容器复合薄膜及其制备方法。

  本发明为实现上述目的,采用以下技术方案:

  一种掺有钛酸钡的聚合物电容器复合薄膜,其特征在于,包括聚酰亚胺PI薄膜层以及涂覆在所述的聚酰亚胺PI薄膜层表面的聚偏氟乙烯-三氟乙烯-氯二氟乙烯PVTC层;所述的PVTC层内掺有改性钛酸钡纳米粉末。

  改性钛酸钡纳米粉末在PVTC层内的含量为1-7vol.%。

  改性钛酸钡纳米粉末在PVTC层内的含量为3vol.%。

  所述的改性钛酸钡纳米粉末的采用下述步骤制备:

  1)将三(羟甲基)氨基甲烷倒入盛有去离子水的烧杯中,放在磁力搅拌器上搅拌,加入钛酸钡BaTiO3纳米颗粒,并进行超声混匀;

  2)用HCL调节步骤1)所得的溶液的PH值,当PH值稳定在7-9时,加入盐酸多巴胺,继续搅拌;

  3)反应结束后,静置等待沉淀,溶液出现明显的分层现象后,倒出上清液,取沉淀物放入离心机离心,用去离子水数次离心后,用无水乙醇清洗沉淀物,直至PH值为6-8;将离心后的沉淀放入干燥箱干燥,去除水分,之后充分研磨得到改性的钛酸钡纳米粉末。

  所述三(羟甲基)氨基甲烷、去离子水、钛酸钡以及盐酸多巴胺的质量比为2:1000:1:0.5。

  聚酰亚胺PI薄膜层的厚度为7.5μm;所述的PVTC层与聚酰亚胺PI薄膜层的体积比为1:1。

  本发明还包括一种所述的掺有钛酸钡的聚合物电容器复合薄膜的制备方法,包括下述步骤:

  1)聚酰亚胺PI薄膜层的制备:将下述重量份组分:4,4’二氨基二苯醚ODA5份,均苯四甲酸酐5.5份以及N,N-二甲基乙酰胺100份混合均匀形成PAA涂覆液,室温下使用涂膜机涂制PAA涂覆液,放入真空干燥箱进行亚胺化处理,之后进行淬火,得到PI薄膜;

  2)使用磁力搅拌器配制一定量的聚偏氟乙烯-三氟乙烯-氯二氟乙烯PVTC溶液,加入改性的钛酸钡纳米粉末,得到BT-PVTC涂覆液;

  3)在步骤1)得到的PI膜上使用涂膜机涂制BT-PVTC涂覆液,放入真空干燥箱进行热处理,之后放入冰水中进行淬火,得到包含有改性钛酸钡纳米粉末的复合薄膜;

  步骤1)中的干燥温度为80-350℃。步骤3)真空干燥箱设置温度为50℃,时间为10h,之后将温度升至205℃,保持5min。

  与现有技术相比,本发明的有益效果是:

  本发明制备了一种有机复合薄膜,并在复合薄膜中掺杂了一定量的无机陶瓷电介质,通过使用盐酸多巴胺对无机离子BT进行表面修饰界面改性,有效改善无机粒子与有机基体的分散性,得到了无机粒子分散性良好的复合薄膜;结果表明,当无机介质掺杂一定量时,可有效提高有机复合介质的放电能量密度。

  附图说明

  图1所示为未掺杂BaTiO3的复合薄膜的放电能量密度和储能效率图;

  图2所示为钛酸钡含量不同的复合薄膜的放电能量密度和储能效率图;

  具体实施方式

  为了使本技术领域的技术人员更好地理解本发明的技术方案,下面结合附图和最佳实施例对本发明作进一步的详细说明。

  实施例:掺有钛酸钡的聚合物电容器复合薄膜的制备方法包括下述步骤:

  1)称取三(羟甲基)氨基甲烷(作为缓冲物质)倒入盛有一定量去离子水的烧杯中,放在磁力搅拌器上,选择合适速度搅拌。将适量的BaTiO3(BT)颗粒(粒径约200-300nm)加入上述烧杯中搅拌,搅拌均匀后,将烧杯放入超声波清洗器超声振荡处理,时间控制在1h以上。超声处理后,用HCL调节BT溶液的PH值,当PH值稳定在8.5时,加入提前准备好的盐酸多巴胺,再次放在搅拌器搅拌12h。其中,(羟甲基)氨基甲烷、去离子水、钛酸钡以及盐酸多巴胺的质量比为2:1000:1:0.5。

  2)、取下盛有溶液的烧杯,静置等待沉淀,溶液出现明显的分层现象后,倒出上清液,取沉淀物放入离心机离心,转速为8000r/min,用去离子水数次离心后,用无水乙醇清洗,直至PH值为7。将离心后的粉体放入干燥箱干燥,去除水分,之后充分研磨待用。得到改性BaTiO3粉末

  3)、称取质量比为5:5.5:100的4,4’二氨基二苯醚(ODA)、均苯四甲酸酐(PMDA)和N,N-二甲基乙酰胺(DMAc)。将干燥好的三孔烧瓶固定在电力搅拌器支架上。先将DMAc加入,之后加入ODA,开启电力搅拌器。待搅拌均匀且ODA完全溶解后,先加入1/2的PMDA,一小时后再加入剩余PMDA的一半,如此反复,分批次加入PMDA,当溶液出现大量气泡时,一点点加入PMDA。当出现明显的爬杆现象时,停止加PMDA,得涂覆溶液。之后并将PAA溶液放入真空干燥箱进行真空排气泡处理。打开涂膜机,通过刮刀调控厚度,使用涂膜机在干净的淬火玻璃上涂出厚度为7.5μm的薄膜。将薄膜放入鼓风干燥箱进行阶段性升温以实现亚胺化,温度时间控制为:80℃(1h)、160℃(0.5h)、200℃(0.5h)、240℃(0.5h)、280℃(0.5h)、320℃(0.5h)、350℃(1h)。最后取出制备好的PI薄膜。

  4)使用磁力搅拌器配制聚偏氟乙烯-三氟乙烯-氯二氟乙烯P(VDF-TrFE-CFE)的N,N-二甲基甲酰胺溶液,PVTC与N,N-二甲基甲酰胺的质量比为10:1,分为5组。向5组溶液中加入的步骤2)所得的改性BT粉体,得到5组BT含量分别为0vol.%、1vol.%、3vol.%、5vol.%、7vol.%的BT-PVTC溶液。

  5)使用涂膜机在步骤3)所得到的PI薄膜上涂制7.5μm厚的BT-PVTC薄膜,得到PI体积分数为50%的、掺有不同BaTiO3含量的复合薄膜,这五组薄膜分别为:PI(50%)/PVTC、PI(50%)/1vol.%BT-PVTC、PI(50%)/3vol.%

  BT-PVTC、PI(50%)/5vol.%BT-PVTC、PI(50%)/7vol.%BT-PVTC。

  6)、将复合薄膜剪成44cm的试样,每组取10个试样,贴在直径为3mm的镀膜孔上,使用北京泰诺科技有限公司ZHD-400型高真空电阻蒸发镀膜设备于试样正反面蒸镀铝电极。

  7)、使用德国Radiant公司的Radiant Premier II型铁电综合测试系统测试复合电介质的储能性能。测试频率选取100Hz。升压间隔为200kV,将试样放入干净的硅油之中,对试样加压测试,直至试样击穿。

  8)、使用Origin等软件处理测试得到的数据,计算不同场强下的薄膜的放电能量密度和储能效率,绘制成图1和图2。图1为未掺杂BaTiO 3的复合薄膜的放电能量密度和储能效率图;图2为钛酸钡含量不同的复合薄膜的放电能量密度和储能效率图;结果表明,当无机介质掺杂一定量时,可有效提高有机复合介质的放电能量密度。

  以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。

《掺有钛酸钡的聚合物电容器复合薄膜及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)