欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 一种Ni(II)-Salen配体金属有机框架晶体材料及其制备方法与应用独创技术17970字

一种Ni(II)-Salen配体金属有机框架晶体材料及其制备方法与应用

2021-04-23 14:20:31

一种Ni(II)-Salen配体金属有机框架晶体材料及其制备方法与应用

  技术领域

  本发明属于MOFs新材料的制备及应用领域,具体涉及以(R,R)-N,N’-二(3-甲基-5-羧基亚水杨基)-1,2-二苯基乙二胺镍(II)为配体的金属有机框架的制备方法及在气体吸附和催化领域的应用。

  背景技术

  金属有机框架(MOFs)代表了一类杂化的有机-无机有序网络超分子材料,是通过有机桥连配体和无机金属离子的结合构成的有序网络结构,包括一维链状、二维层状和三维网状结构。这些材料由刚性的多齿桥连支柱和金属节点组成。高的微孔体积、大孔径,以及可能提供活性点的高含量金属是这类材料的重要特征。

  基于金属Salen配合物的MOFs通常采用直接法制备,即直接使用金属配合物作为连接体与金属节点原位自组装构建MOFs。如前所述,金属Salen配合物是一类性能优良但易污染浪费的均相催化剂,且难以循环使用。因此,限制了其在催化领域的进一步应用。通过负载到介孔复合材料得到非均相催化剂是一种行之有效的手段,而以其为基础构建金属有机框架更是一种绝佳的手段,MOFs的高度多孔、超高的比表面积、稳定的物理/化学性质是一种理想的固载材料,而且MOFs提供的固载位点远高于其他普通材料,固载能力更强,固载后多次循环使用也不易脱离;也可通过在框架引入特定活性基团以达到增强反应能力、实现多步反应的串联催化;再者可修饰配体构建特定结构的MOFs实现协同催化。总之,MOFs丰富的几何构型、催化中心的多样性以及可修饰性赋予了该催化剂更多的催化形式。

  利用制备MOFs法固载策略合成的非均相催化剂不仅完美克服均相催化剂带来的难回收、不稳定等问题,还具有更多的催化形式和框架结构,应用领域更为广泛,基于金属Salen配合物制备的MOFs逐渐吸引科研工作者的关注,相关的研究越来越多也越来越深入。MOFs的构建需要金属Salen配合物额外配位点与金属离子或金属簇配位自组装,目前报道的主要集中在羧酸型或者吡啶型金属Salen配体上。作为催化剂,此类MOFs可用于催化多种类型反应,如:不对称硅腈化、光降解以及Diels–Alder反应等(Hu Y H,Liu C X,Wang J C,et al.Inorganic Chemistry,2019,58(8):4722-4730;Li Q Z,Zhang T F,Zhang Z K,etal.Inorganic Chemistry Communications,2019,99:113-118;Lou L L,Yu K,Ding F,etal.Journal of Catalysis,2007,249(1):102-110;Huang J,Fu X,Wang G,et al.DaltonTransactions,2012,41(35):10661-10669)。比如,Jian-Fang Ma研究组(Li J,Yang J,LiuY,et al.Chemistry,2015,21(11):4413-4421)在2015年以Fe-Salen配合物(Ⅲ为有机配体分别与过渡金属Zn2+、Cd2+原位自组装配位得到两个手性MOFs(CMOF 1和CMOF 2),通过研究发现制备的晶体材料在可见光条件下可催化2-氯苯酚的降解,与使用对照均相催化剂Fe-Salen配合物(Ⅲ)相比,CMOF 1和CMOF 2显示更高的催化活性,推测其不仅得益于MOFs的高度多孔等性质,增加了催化剂与被降解物的相互接触;还得益于可见光照射产生的·OH自由基,酸性条件时活性金属中心与先与羟基结合,再与过氧化氢反应得到[salen-FeIIIOOH],又在可见光照射得到[salen-Fe(V)=O]和·OH自由基,·OH自由基明显比[salen-Fe(V)=O]更具反应活性。产生的·OH自由基立即与被降解物反应,从而加速反应进程,提高催化效率。

  Ying-Ying Liu研究组(Wang H H,Yang J,Liu Y Y,et al.Crystal Growth&Design,2015,15(10):4986-4992)以Salen配合物前体与氯化钡、氯化钠通过原位自组装配位获得一个多孔三金属有机框架,Fe3+与N,N,O,O四齿螯合形成金属中心,Salen配体的羧基与Ba2+和Na+原子配位以生成三维周期网络,从而得到具有周期性的网络晶体超分子催化剂,这也是首个基于席夫碱配体含FeIII的三元金属MOFs,并成功应用于催化2-CP,3-CP和4-CP的光降解,研究发现,4-CP的光催化降解活性高于2-CP和3-CP的光催化降解活性,通常认为是受到酚羟基的作用导致,酚羟基作为给电子基团,可以提高对位和邻位碳原子的电子密度,因此这两个位置容易受到亲电试剂进攻,而对位则较弱,降解活性较低。

  二羧酸类化合物作为有机配体具有很强的配位能力、多种配位方式、易形成氢键等特点。(R,R)-N,N’-二(3-甲基-5-羧基亚水杨基)-1,2-二苯基乙二胺镍(II)具有两个羧基配位点,与金属离子或金属簇能形成多种配位模式,能够得到结构多样的MOFs材料。此外(R,R)-N,N’-二(3-甲基-5-羧基亚水杨基)-1,2-二苯基乙二胺镍(II)中配位有二价镍离子,可作为活性中心催化许多有机反应。

  查阅文献可知,(R,R)-N,N’-二(3-甲基-5-羧基亚水杨基)-1,2-二苯基乙二胺镍(II)是一个新型的金属Salen配体,该配体与金属离子配位形成金属有机框架材料尚无文献报道。

  发明内容

  本发明所要解决的第一个技术问题是,提供一种结构稳定、较高比表面积的多微孔金属有机框架晶体材料。

  本发明的第二个所要解决的技术问题是提供上述金属有机框架晶体材料的制备方法,该方法简单易行,成本低廉,产率高,易于大规模工业化生产。

  本发明的第三个目的在于提供上述金属有机框架晶体材料在气体吸附和催化领域的应用。

  本发明利用(R,R)-N,N’-二(3-甲基-5-羧基亚水杨基)-1,2-二苯基乙二胺镍(II)具有较强的配位能力、多种配位方式、易形成氢键以及芳环堆积作用等特点,首次以上述配体与Zn2+配位形成一个结构新颖的金属有机框架晶体材料。这类材料通常具有多孔洞、大比表面积,在催化和气体吸附等领域具有很好的应用前景。

  为了达到上述目的,本发明采用如下技术方案:

  本发明所述的一种Ni(II)-Salen配体金属有机框架晶体材料具备下述化学式为{[Zn4O(L)6]·DMF·H2O}n,其中L是(R,R)-N,N’-二(3-甲基-5-羧基亚水杨基)-1,2-二苯基乙二胺镍(II)的二羧酸根二价阴离子,n为聚合度。

  本发明所述的一个金属有机框架的晶体属单斜晶系,空间群为I2。

  本发明所述的一种Ni(II)-Salen配体金属有机框架晶体材料及其制备方法与应用,包括下述步骤:

  (1)二价锌盐化合物、(R,R)-N,N’-二(3-甲基-5-羧基亚水杨基)-1,2-二苯基乙二胺镍(II)溶于溶剂中,搅拌均匀,然后加入到具螺纹的透明耐高温玻璃小瓶中。

  (2)加热升温,反应物在一定温度下反应一段时间后,逐步降低温度,冷却至室温,过滤,用DMF或DMA洗涤,干燥,制得金属有机框架晶体材料。

  本发明所述的锌盐化合物为硝酸锌盐、氯化锌盐、硫酸锌盐、醋酸锌盐和高氯酸锌盐;所述的锌离子为+2价;

  本发明所述的镍离子为+2价;

  本发明所述的溶剂DMF或DMA;

  本发明所述的锌盐化合物与(R,R)-N,N’-二(3-甲基-5-羧基亚水杨基)-1,2-二苯基乙二胺镍(II)的摩尔比为2:0.8~2:1,锌盐化合物与溶剂的摩尔比为1:1000~1:5000;

  本发明的反应温度为80℃~100℃;

  本发明的反应时间1~120小时;

  本发明的升温速率为1℃/h~5℃/h。

  本发明的降温速率为1℃/h~10℃/h。

  相对于现有技术,本发明具有如下优点和有益效果:

  (1)本发明所合成的金属有机框架晶体材料结构新颖、独特。

  (2)本发明采用(R,R)-N,N’-二(3-甲基-5-羧基亚水杨基)-1,2-二苯基乙二胺镍(II)和Zn2+盐为原料,采用溶剂热合成法,简单易行,成本低,产率高,易于大规模工业化生产。

  (3)本发明金属有机框架晶体材料具有三维网状结构和多孔性、比表面积(BET比表面积为228m2/g)、稳定的特点(热稳定达400℃),273K,1atm下对CO2的吸附量为18.8cm3/g。在氧化剂的存在下,水相中催化苯乙烯选择性氧化生成苯甲醛,产率达99%,催化剂循环使用五次,几乎无活性损失。此外,在四丁基溴化铵存在下,1atm、50℃无溶剂反应条件下催化环氧苯乙烯与CO2反应生成碳酸苯乙烯酯,产率为91%,催化剂循环使用五次,其活性仍然保持。表明该材料在气体吸附、催化等领域具有很好的应用前景。

  附图说明

  图1本发明金属有机框架晶体材料Ni(II)-Salen(L)配体分子结构。图2本发明金属有机框架晶体材料Ni(II)-Salen(L)的配位模式。

  图3本发明金属有机框架晶体材料的次级结构单元图。

  图4本发明金属有机框架晶体材料配位立方单元图。

  图5本发明金属有机框架晶体材料二重互穿topos结构图。

  图6本发明金属有机框架晶体材料的红外光谱图。

  图7本发明金属有机框架晶体材料的热重分析图。

  图8本发明金属有机框架晶体材料在77K的N2吸附-脱附等温线图。图9本发明金属有机框架晶体材料在273K时CO2的吸附图。

  图10本发明金属有机框架晶体材料催化苯乙烯氧化生成苯甲醛的1H NMR图。

  图11本发明金属有机框架晶体材料催化苯乙烯氧化生成苯甲醛的13C NMR图。

  图12本发明金属有机框架晶体材料催化环氧苯乙烯与CO2生成碳酸苯乙烯酯的1HNMR图。

  图13本发明金属有机框架晶体材料催化环氧苯乙烯与CO2生成碳酸苯乙烯酯的13CNMR图。

  具体实施方式

  本发明的Ni(II)-Salen配体金属有机框架晶体材料及其制备方法与应用,合成步骤和结构表征为:

  将二价锌盐化合物、(R,R)-N,N’-二(3-甲基-5-羧基亚水杨基)-1,2-二苯基乙二胺镍(II)溶于溶剂中,搅拌均匀,然后加入到具螺纹耐高温玻璃小瓶中,加热缓慢升温,反应物在一定温度下反应一段后,逐步降低温度,冷却至室温,过滤,用溶剂洗涤,干燥,得{[Zn4O(L)6]·DMF·H2O}n晶体材料。然后用Rigaku RAXIS~RAPID IPX-射线衍射仪测化合物的单晶结构,Nicolet Nexus 470FTIR红外光谱仪测化合物红外光谱,样品的热重/差热分析在Q600 SDT热重分析仪上进行测试,粉末X-射线衍射在Bruker D8 X-射线衍射仪上进行测试,C、H、N元素分析在德国Vario EL III元素分析仪上测试,氮气吸附等温线在Quantachrome AS-1MP仪器上进行测试,1H NMR和13C NMR在美国Agilent DD2-400核磁共振仪测试。

  具体实施例如下:

  {[Zn4O(L)6]·DMF·H2O}n的合成及表征

  将Ni(II)-Salen(L)配体(10mg,0.0169mmol,1.0equiv)置于10mL具螺纹的透明耐高温玻璃小瓶中,依次加入六水合硝酸锌(10mg,0.0338mmol,2.0equiv)、2mL DMF,超声处理2分钟使其溶解,待完全溶解后,旋紧瓶盖,置于自动程序控制升温箱内,以5℃/h升温速率至80℃,保温3天,再以5℃/h降温速率降至室温,过滤,得块状砖红色晶体,用DMF洗涤,室温晾干,得8.0mg,产率为80%(按Ni-Salen计算)。按C198H162N14Ni6O42Zn8计算的元素分析理论值(%)为:C,55.49;N,4.58;H,3.81;实验值:C,55.38;N,4.64;H,3.86。IR(4000-400cm-1):3435(vs),3059(w),1660(vs),1610(vs),1400(vs),1323(m),1249(w),754(w),700(w)。

  所得化合物的单晶X-射线衍射数据是在Rigaku RAXIS~RAPID IPX-射线衍射仪上测定,在室温下进行单晶X-射线衍射数据的收集。衍射仪是用CuKα射线,波长为90kV和50mA的工作电压和电流,以ω扫描方式收集进行Lp因子校正,吸收校正使用CrystalClear程序(Müller P.,Herbst-Irmer R.,Spek A.L.,et al.InternationalUnion of Crystallography Book Series,Oxford University Press:New York,2006,Chapter 7)。用直接法解析结构,然后用差值傅里叶法求出全部非氢原子坐标,有机氢原子采用理论加氢法得到,用最小二乘法对结构进行修正。计算工作在微机上用SHELXTL程序包完成(Sheldrick,G.M.:Crystal structure refnement with SHELXL.ActaCrystallogr.2015,C71:3–8.),所的化合物结构为{[Zn4O(L)6]·DMF·H2O}n。表1为该金属有机框架材料的主要晶体学数据。

  表1

  

  R1=Σ||Fo|-|Fc||/Σ|Fo|.wR2=[Σw(Fo2-Fc2)2/Σw(Fo2)2]1/2

  图1为配体Ni(II)-Salen(L)的分子结构图。X-射线单晶衍射研究表明,化合物为单斜晶系,空间群I2。晶体学数据和结构精修参数见表1。每个不对称单元含有6个Ni(II)-Salen配体,4个Zn(II)原子、1个配位水分子和一个配位DMF分子。每个Zn原子和3个羧基配位,3个羧基来自于3个不同的配体。次级结构单元为四核Zn-O八面体结构[Zn4O(CO2)6](图3)。由于一个Zn原子配位了一个水分子和DMF分子,此Zn原子为6配位,其余三个Zn原子为4配位,导致该八面体结构有些变形。每个次级结构单元连接6个配体,每个Ni(II)-Salen配体的两个羧基均以(κ1-κ1-μ2)模式与次级结构单元的两个Zn原子配位(图1)。化合物的拓扑结构分析证实线性的Ni(II)-Salen保持它的二连接性,每个次级结构单元作为一个六连接的节点,Ni(II)-Salen配体与次级结构单元首尾相连形成pcu格子(图4)。Ni(II)-Salen与次级结构单元连接形成二重互穿的3D网络,网络的拓扑符号是(412.63)(图5)。

  图6为该金属有机框架的红外光谱,在Nicolet Nexus 470FTIR红外仪上进行测试,使用光谱纯的溴化钾压片,测试前将样品和溴化钾在紫外灯下干燥,以除去样品表面的水,测量范围4000-400cm-1。从红外光谱图中可以看出,3300-3600cm-1为水的O-H键的伸缩振动吸收峰。由于配体和金属的配位,使一些基团的吸收峰发生了改变。3059cm-1是芳环的υC-H振动;1660为C=N伸缩振动;1610cm-1和1400cm-1分别为羧基的υsC=O和υasC=O振动,1323cm-1吸收峰为配体芳环中的υ(C=C)的骨架振动。

  图7为该金属有机框架的热重/差热分析在Q600 SDT热重分析仪上进行测试,调零后,称量5~10mg样品放入陶瓷干锅中进行测量,在氮气气氛下进行,升温速率设为10℃/min,升至800℃。有两个明显的失重阶段,在30-400℃之间失重17.6%,对应于失去1个配位水分子和1个配位DMF分子,以及孔道内的无序溶剂分子;在400-440℃之间,有一个急剧的失重达22.4%,有机配体开始分解,框架开始坍塌。失重结束于700℃,总共有大约51.7%的失重。

  图8为该金属有机框架的氮气吸附等温线,在Quantachrome AS-1MP仪器上进行测定,测试前样品在200℃真空活化24h,除去样品孔道内的客体分子。使用高纯N2(99.999%)在77K下10-6-1压力范围内测N2吸附量并计算BET比表面积。该物理吸附-脱附等温线为典型的微孔型吸附等温线(type I),且计算得到其BET比表面积为228m2/g。

  图9为该金属有机框架在0.1-1atm、273K下对CO2的吸附量,在Quantachrome AS-1MP仪器上进行测定,测试前样品在200℃真空活化24h,除去样品孔道内的客体分子。使用高纯CO2(99.998%)。实验结果对CO2的吸附量是18.8m3/g。

  催化苯乙烯与过氧化氢的选择性氧化反应的步骤:在10mL的平行茄形瓶反应器中分别加入苯乙烯(2mmol)、2mL水、过氧化氢(3mmol)和{[Zn4O(L)6]·DMF·H2O}n(0.025mol%),60℃反应15小时,反应结束后加入乙酸乙酯1.5mL,离心分离反应液和催化剂,如此萃取分离4次,上清液合并,浓缩,经硅胶柱层析分离纯化得到苯甲醛(洗脱剂为石油醚:乙酸乙酯=25:1),通过Agilent DD2-400核磁共振仪,CDCl3为溶剂,TMS为内标,对目标产物结构进行表征(图10和图11)。

  循环催化实验:每次催化反应结束后,离心机离心分离催化剂,过滤,依次用二氯甲烷和丙酮洗涤催化剂,在150℃下真空加热活化24h,作为下一次循环催化时的催化剂。5轮循环催化的产物收率依次为99%、97%、95%、94%、92%。

  催化环氧苯乙烯与CO2的扩环反应的步骤:在10mL的平行茄形瓶反应器中分别加入环氧苯乙烯(10mmol)、四丁基溴化铵(0.025mmol)和{[Zn4O(L)6]·DMF·H2O}n(0.05mol%),并在冷凝管管顶端套上一装有CO2的气球,并置换气体三次,随后50℃反应12小时,反应结束后加入1.5mL乙酸乙酯于反应体系中,离心分离反应液和催化剂,如此萃取分离4次,上清液合并,浓缩,经硅胶柱层析分离纯化得到产物,柱层析纯化产物(洗脱剂为石油醚:乙酸乙酯=12:1),通过Agilent DD2-400核磁共振仪,CDCl3为溶剂,TMS为内标,对目标产物结构进行表征(图12和图13)。

  循环催化实验:以氧化苯乙烯为底物反应,每次催化反应结束后,离心机离心分离催化剂,过滤,依次用二氯甲烷和丙酮洗涤,在150℃下真空加热活化24小时,作为下一次循环催化时的催化剂。5轮循环催化的产物收率依次为91%、90%、88%、88%、85%。

  以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,任何未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

《一种Ni(II)-Salen配体金属有机框架晶体材料及其制备方法与应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)