欢迎光临小豌豆知识网!
当前位置:首页 > 电学技术 > 电通讯技术> 通信设备独创技术176768字

通信设备

2021-02-01 08:00:22

通信设备

  技术领域

  本申请涉及通信设备。

  背景技术

  出于未来将自动驾驶付诸实践的目的,关于车载通信(V2X通信)存在更高的期望。V2X通信代表“车辆到X”通信,并且暗含其中车辆和“某物”彼此通信的系统。“某物”的示例包括车辆、基础设施、网络和行人(即,V2V、V2I、V2N和V2P)。例如,在专利文献1中,公开了与V2X通信相关的技术的示例。

  就所涉及的车辆的无线通信而言,到现在为止,主要执行了基于801.11p的DSRC(专用短程通信)的开发。但是,近年来,进行了表示基于LTE的车载通信的“基于LTE的V2X”通信的标准化。在基于LTE的V2X通信中,支持基本安全性消息的通信。

  引文列表

  专利文献

  专利文献1:JP 2017-208796 A

  发明内容

  技术问题

  而且,出于实现V2X通信的进一步改善的目的,近年来正在研究使用5G技术(NR:新无线电)的NR V2X通信。在NR V2X通信中,支持要求高可靠性、低延迟、高速通信和高容量的用例,这些用例在过去基于LTE的V2X通信中是不支持的。

  同时,由于根据用例所要求的规范的多样化,有可能想到根据流量中包括的抖动成分而分组传输定时存在变化的情况,或其中传输的分组的尺寸存在变化的情况。

  就这点而言,在本申请中,提出了一种技术,该技术使得能够在包括V2X通信的设备间通信中以更灵活的方式分配资源。

  问题的解决方案

  根据本公开,提供了一种通信设备,包括:通信单元,执行无线通信;获得单元,从其它通信设备获得关于由所述其它通信设备已预留用于在设备间通信中使用的资源中的一些的第一类型范围的信息;以及控制单元,基于所获得的关于第一类型范围的信息来控制从中选择用于在设备间通信中使用的资源的第二类型范围。

  此外,根据本公开,提供了一种通信设备,包括:通信单元,执行无线通信;控制单元,为了在设备间通信中使用资源中的一些,控制要从其预留资源的第一类型范围;以及通知单元,为了控制其它通信设备从中选择要在设备间通信中使用的资源的第二类型范围,向所述其它通信设备通知关于第一类型范围的信息。

  此外,根据本公开,提供了一种通信设备,包括:通信单元,执行无线通信;通知单元,向基站通知关于在设备间通信期间向其它终端设备的周期性分组传输的条件的第一类型信息;获得单元,在通知第一类型信息之后,从基站获得关于被分配在周期性分组传输中能够使用的传输资源的第二类型信息;以及控制单元,基于第二类型信息来选择要在周期性分组传输中使用的资源。

  此外,根据本公开,提供了一种通信设备,包括:通信单元,执行无线通信;以及控制单元,根据关于在设备间通信期间在分组传输中能够使用的第一类型资源的信息并且根据关于被调度要传输的分组的信息,选择与第一类型资源不同的第二类型资源。

  发明的有益效果

  如上面所解释的,根据本申请,提出了一种技术,该技术使得能够在包括V2X通信的设备间通信中以更灵活的方式分配资源。

  同时,上面提到的效果不必在范围上受到限制,并且代替上述效果或除了上述效果之外,本书面描述中指示的任何其它效果或根据本书面描述可能出现的任何其它效果也可以被实现。

  附图说明

  图1是用于解释根据本申请的实施例的系统的示例性示意性配置的解释图。

  图2是图示根据实施例的基站的示例性配置的框图。

  图3是图示根据实施例的终端设备的示例性配置的框图。

  图4是图示V2X通信的概述的示图。

  图5是用于解释V2X通信的整体图像的示例的解释图。

  图6是图示V2X通信的示例性用例的示图。

  图7是用于解释示例性V2X操作场景的解释图。

  图8是用于解释示例性V2X操作场景的解释图。

  图9是用于解释示例性V2X操作场景的解释图。

  图10是用于解释示例性V2X操作场景的解释图。

  图11是用于解释示例性V2X操作场景的解释图。

  图12是用于解释示例性V2X操作场景的解释图。

  图13是用于解释在NR V2X通信中期望的分组的特征的概述的解释图。

  图14是图示分配用于侧链路通信的资源的示例性配置的示图。

  图15是用于解释在终端设备基于模式4资源分配来传输分组的情况下的操作时间线的示例的解释图。

  图16是用于解释为了从资源池中选择资源而执行的感测操作的示例的解释图。

  图17是用于解释在NR V2X通信中实现与在常规侧链路通信中实现的相同的资源分配方法的情况的解释图。

  图18是用于解释主动型资源预留的概述的解释图。

  图19是用于解释突发资源预留的概述的解释图。

  图20是图示其中根据预留级别将预留的资源的范围分区为多个范围的示例的示图。

  图21是用于解释用于决定资源预留区域的示例性决定方法的概述的解释图。

  图22是用于解释用于决定资源预留区域的决定方法的另一个示例的概述的解释图。

  图23是用于解释用于决定资源预留区域的决定方法的又一个示例的概述的解释图。

  图24是用于解释用于决定资源预留区域的决定方法的又一个示例的概述的解释图。

  图25是用于解释在根据预留级别选择资源时执行的操作流程的示例的流程图。

  图26是用于解释在根据预留级别选择资源时执行的操作流程的另一个示例的流程图。

  图27是用于解释部分资源预留的概述的解释图。

  图28是用于解释部分资源预留的一种模式的概述的解释图。

  图29是用于解释当实现部分资源预留时与分组传输相关的操作的示例的解释图。

  图30是用于解释当实现部分资源预留时与分组传输相关的操作的示例的解释图。

  图31是用于解释当实现部分资源预留时执行感测的终端设备的操作的概述的解释图。

  图32是用于解释反应型资源预留的概述的解释图。

  图33是图示在模式3资源分配中的操作流程的示例的序列图。

  图34是图示在模式3资源分配中的操作流程的另一个示例的序列图。

  图35是用于解释SPS辅助信息的概述的解释图。

  图36是图示当实现半持久调度时执行的操作流程的示例的时序图。

  图37是用于解释在NR V2X通信中实现与常规侧链路通信中实现的相同的资源分配方法的情况的解释图。

  图38是用于解释主动型资源分配的概述的解释图。

  图39是图示根据本申请的第二实施例的系统中执行的操作流程的示例的序列图。

  图40是用于解释在通过对SPS资源进行分区而获得的资源块中设置级别的方法的示例的解释图。

  图41是用于解释在通过对SPS资源进行分区而获得的资源块中设置级别的方法的示例的解释图。

  图42是用于解释在通过对SPS资源进行分区而获得的资源块中设置级别的方法的示例的解释图。

  图43是用于解释反应型资源分配的概述的解释图。

  图44是用于解释在执行反应型资源分配时由终端设备执行的操作流程的示例的流程图。

  图45是用于解释在执行反应型资源分配时由终端设备执行的操作流程的另一个示例的流程图。

  图46是用于解释在执行反应型资源分配时由终端设备执行的操作流程的又一个示例的流程图。

  图47是用于解释关于备用资源池(BRP)的设置执行的操作流程的示例的序列图。

  图48是用于解释在执行反应型资源分配时由终端设备执行的操作流程的又一个示例的流程图。

  图49是用于解释根据修改示例的系统中由终端设备执行的操作流程的示例的流程图。

  图50是用于解释根据修改示例的系统中由终端设备执行的操作流程的另一个示例的流程图。

  图51是用于解释根据修改示例的系统中由基站执行的操作流程的示例的流程图。

  图52是图示eNB的示意性配置的第一示例的框图。

  图53是图示eNB的示意性配置的第二示例的框图。

  图54是图示智能电话的示意性配置的示例的框图。

  图55是图示汽车导航设备的示意性配置的示例的框图。

  具体实施方式

  下面参考附图详细描述本申请的优选实施例。在本书面说明书和附图中,具有实际上相同的功能配置的构成元件由相同的附图标记指代,并且不再重复给出解释。

  按以下次序给出解释。

  1.配置示例

  1.1.系统配置示例

  1.2.基站的配置示例

  1.3.终端设备的配置示例

  2.V2X通信

  3.第一实施例

  3.1.与V2X通信中的资源分配相关的研究

  3.2.技术特征

  3.2.1.主动型资源预留

  3.2.2.反应型资源预留

  3.3.评估

  4.第二实施例

  4.1.与V2X通信中的资源分配相关的研究

  4.2.技术特征

  4.2.1.主动型资源分配

  4.2.2.反应型资源分配

  4.2.3.修改示例

  4.3.评估

  5.应用示例

  5.1.与基站相关的应用示例

  5.2.与终端设备相关的应用示例

  6.总结

  <<1.配置示例>>

  <1.1.系统配置的示例>

  首先,参考图1解释根据本申请的实施例的系统1的示例性示意性配置。图1是用于解释根据本申请的实施例的系统1的示例性示意性配置的解释图。如图1中所示,系统1包括无线通信设备100和终端设备200。在本文中,每个终端设备200也被称为用户;并且用户也可以被称为UE。无线通信设备100C也被称为UE中继。在本文中,UE可以暗指在LTE或LTE-A中定义的UE;UE-中继可以暗指3GPP中正在讨论的“Prose UE到网络中继”,或者可以更广义地暗指通信设备。

  (1)无线通信设备100

  每个无线通信设备100是向其从属设备提供无线通信服务的设备。例如,无线通信设备100A是蜂窝系统(或移动通信系统)的基站。基站100A与位于基站100A的小区10A内的设备(诸如终端设备200A)执行无线通信。例如,基站100A向终端设备200A发送下行链路信号并从终端设备200A接收上行链路信号。

  基站100A通过例如X2接口逻辑地连接到其它基站;并且能够发送和接收控制信息。而且,基站100A通过例如S1接口逻辑地连接到所谓的核心网络(未示出);并且能够发送和接收控制信息。同时,就物理中继而言,可以使用各种设备来物理地中继那些设备之间的通信。

  在本文中,图1中所示的无线通信设备100A是宏小区基站,并且小区10A是宏小区。另一方面,无线通信设备100B和100C是分别操作小小区10B和10C的主设备。作为示例,主设备100B是以固定方式安装的小小区基站。小小区基站100B与宏小区基站100A建立无线回程链路,并且与定位在小小区10B内部的一个或多个终端设备(例如,终端设备200B)建立接入链路。而且,无线通信设备100B可以是在3GPP中定义的中继节点。主设备100C是动态AP(接入点)。动态AP 100C是动态地操作小小区10C的移动设备。而且,动态AP 100C与宏小区基站100A建立无线回程链路,并且与定位在小小区10C内部的一个或多个终端设备(例如,终端设备200C)建立接入链路。动态AP 100C可以是例如安装有能够作为基站或无线接入点操作的硬件或软件的终端设备。在那种情况下,小小区10C表示动态形成的本地化网络(本地化网络/虚拟小区)。

  小区10A可以使用诸如LTE、LTE-A(LTE-Advanced)、LTE-ADVANCED-PRO、GSM(注册商标)、UMTS、W-CDMA、CDMA 2000、WiMAX、WiMAX2或IEEE 802.16之类的任意无线通信方法来操作。

  在本文中,小小区是可以包括比宏小区小并且以与宏小区重叠或非重叠的方式安装的各种类型的小区(诸如毫微微小区、毫微小区、微微小区和微小区)的概念。作为示例,小小区由专用基站操作。作为另一个示例,当表示主设备的终端临时作为小小区基站操作时,小小区被操作。而且,所谓的中继节点也可以被视为小小区基站的形式。用作中继节点的父站的无线通信设备也称为施主基站。施主基站可以暗指LTE中的DeNB,或者可以更广义地暗指中继节点的父站。

  (2)终端设备200

  每个终端设备200能够在蜂窝系统(或移动通信系统)中执行通信。终端设备200与有关蜂窝系统中的无线通信设备(例如,与基站100A或主设备100B或主设备100C)进行无线通信。例如,终端设备200A从基站100A接收下行链路信号,并且向基站100A发送上行链路信号。

  同时,终端设备200不限于所谓的UE。可替代地,例如,诸如MTC终端、eMTC(增强型MTC)终端或NB-IoT终端之类的所谓低成本UE也可以用作终端设备200。仍可替代地,诸如RSU(路边单元)或CPE(客户驻地装备)之类的基础设施终端也可以用作终端设备200。

  (3)补充解释

  至此,给出了关于系统1的示意性配置的解释。但是,有关技术不限于图1中所示的示例。例如,就系统1的配置而言,有可能具有不包括诸如SCE(小小区增强)、HetNet(异构网络)和MTC(机器类型通信)网络之类的主设备的配置。而且,作为系统1的配置的另一个示例,主设备可以连接到小小区,并且可以在小小区下构建小区。

  <1.2.基站的配置示例>

  下面参考图2解释根据本申请的实施例的基站100的配置。图2是示出根据本申请的实施例的基站100的示例性配置的框图。参考图2,基站100包括天线单元110、无线通信单元120、网络通信单元130、存储器单元140和控制单元150。

  (1)天线单元110

  天线单元110将由无线通信单元120输出的信号作为无线电波发射到空间中。而且,天线单元110将空间中存在的无线电波转换成信号,并将信号输出到无线通信单元120。

  (2)无线通信单元120

  无线通信单元120发送和接收信号。例如,无线通信单元120向终端设备发送下行链路信号,并从终端设备接收上行链路信号。

  (3)网络通信单元130

  网络通信单元130发送和接收信息。例如,网络通信单元130向其它节点发送信息,并从其它节点接收信息。例如,其它节点包括其它基站和核心网络节点。

  同时,如前所述,在根据实施例的系统1中,有时终端设备作为中继终端操作并且中继远程终端和基站之间的通信。在这种情况下,例如,表示中继终端的无线通信设备100C不需要包括网络通信单元130。

  (4)存储器单元140

  存储器单元140被用于临时或永久地存储要在基站100的操作中使用的程序和各种数据。

  (5)控制单元150

  控制单元150提供基站100的各种功能。控制单元150包括通信控制单元151、信息获得单元153和通知单元155。而且,控制单元150还可以包括除本文提到的构成元件以外的其它构成元件。即,控制单元150还可以执行除本文提到的构成元件的操作以外的操作。

  通信控制单元151执行与经由无线通信单元120与终端设备200的无线通信的控制相关的各种操作。例如,通信控制单元151可以分配终端设备200将在分组传输中使用的资源。而且,在那时,在预期来自终端设备200的周期性分组传输中,通信控制单元151可以预留用于周期性分组传输的可用资源。更特别地,除了分配终端设备200在不久的将来的分组传输中使用的资源之外,通信控制单元151还可以预先分配在其它后续传输定时的分组传输中使用的可用资源。在那时,基于预定条件,通信控制单元151可以控制用于进行资源预留的范围。而且,通信控制单元151执行与经由网络通信单元130与其它节点(例如,其它基站和其它核心网络节点)的通信的控制相关的各种操作。

  信息获得单元153从终端设备200和其它节点获得各种信息。作为具体的示例,信息获得单元153可以从特定终端设备200获得关于由该终端设备200执行的关于向其它终端设备200的周期性分组传输的信息(例如,关于周期性传输分组的条件的信息)。获得的信息可以例如在与和有关终端设备200的无线通信相关的控制中或者在与和其它节点的协调相关的控制中使用。

  通知单元155向终端设备200和其它节点通知各种信息。作为具体的示例,通知单元155可以向对应小区中的终端设备通知使终端设备能够执行与基站的无线通信的各种信息。作为另一个示例,通知单元155可以向其它节点(例如,其它基站)通知从对应小区中的终端设备获得的信息。

  <1.3.终端设备的配置示例>

  下面参考图3解释根据本申请的实施例的终端设备200的示例性配置。图3是图示根据本申请的实施例的终端设备200的示例性配置的框图。如图3中所示,终端设备200包括天线单元210、无线通信单元220、存储器单元230和控制单元240。

  (1)天线单元210

  天线单元210将由无线通信单元220输出的信号作为无线电波发射到空间中。而且,天线单元210将空间中存在的无线电波转换成信号,并将那些信号输出到无线通信单元220。

  (2)无线通信单元220

  无线通信单元220发送和接收信号。例如,无线通信单元220从基站接收下行链路信号,并且向基站发送上行链路信号。

  同时,如前所述,在根据实施例的系统1中,有时终端设备200直接与其它终端设备200通信而不涉及基站100。在那种情况下,无线通信单元220可以向其它终端设备200发送侧链路信号并且从其它终端设备200接收侧链路信号。

  (3)存储器单元230

  存储器单元230被用于临时或永久地存储要在终端设备200的操作中使用的程序和各种数据。

  (4)控制单元240

  控制单元240提供终端设备200的各种功能。例如,控制单元240包括通信控制单元241、信息获得单元243、确定单元245和通知单元247。而且,控制单元240还可以包括除本文提到的构成元件以外的其它构成元件。即,控制单元240还可以执行除本文提到的构成元件的操作以外的操作。

  通信控制单元241控制与经由无线通信单元220与基站100或其它终端设备200执行的无线通信相关的各种操作。例如,通信控制单元241可以预留要在分组传输中使用的资源。在那时,基于预定条件,通信控制单元241可以控制用于进行资源预留的范围。而且,通信控制单元241可以以如下方式执行控制:选择一些预留资源并且使用选择的资源来执行分组传输。例如,信息获得单元243可以从基站100获得关于由该基站100预留的资源的信息。

  信息获得单元243从基站100和其它终端设备200获得各种信息。作为具体的示例,信息获得单元243可以从基站和其它终端设备200获得在选择与其它终端设备200进行通信中使用的资源中有用的各种信息。作为更具体的示例,信息获得单元243可以从其它终端设备200获得关于由其它终端设备200预留的资源的信息。

  确定单元245执行与各种确定相关的操作。例如,确定单元245可以基于从基站100和其它终端设备200获得的信息来执行预定确定。作为更具体的示例,基于关于由其它终端设备200预留的资源的信息,确定单元245可以执行与分组传输中使用的资源的选择相关的确定。作为另一个示例,基于各种条件,确定单元245可以执行关于要在分组传输中使用的资源的预留的确定。作为又一个示例,使用由基站100预留的资源,确定单元245可以执行关于是否有可能传输目标分组以用于传输的确定。而且,如果难以使用由基站100预留的资源来传输分组,那么确定单元245可以执行关于要在传输那些分组中使用的资源的选择的确定。

  通知单元247向基站100和其它终端设备200通知各种信息。作为具体的示例,通知单元247可以向其它终端设备200通知关于预留用于在分组传输中使用的资源的信息。

  <<2.V2X通信>>

  下面给出的是V2X通信的概述的解释。V2X通信代表车辆到X的通信,并且暗指其中车辆和“某物”相互通信的系统。例如,图4是图示V2X通信的概述的示图。如图4中所示,“某物”的示例包括车辆、基础设施、网络和行人(即,V2V、V2I、V2N和V2P)。

  (V2X通信的整体图像)

  图5是用于解释V2X通信的整体图像的示例的解释图。在图5所示的示例中,V2X应用服务器(APP服务器)被视为云服务器,并且在核心网络侧的V2X通信的控制由应用服务器执行。基站执行与终端设备的Uu链路通信,并且执行诸如V2V通信或V2P通信之类的直接通信的通信控制。除基站外,还安装了RSU(路边单元)作为路边基础设施。就RSU而言,有可能考虑两种类型,即,基站类型RSU和UE类型RSU。RSU用于提供V2X应用(V2X APP)和支持数据中继。

  (V2X通信的用例)

  就车辆的无线通信而言,到现在为止,主要执行基于802.11p的DSRC(专用短程通信)的开发。但是,近年来,进行了基于LTE的表示车载通信的“基于LTE的V2X”的标准化。在基于LTE的V2X通信中,支持基本安全性消息的通信。而且,出于实现V2X通信的进一步改善的目的,近年来正在研究使用5G技术(NR:新无线电)的NR V2X通信。例如,图6是图示V2X通信的示例性用例的示图。

  在NR V2X通信中,支持要求高可靠性、低延迟、高速通信和高容量的用例,这些用例在过去在基于LTE的V2X通信中是不支持的。作为具体的示例,从图6所示的示例当中,可以引用动态地图或远程驾驶的提供。此外,可以引用其中在车辆之间或在车辆与道路之间传送传感器数据的传感器数据共享,或者可以引用用于车辆排队(platooning)的排队用例。关于这样的用例和NR V2X通信的要求,在3GPP TR22.826中给出了规范。下面给出示例性用例的解释以供参考。

  (1)车辆排队

  在这个用于车辆排队的用例中,多个车辆在同一方向上成一直线地行进,并且在引领车辆排队的车辆和其它车辆之间传送用于控制车辆排队的信息。作为传送这样的信息的结果,例如,变得有可能在车辆排队期间缩短车辆间的距离。

  (2)扩展的传感器

  这是能够在车辆之间交换传感器相关信息(数据处理前的原始数据或经处理的数据)的用例。可以使用本地传感器、实况视频图像(例如,来自周围车辆、RSU和行人的实况视频图像)和V2X应用服务器来收集传感器信息。作为这种信息交换的结果,车辆变得能够获得在相应传感器信息中不可用的信息,并且因此变得能够确认/识别更大范围的环境。在这种用例中,由于需要交换大量信息,因此在通信中要求高数据速率。

  (3)高级驾驶

  这是用于能够进行半自动驾驶或全自动驾驶的用例。在这种用例中,RSU与周围的车辆共享从它们的传感器获得的经确认/识别的信息;因此,每个车辆都变得能够在与其它车辆同步和协作的同时调整路径和操作。而且,每个车辆也变得能够与周围的车辆共享驾驶意图/意向。

  (4)远程驾驶

  这是用于使远程操作者或V2X应用执行远程操作的用例。远程驾驶在驾驶困难的人被一些其他人代替时使用,或者在危险区域中驾驶车辆的情况下使用。关于在一定程度上固定了行驶路线和道路的公共交通,也有可能实现基于云计算的驾驶。在这种用例中,通信要求高可靠性和低传输延迟。

  (物理层增强)

  为了满足上面提到的要求,有必要参考LTE V2X通信来实现物理层的进一步增强。目标链路的示例包括Uu链路和PC5链路(侧链路)。Uu链路是基础设施(例如,基站和RSU(路边单元))与终端设备之间的链路。PC5链路(侧链路)是终端设备之间的链路。增强的要点解释如下。

  就增强而言,可以引用以下几点。

  ·信道格式

  ·侧链路反馈通信

  ·侧链路资源分配方法

  ·车辆位置信息估计技术

  ·终端间中继通信

  ·对单播通信和多播通信的支持

  ·多载波通信,载波聚合

  ·MIMO/波束成形

  ·高频兼容性(例如,6GHz或更高)

  …等等。

  信道格式的示例包括灵活的数字学、短TTI(传输时间间隔)、多天线兼容性和波形。侧链路反馈通信的示例包括HARQ和CSI(信道状况信息)。

  (V2X操作场景)

  下面给出的是V2X通信操作场景的示例的解释。V2N通信是简单的,因为它仅使用基站和终端设备之间的DL/UL通信来执行。相反,在V2V通信中,有可能考虑各种通信路径。在下面的解释中,虽然主要关注于V2V通信来解释每种场景,但是在V2P通信和V2I通信中也可以实现相同的通信操作。在V2P通信和V2I通信中,行人和RSU分别用作通信目的地。

  例如,图7至图12是用于解释示例性V2X操作场景的解释图。更具体而言,在图7中图示了其中车辆在不涉及基站(E-UTRAN)的情况下执行直接通信的场景。在图8中图示了其中车辆经由基站执行通信的场景。在图9和图10中图示了其中车辆经由终端设备(UE;在本文中为RSU)和基站执行通信的场景。在图11和图12中,图示了其中车辆经由终端设备(UE;在本文中为RSU或另一个车辆)执行通信的场景。

  参考图7至图12,“侧链路”表示终端设备之间的通信链路,并且也称为PC5。侧链路的具体示例包括V2V通信链路、V2P通信链路和V2I通信链路。而且,“Uu接口”表示终端设备与基站之间的无线接口。Uu接口的具体示例包括V2N通信链路。此外,“PC5接口”表示终端设备之间的无线接口。

  <<3.第一实施例>>

  首先,给出关于本申请的第一实施例的解释。

  <3.1.与V2X通信中的资源分配相关的研究>

  在本申请的第一实施例中,关注于用于NR V2X通信中的V2V通信链路的资源分配的方法。在常规的侧链路通信(特别是V2V通信)中,从根本上假设具有周期性的流量,以用于向周围的车辆周期性地广播与安全性相关的消息。

  另一方面,例如,在NR V2X通信中,预期处理新的用例,诸如“传感器数据共享”和“高级驾驶”,并且有可能想到流量的周期性崩溃的情况。也就是说,虽然流量本质上是周期性的,但是预计抖动成分包括在流量中,并且分组到达物理层的定时(即,来自上层的分组到达物理层的定时)存在一些不匹配。

  而且,关于分组尺寸,常规上也假设主要具有相同尺寸的分组。但是,在新的用例中,有可能想到其中每个分组的尺寸改变的流量。分组尺寸的这种改变例如归因于以下事实:传输数据取决于汽车的周围环境。

  例如,图13是用于解释NR V2X通信中预期的分组的特征的概述的解释图。在图13中,示意性地图示了NR V2X通信与常规侧链路通信中流量的差异。在图13的上部图中,图示了常规侧链路通信中预期的流量。也就是说,在常规的侧链路通信中,从上层到物理层的分组的分组到达间隔T和那些分组的分组尺寸P被假设为总是恒定的。相比之下,在图13的下部图中,图示了NR V2X通信中预期的流量的示例。即,在NR V2X通信中,需要考虑从高层到物理层的分组的分组到达间隔T的抖动成分α和分组尺寸P的变化成分β。在这样的背景下,在NR V2X通信中,即使在分组到达间隔T的抖动成分α和分组尺寸P的变化成分β的影响明显的情况下,也要求以以下方式执行资源管理:侧链路通信变得有可能以更合适的方式进行。

  (现有的侧链路资源分配方法)

  下面给出的是用于侧链路资源分配的方法的概述的解释。就用于侧链路资源分配的方法而言,有两种方法,即,其中基站向侧链路分配资源的“模式3资源分配”方法和终端设备本身执行感测并选择侧链路资源的“模式4资源分配”方法。在本申请中,关注点主要放在模式4资源分配方法上。

  ·资源池分配

  出于执行模式4资源分配的目的,预先执行资源池分配。资源池分配由例如基站执行。而且,作为另一个示例,可以预先配置资源池分配。终端设备从分配的资源池中执行用于侧链路通信的资源的感测;自行选择适当的资源,并执行通信。

  例如,图14是图示分配用于侧链路通信的资源(资源池)的示例性配置的示图。在图14中图示了关于其中应用频分复用(FDM)的情况的示例。如图14中所示,资源池被分区为分别在PSCCH(物理侧链路控制信道)和PSSCH(物理侧链路共享信道)的传输中使用的SA(调度指派)区域和数据区域。在下面的解释中,虽然关注于如图14中所示的其中应用FDM的情况,但是没必要限制根据本申请的技术的应用。作为具体的示例,即使当应用时分复用(TDM)时,也可以应用根据以下解释的根据本申请的技术。同时,当应用TDM时,SA区域和数据区域在时间轴上变得彼此正交。

  ·模式4资源分配

  下面参考图15解释模式4资源分配的概述。图15是用于解释在终端设备基于模式4资源分配来传输分组的情况下的操作时间线的示例的解释图。如图15中所示,必须传输分组的终端设备首先执行感测,以便从资源池中找到要用于传输那些分组的资源。然后,基于感测的结果,终端设备从资源池中选择资源。随后,终端设备使用选择的资源来传输分组。而且,在那时,终端设备可以在必要时预留要在后续的分组传输中使用的资源。

  下面参考图16解释的是感测操作的示例。图16是用于解释为了从资源池中选择资源而执行的感测操作的示例的解释图。

  更特别地,基于感测窗口内的干扰模式的测量结果并且基于感测窗口内的资源预留状况,终端设备在资源选择窗口内选择资源或预留未来的资源。作为具体的示例,在图16所示的示例中,当生成分组D作为用于传输的目标分组时,基于感测的结果,终端设备关于资源的未来使用状况进行预测,诸如关于在未来其它分组A至C的传输中使用的资源的预测。然后,终端设备参考预测结果,并且变得能够选择或预留可用于分组D的传输的此类资源,即,被预测在其它分组的传输中保持未使用的此类资源。

  (技术问题)

  如上所述,在常规的侧链路通信中,由于分组具有固定的周期性和固定的分组尺寸;在执行分组选择之后进行预留时,终端设备无需考虑抖动和分组尺寸的改变。即,在常规的侧链路通信中,在分组到达间隔T经过之后,可以在传输与之前相同尺寸的资源的前提下进行资源的预留。

  另一方面,在NR V2X通信中,需要考虑分组到达间隔T的抖动成分α和分组尺寸P的变化成分β的影响。因此,有时变得难以实现与常规侧链路通信中实现的相同的资源分配方法。

  例如,图17是用于解释在NR V2X通信中实现与在常规侧链路通信中实现的相同的资源分配方法的情况的解释图。如图17中所示,当以与常规侧链路通信相同的方式执行资源分配时,如果在分组到达间隔T中发生抖动,那么有时变得难以满足时延要求。而且,如果分组尺寸P有改变,那么也有可能考虑诸如资源不足和资源预留过多的问题。

  鉴于这样的情况,在本申请中,提出了一种技术,该技术使得在包括V2X通信的设备间通信期间能够以更灵活的方式进行资源分配。更特别地,在本申请中,提出了一种与侧链路资源分配相关并且可以以更灵活的方式应对分组到达间隔T中的抖动和分组尺寸P中的改变的技术。

  <3.2.技术特征>

  作为根据本申请的系统的技术特征,给出关于与侧链路资源分配相关并且可以以更灵活的方式应对分组到达间隔T中的抖动和分组尺寸P中的改变的技术的示例的以下解释。更特别地,作为意在用于执行资源预留的技术的示例,根据以下两种方法给出解释。

  ·主动型资源预留

  ·反应型资源预留

  <3.2.1.主动型资源预留>

  首先,作为主动型资源预留,给出关于通过考虑分组到达间隔T中的抖动和分组尺寸P中的改变来预先进行资源预留的方法的示例的解释。

  例如,图18是用于解释主动型资源预留的概述的解释图。如图18中所示,在主动型资源预留中,终端设备通过考虑分组到达间隔T的抖动成分α和分组尺寸P的变化成分β来控制用于进行资源预留的范围(下文中,也称为“用于预留资源的范围”)。更特别地,终端设备以以下方式执行控制:使得预留资源在时间轴方向上的范围变得更宽,从而允许分组到达定时的不匹配,即,允许分组到达间隔T的抖动成分α(α_min<α<α_max)。而且,终端设备控制预留资源的尺寸(换句话说,控制预留资源的允许尺寸的范围),以允许与变化成分β对应的分组尺寸P中的改变(P_min<P<P_max)。在下面的解释中,除非另有说明,否则假设“用于预留资源的范围”包括预留资源的在时间轴方向上的范围以及预留资源的允许尺寸的范围。在本文中,预留资源的范围表示“第一类型范围”的示例。

  另一方面,在本方法中,用于预留资源的范围越宽,对于其它周围终端设备的资源的可用性越受限制。换句话说,根据用于预留资源的范围,对于其它终端设备,用于可选择的资源的范围变窄。由于这种折衷,在本方法中,期望以更适当的方式设置用于预留资源的范围。在本文中,用于其它终端设备的可选择的资源的范围表示“第二类型范围”的示例。

  鉴于上面给出的要点,作为主动型资源预留的细节,给出了关于由必须进行预留的终端设备实现的预留资源设置方法以及关于由其它终端设备基于预留资源的设置实现的资源选择方法的解释。就预留资源设置方法而言,给出了关于两种类型的方法(即,称为“突发资源预留”的方法和称为“部分资源预留”的方法)的解释。在下面的解释中,为方便起见,将进行资源预留的终端设备称为“第一类型终端设备”,并将基于该预留选择资源的终端设备称为“第二类型终端设备”。当不需要特别彼此区分“第一类型终端设备”与“第二类型终端设备”时,将它们简称为“终端设备”。

  (突发资源预留)

  首先,给出关于突发资源预留的解释。例如,图19是用于解释突发资源预留的概述的解释图。如图19中所示,在突发资源预留中,必须进行预留的第一类型终端设备以以下方式进行资源预留:使得在时间方向和频率方向上连续并且可能在后续分组传输中使用的范围被确保作为用于预留资源的范围。在那时,根据抖动成分α的预期范围(α_min<α<α_max)和分组尺寸P的预期范围(P_min<P<P_max)来控制预留资源的范围。在这种控制下,第一类型终端设备在被确保用于预留资源的范围内选择一些资源,并且在分组传输中使用所选择的资源。即,基本上,第一类型终端可以在被确保用于预留资源的范围内自由地传输分组。

  可以基于各种条件来控制用于预留资源的范围。例如,可以根据抖动成分α并根据分组尺寸P的变化成分β来确定用于预留资源的范围。更特别地,可以通过组合下面给出的一个或多个条件来确定用于预留资源的范围。

  ·抖动成分α的最小值α_min和最大值α_max

  ·抖动成分α的平均和方差值

  ·分组尺寸的变化成分β的最小值β_min和最大值β_max

  ·分组尺寸的变化成分β的平均和方差值

  作为另一个示例,可以根据在所使用的频带中测得的CBR(信道繁忙率)来确定用于预留资源的范围。作为更具体的示例,当CBR低于阈值时(即,在非拥塞状态下),可以控制用于预留资源的范围变得更宽。另一方面,当CBR高于阈值时(即,在拥塞状态下),可以将用于预留资源的范围控制为被更加限制。

  作为又一个示例,可以根据分组的优先级来决定用于预留资源的范围。作为更具体的示例,关于具有高优先级的分组,可以控制用于预留资源的范围变得更宽。另一方面,关于具有低优先级的分组,可以将用于预留资源的范围控制为被更加限制。

  作为又一个示例,可以根据诸如“传感器数据共享”或“自动驾驶”之类的操作服务的类型来确定用于预留资源的范围。在那种情况下,基于针对每种服务类型定义了要确保的用于预留资源的范围的信息(例如,表),第一类型终端设备可以决定用于预留资源的范围。在本文中,有关信息可以在终端设备中预先配置,或者可以从基站提供给终端设备。

  作为又一个示例,可以根据诸如eMBB(增强型移动宽带)或URLLC(超可靠的低时延通信)之类的分组类型信息来决定用于预留资源的范围。在那种情况下,第一终端设备可以基于针对每种类型的分组定义了要确保的用于预留资源的范围的信息(例如,表)来决定用于预留资源的范围。在本文中,有关信息可以在终端设备中预先配置,或者可以从基站提供给终端设备。

  作为又一个示例,可以根据终端设备的位置信息来决定用于预留资源的范围。作为更具体的示例,当汽车(相当于终端设备)在高速公路上行驶时,由于有时抖动减少,因此可以将用于预留资源的范围控制为被更加限制。可替代地,当汽车(相当于终端设备)在交通交叉路口周围行驶时,由于有时抖动增加,因此可以控制用于预留资源的范围变得更宽。在此类情况下,第一类型终端设备可以基于针对每组位置信息定义了要确保的用于预留资源的范围的信息(例如,表)来决定用于预留资源的范围。在本文中,有关信息可以在终端设备中预先配置,或者可以从基站提供给终端设备。

  同时,可以将用于预留资源的范围设置为包括其中从多个级别当中设置了互不相同的级别的多个部分范围。在下面的解释中,将在部分范围中设置的级别也称为“预留级别”。换句话说,可以根据预留级别将用于预留资源的范围分区为多个部分范围。而且,将与预留级别对应的部分范围简称为“与预留级别对应的范围”。在本文中,与预留级别对应的范围表示“第三类型范围”的示例。

  例如,图20是图示其中根据预留级别将预留资源的范围分区为多个范围的示例的示图。更特别地,在图20所示的示例中,根据抖动成分的概率密度函数的平均和方差值来设置预留级别(即,预留级别1至级别3),并且用于预留资源的范围根据预留级别被分区为多个范围(即,分区为与预留级别1至级别3对应的范围)。在图20所示的示例中,与预留级别1对应的范围表示其中很有可能执行分组传输的范围。相反,与预留级别3对应的范围表示其中不太可能执行分组传输的范围。

  同时,关于与用于根据预留级别将用于预留资源的范围分区为多个范围的条件相关的信息(例如,分区计数、分区尺寸、分区计数的上限和分区尺寸的上限);该信息可以预先从基站通知给终端设备,或者可以由终端设备自行决定。

  可替代地,对于每个预留级别,可以在个体基础上设置与使用与该预留级别对应的范围相关的条件(约束)。作为具体的示例,对于每个预留级别,可以以以下方式设置条件:使得与该预留级别对应的范围的使用被分类为或者排他使用或者包含使用。更特别地,当为预留级别设置排他使用时,与该预留级别对应的范围的使用条件以使得该范围被进行预留的第一类型终端设备排他地使用的方式被限制。另一方面,当为预留级别设置包含使用时,与该预留级别对应的范围的使用条件以如下方式被减轻:使得即使当由特定的第一类型终端设备进行预留时,也允许其它终端设备(即,第二类型终端设备)可以选择资源的范围有重叠。例如,在下面给出的表1中,说明了预留级别与其分类之间的对应关系的示例。

  表1

  同时,当已经进行了资源预留的第一类型终端设备关于所确保的用于预留资源的范围的使用(即,关于从所确保的用于预留资源的范围中选择资源)设置预留级别时(即,当有关第一类型终端设备将所确保的用于预留资源的范围分区为与预留级别对应的范围时),它可以向第二类型终端设备通知关于与预留级别对应的范围的信息。在下面的解释中,为了方便起见,关于与预留级别对应的范围的信息也被称为“预留级别信息”。而且,在这种情况下,已经进行了资源预留的第一类型终端设备可以使用例如SCI(侧链路控制信息)来向第二类型终端设备通知预留级别信息。即,在这种情况下,已经进行了资源预留的第一类型终端设备可以向第二类型终端设备通知关于所确保的用于预留资源的范围的信息以及与关于所确保的用于预留资源的范围的使用设置的预留级别对应的预留级别信息。

  下面给出的是第一类型终端设备根据预留级别通过其设置范围的方法的示例的解释。例如,基于由基站预先指定的条件,第一类型终端设备对所确保的用于预留资源的范围的至少某个部分进行分区,从而可以根据预留级别来设置范围。例如,在下面给出的表2中,图示了与根据预留级别的范围的设置相关的示例性条件。

  表2:与根据预留级别的范围的设置相关的条件的示例

  

  例如,当从基站通知了其中定义了如表2中所示的条件的信息(诸如表)时,第一类型终端设备将要传输的分组的信息(例如,分组的抖动量和分组尺寸的变化量)与条件进行比较,从而可以根据预留级别来设置范围。

  可替代地,关于与用于根据预留级别来设置范围的条件(例如,表2中所示的条件)相关的信息,可以在终端设备中预先配置该信息。

  随后,关于用于决定用于资源预留的区域(即,决定用于预留资源的范围)的决定方法,下面解释示例,连同解释用于通知关于根据该决定方法决定的区域的信息的方法。

  例如,图21是用于解释用于决定用于资源预留的区域的示例性决定方法的概述的解释图。在图21所示的示例中,将用于资源预留的区域(即,用于预留资源的范围)设置为频率方向和时间方向上的区域,并且将该区域的某个部分设置为与预留级别对应的部分区域(即,设置为与预留级别对应的范围)。参考图21,“开始SF”和“结束SF”分别表示用于预留资源的范围在时间方向上的开始位置和结束位置。而且,“开始PRB”和“结束PRB”分别表示用于预留资源的范围在频率方向上的开始位置和结束位置。此外,“开始SF_Li”和“结束SF_Li”表示与预留级别i(i=1、2、…、Max_level)对应的范围在时间方向上的开始位置和结束位置。作为具体的示例,“开始SF_L1”和“结束SF_L1”表示与预留级别1对应的范围在时间方向上的开始位置和结束位置。而且,“开始PRB_Li”和“结束PRB_Li”表示与预留级别i对应的范围在频率方向上的开始位置和结束位置。作为具体的示例,“开始PRB_L1”和“结束PRB_L1”表示与预留级别i对应的范围在频率方向上的开始位置和结束位置。

  在图21所示的示例中,作为关于用于预留资源的范围或关于与预留级别对应的范围的信息,第一类型终端设备可以向第二类型终端设备通知使得能够识别目标范围的信息。

  例如,作为使得能够识别目标范围的信息,第一类型终端设备可以向第二类型终端设备通知在时间方向和频率方向上该范围的开始位置和结束位置。作为具体的示例,作为使得能够识别与预留级别i(i=1、2、…、Max_level)对应的范围的信息,第一类型终端设备可以向第二类型终端设备通知“开始SF_Li”、“结束SF_Li”、“开始PRB_Li”和“结束PRB_Li”。

  作为另一个示例,作为使得能够识别目标范围的信息,第一类型终端设备可以向第二类型终端设备通知在时间方向和频率方向上该范围的开始位置和宽度。例如,假设“数量SF_Li”表示与预留级别i(i=1、2、…、Max_level)对应的范围在时间方向上的宽度(换句话说,资源计数),并且假设“数量PRB_Li”表示该范围在频率方向上的宽度(换句话说,资源计数)。在那种情况下,作为使得能够识别与预留级别i对应的范围的信息,第一类型终端设备可以向第二类型终端设备通知“开始SF_Li”、“数量SF_Li”、“开始PRB_Li”和“数量PRB_Li”。

  图22是用于解释用于决定用于资源预留的区域的决定方法的另一个示例的概述的解释图。在图22所示的示例中,用于资源预留的区域(即,用于预留资源的范围)在时间方向上被分区为多个部分区域。参考图22,“SF1”、“SF2”、…、以及“SFn”分别表示关于通过在时间方向上对用于预留资源的范围进行分区而获得的多个部分区域当中的第一部分区域、第二部分区域、…、以及第n部分区域的信息。作为具体的示例,“SFi”表示关于第i个部分区域的信息,并且例如可以包含使得能够识别该部分区域的信息,诸如该部分区域在时间方向上的起始位置(开始SF_Li)和结束位置(结束SF_Li)。

  在图22所示的示例中,第一类型终端设备可以向第二类型终端设备通知关于通过在时间方向上对用于预留资源的范围进行分区而获得的部分区域的信息。作为具体的示例,第一类型终端设备可以向第二类型终端设备通知“SFi”,作为关于通过在时间方向上对用于预留资源的范围进行分区而获得的多个部分区域当中的第i个部分区域的时间方向信息。在那种情况下,就频率方向信息而言,可以通知使得能够识别用于预留资源的范围的频率方向信息(例如,“开始PRB”和“结束PRB”)。

  图23是用于解释用于决定用于资源预留的区域的决定方法的又一个示例的概述的解释图。在图23所示的示例中,用于资源预留的区域(即,用于预留资源的范围)在频率方向上被分区为多个部分区域。参考图23,“PRB1”、“PRB2”、…、以及“PRBn”分别表示通过对用于预留资源的范围进行分区而获得的多个部分区域当中的第一部分区域、第二部分区域、…、以及第n部分区域的信息。作为具体的示例,“PRBi”表示关于第i个部分区域的信息,并且例如,可以包含使得能够识别该部分区域的信息,诸如该部分区域在频率方向上的起始位置(开始PRB_Li)和结束位置(结束PRB_Li)。

  在图23所示的示例中,第一类型终端设备可以向第二类型终端设备通知关于通过在频率方向上对用于预留资源的范围进行分区而获得的部分区域的信息。作为具体的示例,第一类型终端设备可以向第二类型终端设备通知“PRBi”,作为关于通过在频率方向上对用于预留资源的范围进行分区而获得的多个部分区域当中的第i个部分区域的频率方向信息。在那种情况下,就时间方向信息而言,可以通知使得能够识别预留资源的范围的时间方向信息(例如,“开始SF”和“结束SF”)。

  同时,在图23所示的示例中,通过在频率方向上对用于预留资源的范围进行分区而获得的部分区域在频率方向上可以具有不同的尺寸。而且,一些部分区域可以包括在其它部分区域中。

  图24是用于解释用于决定用于资源预留的区域的决定方法的又一个示例的概述的解释图。在图24所示的示例中,用于资源预留的区域(即,用于预留资源的范围)在时间方向以及频率方向上被分区为多个部分区域。参考图24,“SF1”、“SF2”、…、和“SFn”与图22中的示例中所示的“SF1”、“SF2”、…、和“SFn”相同。而且,参考图24,“PRB1”、“PRB2”、…、和“PRBn”与图23中的示例中所示的“PRB1”、“PRB2”、…、和“PRBn”相同。

  在图24所示的示例中,第一类型终端设备可以向第二类型终端设备通知关于通过在时间方向和频率方向上对用于预留资源的范围进行分区而获得的部分区域的信息。作为具体的示例,第一类型终端设备可以向第二类型终端设备通知“SFi”,作为关于通过对用于预留资源的范围进行分区而获得的部分区域的信息当中关于时间方向上的第i个部分区域的信息。以相同的方式,第一类型终端设备可以向第二类型终端设备通知“PRBj”,作为关于通过对用于预留资源的范围进行分区而获得的部分区域的信息当中关于频率方向上的第j个部分区域的信息。

  同时,在图24所示的示例中,通过在时间方向和频率方向上对用于预留资源的范围进行分区而获得的部分区域在频率方向上可以具有不同的尺寸。而且,一些部分区域可以包括在其它部分区域中。

  下面给出的是由第二类型终端设备执行的用于选择资源的操作的示例的解释,该第二类型终端设备在被通知关于用于预留资源的范围的信息和关于预留级别的信息后考虑预留级别。

  例如,在选择要在分组传输中使用的资源时,第二类型终端设备可以通过考虑所通知的预留级别来选择资源。

  作为具体的示例,在资源选择时,从所通知的用于预留资源的范围中所包括的部分范围当中(即,从与预留级别对应的范围当中),第二类型终端设备确定包括在与一些预留级别对应的范围中的资源是已经预留的资源并且可以将那些资源从用于选择的候选资源中排除。即,关于与除被排除的预留级别以外的剩余预留级别对应的范围中所包括的资源,第二类型的终端设备可以确定那些资源是可用资源。

  作为具体的示例,第二类型终端设备可以确定包括在与等于或高于预定阈值的预留级别对应的范围中的资源是已经预留的资源。作为另一个示例,第二类型终端设备可以确定包括在与等于或小于预定阈值的预留级别对应的范围中的资源是已经预留的资源。即,可以根据预留级别的设置方法和用例来适当地改变预留级别之间的优先级。

  例如,图25是用于解释在根据预留级别选择资源时执行的操作流程的示例的流程图。

  在图25所示的示例中,终端设备200(确定单元245)从与预留级别对应并且包括在用于预留资源的范围中的范围当中识别与等于或高于阈值的预留级别对应的范围。然后,终端设备200(通信控制单元241)从用于选择用于分组传输的候选资源中排除与等于或高于阈值的预留级别对应的识别出的范围(S101)。即,根据用于预留资源的范围和预留级别,终端设备200限制用于资源选择的范围。然后,终端设备200(通信控制单元241)确定包括在除被排除的范围以外(即,除与等于或高于阈值的预留级别对应的范围以外)的剩余范围中的资源是可用资源,并且相应地选择用于分组传输的资源(S103)。

  同时,例如,关于与从用于选择的候选资源中排除的预留级别相关的信息(换句话说,关于与预留级别对应的范围的信息),该信息可以被从基站通知给终端设备或可以在终端设备中被预先配置。

  同时,第二类型终端设备可以基于其本身要传输的分组的优先级并基于要由其它终端设备(例如,第一类型终端设备)传输的分组的优先级来决定要从用于选择的候选资源中排除的预留级别(换句话说,与预留级别对应的范围)。

  作为具体的示例,基于关于要由第一类型终端设备传输的分组的优先级的信息以及基于关于第二类型终端设备正试图传输的分组的优先级的信息和CBR(信道繁忙率)信息中的至少一项,第二类型终端设备可以决定要从用于选择的候选资源中排除的预留级别。在本文中,关于要由第一类型终端设备传输的分组的优先级的信息表示“第一类型优先级信息”的示例。而且,关于要由第二类型终端设备传输的分组的优先级的信息表示“第二类型优先级信息”的示例。

  作为具体的示例,在优先级的级别越低,通信越重要的情况下,假设第一类型通信终端正在以优先级4传输分组并且第二类型通信终端正在尝试以优先级1传输分组。而且,假设第一类型通信终端定义了预留级别越低,排他使用优先级越高,然后指定与预留级别1到4对应的范围并进行预留。在这种情况下,第二类型通信终端可以从用于选择的候选资源中排除与预留级别1对应的范围中包括的资源,并且可以确定在与预留级别2至4对应的范围中包括的资源是可用资源。

  另一方面,在上面解释的示例中,如果要由第一类型通信终端传输的分组具有比要由第二类型通信终端传输的分组高的优先级,那么执行控制以确保第一类型通信终端的预留资源被尽可能地确保。作为具体的示例,第二类型终端设备从用于选择的候选资源中排除包括在与所有预留级别1至4对应的范围中的资源,然后选择要在分组传输中使用的资源。

  而且,在上面解释的示例中,也可以考虑CBR。作为具体的示例,假定在从用于选择的候选资源中排除了如上面所解释的包括在所有预留级别1至4对应的范围中的资源之后,第二类型终端设备具有比阈值高的CBR(即,具有非常拥塞的频带频率)。在那种情况下,第二类型终端设备可以将用于排除的目标预留级别从“预留级别1至4”修改为“预留级别1至级别3”。以这种方式,在紧张的资源状况下,第二类型终端设备可以执行控制以进一步减轻CBR。另一方面,当CBR低于阈值时,第二类型终端设备可以以以下方式执行控制:在由第一类型通信终端设置的用于预留资源的范围之外的范围中有更多的候选资源以供选择。

  作为另一个示例,第二类型终端设备可以从第一类型终端设备接收关于与预留级别对应的范围的设置结果,并且可以基于那些预留级别以逐步的方式选择资源。

  例如,图26是用于解释在根据预留级别选择资源时执行的操作流程的另一个示例的流程图。在图26中图示了由第二类型终端设备执行的操作的示例。

  在图26所示的示例中,从包括在用于预留资源的范围中的预留级别对应的范围中,终端设备200(确定单元245)识别与等于或低于阈值的预留级别对应的范围。而且,终端设备200(通信控制单元241)从用于选择以用于分组传输的候选资源中排除与识别出的预留级别对应的范围(S201)。即,终端设备200根据用于预留资源的范围和预留级别来限制用于资源选择的范围。

  然后,终端设备200(确定单元243)在除被排除的范围以外的剩余范围中搜索用于分组传输的可用资源(S203)。如果找到资源(S203为“是”),那么终端设备200(通信控制单元241)选择那些资源作为要在分组传输中使用的资源。

  另一方面,如果未找到资源(S203为“否”),那么终端设备200(确定单元245)添加(递增)用于决定与要从用于选择以用于分组传输的候选资源中排除的预留级别对应的范围的阈值(S205)。然后,如果阈值尚未达到最大值(S207为“否”),那么终端设备200再次执行从S201至S205执行的操作。

  当阈值达到最大值时(S207为“是”),终端设备200(通信控制单元241)基于最高预留级别来选择资源(S209)。

  如上所述,当第二类型终端设备在参考特定预留级别选择资源中不成功时,它更新用于资源选择的参考预留级别并尝试参考更新后的预留级别来选择资源。以这种方式,第二类型终端设备可以顺序地更新用于资源选择的参考预留级别,并且可以搜索或选择用于分组传输的可用资源。同样在那种情况下,基于关于要从第一类型终端设备传输的分组的优先级的信息并且基于关于第二类型终端试图传输的分组的优先级的信息和CBR信息中的至少任意一项,第二类型终端设备可以决定要从进行选择的候选资源中排除的预留级别。

  同时,第一类型终端设备可以针对多个不同频率载波中的每一个进行突发资源预留。作为具体的示例,关于通常使用的频率载波A,第一类型终端设备可以预留具有周期性质和恒定分组尺寸的资源;然后可以为备用目的而在不同频率载波B中进行突发资源预留。随后,如果确定难以在频率载波A中使用预留的资源,那么第一类型终端设备可以在频率载波B中选择资源。同时,关于部分资源预留,也可以实现使用多个不同频率载波的资源预留(在下面详细描述)。作为具体的示例,在上面解释的示例中,在频率载波B中,可以代替突发资源预留来实现部分资源预留。

  到现在为止,参考图19至图26给出了关于突发资源预留的解释。

  (部分资源预留)

  下面给出的是关于部分资源预留的解释。例如,图27是用于解释部分资源预留的概述的解释图。如图27中所示,部分资源预留与突发资源预留的不同之处在于必须进行预留的第一终端设备以如下方式进行预留:使得被设置为按时间次序相互分离的多个范围被确保为用于预留资源的范围。在下面的解释中,为了方便起见,将被确保按时间次序相互分离的多个范围中的每一个也称为“部分资源”。

  在部分资源预留中,可以根据分组的最大允许延迟量和分组的最大抖动量来决定部分资源之间的距离。即,即使在具有最大抖动量的情况下;也期望以不超过分组的最大允许延迟量的方式放置部分资源。

  而且,在部分资源预留中,可以定义预留资源组。例如,图28是用于解释部分资源预留的一种模式的概述的解释图。在图28中示出了其中定义了预留资源组的示例。在图28所示的示例中,将预留资源组GA至GC设置为三个组,每个组包括多个部分资源。

  预留资源组可以被定义为在时间-频率方向上与其它预留资源组正交,或者可以被定义为非正交但与其它预留资源组部分重叠。关于被设置为预留资源组的部分资源的组,可以使用系统信息将定义从基站通知给终端设备。而且,可以以在每个预留资源组中可选择具有不同尺寸的资源的方式来定义预留资源组。

  此外,可以将预留资源组分配给终端设备的组(下文中,也称为“终端设备组”)。在那种情况下,例如,可以将多个预留资源组分配给互不相同的终端设备组。同时,作为另一个示例,可以基于传输分组的抖动和尺寸的最小值或最大值来决定要选择的预留资源组。而且,作为又一个示例,可以根据传输分组的优先级来决定要选择的预留资源组。

  第一类型终端设备可以根据传输分组的抖动量来选择预留资源组。例如,假设定义了三个预留资源组GA、GB和GC并且以可管理的最大抖动量按该次序在预留资源组GA、GB和GC中一直减小的方式对三个预留资源组GA、GB和GC进行设置。在那种情况下,在传输具有相对更多抖动的分组时,第一类型终端设备可以选择具有较大可管理抖动量的预留资源组GA。

  下面参考图29和图30解释当实现部分资源预留时与分组传输相关的操作的示例。图29和图30是用于解释当实现部分资源预留时与分组传输相关的操作的示例的解释图。

  第一类型终端设备从预先预留的多个部分资源当中决定要使用哪些资源。从分组从上层到达物理层,通过选择满足分组时延要求的范围内存在的一个或多个部分资源来决定供使用的资源。

  作为具体的示例,在图29中图示了一个示例,其中从上层到物理层的分组在期望的分组到达间隔T经过之前到达。在那种情况下,基于第一部分资源(即,具有最早定时的部分资源)来传输用于传输的目标分组。同时,在这个示例中,如果第一部分资源不满足时延要求,那么第一类型终端设备可以执行资源选择过程作为事件触发消息,并重新选择资源。

  作为另一个示例,在图30中图示了其中从上层到达物理层的分组在第二部分资源处或在第二部分资源之后到达的情况。在那种情况下,选择第三部分资源用于目标分组的传输以进行传输。同时,如果从上层到物理层的分组在第三部分资源处或在第三部分资源之后到达;由于不存在可以满足时延要求的部分资源,因此第一类型终端设备可以执行资源选择过程作为事件触发消息,并且以与图29中所示示例相同的方式重新选择资源。

  同时,即使以在每个预留资源组中可选择具有不同尺寸的资源的方式来定义预留资源组;当向时延要求赋予优先级时,也可以使用除预先分配的预留资源组以外的资源。

  下面给出其中当实现部分资源预留时已经进行预留的第一类型终端设备执行感测并传输分组的操作的解释。当第一类型终端设备基于部分资源预留执行资源预留和资源选择并且然后传输分组时,它可以基于以下解释的条件来识别可用资源。例如,图31是用于解释当实现部分资源预留时执行感测的终端设备的操作的概述的解释图。

  在图31所示的示例中,预留资源组的单个周期区段的某个部分与感测区段部分重叠。在这种情况下,关于感测区段,在与预留资源组的单个周期区段重叠的时间段中,第一类型终端设备可以识别要在分组传输中使用的资源。例如,在图31所示的示例中,多个部分资源当中的第一部分资源的区段与感测区段的端部重叠。在那种情况下,第一类型终端设备可以基于第一部分资源来传输分组。

  同时,在上面给出的示例中,要在分组传输中使用的资源已经在感测区段中被选择。因此,例如,有时在由第一类型终端设备执行的分组传输中不使用与资源选择区段重叠的剩余部分资源(即,预留资源)。在这种情况下,包括在该资源选择区段中的部分资源(预留资源)可以被视为空资源,并且例如可以用作候选资源以供其它终端设备选择用于分组传输。但是,还有可能考虑第一类型终端设备在分组传输中使用多个部分资源的情况。鉴于这种情况,例如,第一类型终端设备可以向周围的终端设备(例如,第二类型终端设备)通知关于由第一类型终端设备使用的部分资源的数量的信息。作为另一个示例,第一类型终端设备可以向周围的终端设备通知使得能够识别第一类型终端设备未使用的部分资源的信息。在本文中,可以使用例如SCI来执行通知。

  到现在为止,参考图27至图31给出了关于部分资源预留的解释。

  <3.2.2.反应型资源预留>>

  下面给出关于反应型资源预留的解释。在反应型资源预留中,以与常规资源预留方法相同的方式,终端设备以周期和分组尺寸恒定的方式进行资源预留;但是,如果在分组传输时发生任何问题,那么选择不同的资源或预留不同的资源。例如,图32是用于解释反应型资源预留的概述的解释图。

  如图32中所示,例如,基于抖动量是否已经超过时延要求或者基于调度的用于传输的分组的尺寸是否已经超过预留资源的尺寸来确定在分组传输时是否已发生了问题。作为更具体的示例,例如,可以基于是否可以满足最大允许延迟量、是否可以确保所需资源、是否可以满足所需QoS以及是否可以设置所需的传输功率来进行确定。

  下面给出的是对在分组传输时确定问题已经发生的情况的响应的示例的解释。

  (资源选择触发器的调用)

  例如,当确定在分组传输时已经发生问题时,终端设备可以调用资源选择触发器。更特别地,终端设备搜索满足时延要求的资源或满足超过数据尺寸的资源。更特别地,在确定将发生问题的时间点处,终端设备使用后台感测的结果来搜索资源。

  然后,终端设备选择资源。作为具体的示例,终端设备可以选择附加资源。在那时,终端设备可以选择附加资源,以便补偿在将已经预留的资源用于分组传输的情况下发生的尺寸短缺。而且,在感测阶段,终端设备可以从用于选择的候选资源中排除预留资源。在本文中,预留资源表示“第一类型资源”的示例。而且,与预留资源分开选择的资源(即,附加选择的资源)表示“第二类型资源”的示例。

  作为另一个示例,终端设备可以重新选择资源。更特别地,终端设备可以重新选择与分组传输所需的尺寸相等的资源。在那种情况下,例如,终端设备可以将已经预留的资源定义为用于选择的候选资源,并且然后也执行涉及那些候选资源的用于资源重选的操作。

  而且,在选择了附加资源之后,终端设备使用所选择的资源来传输数据(与被调度用于传输的分组对应的数据)。在那时,当多个资源用于数据传输时;使用利用资源之一传输的分组(例如,初始分组)的SCI,可以指示与使用多个资源中的每一个资源传输的数据对应的该资源中的区域。而且,关于多个资源中的每一个,可以在使用该资源传输的分组的SCI中指示该资源中与使用该资源传输的数据对应的区域。在那种情况下,为了使得能够对数据进行解码,可以向其它通信终端通知指示应当合并哪些分组的信息。

  (尽可能使用现有的预留资源)

  作为另一个示例,当确定在分组传输时已经发生问题时,终端设备可以尽可能使用现有的预留资源来传输数据。在那种情况下,例如,终端设备将用于传输的目标数据分区为两个或更多个分组。同时,在那种情况下,由于目标数据被分区为两个或更多个分组,因此可以使用SCI将用于合并在分组中传输的数据的信息通知给其它终端设备。在本文中,用于合并在分组中传输的数据的信息表示将使用互不相同的资源传输的数据(即,使用互不相同的分组传输的数据)相关联的“控制信息”的示例。

  同时,在向前下一次执行的资源选择中,由于有可能考虑资源尺寸不足的情况;因此终端设备可以例如调用资源重选触发器。作为另一个示例,除了已经预留的资源之外,终端设备还可以选择附加资源用于传输短缺数据。

  (停止重复传输,并传输不同的分组)

  作为又一个示例,当确定在分组传输时已经发生问题时,终端设备可以停止重复传输并传输不同的分组。在那种情况下,终端设备向表示分组目的地的其它终端设备通知已经传输了不同分组而没有执行重复传输的事实。更特别地,例如,终端设备可以使用SCI来向其它终端设备通知目标分组不是重复传输的分组的事实。

  而且,在停止重复传输并传输不同分组的情况下,终端设备可以将指示后续到达的分组(即,使用重复传输的资源传输的分组)的数据是先前传输的分组的数据的延续的信息添加到到达表示分组目的地的其它终端设备的初始分组的SCI。因此,接收侧的其它终端设备在解码第一SCI的时间点变得能够识别接下来到达的分组表示接收到的分组的数据的延续,并且因此可以组合在分组中传输的数据。

  作为又一个示例,当要使用为重复传输预留的资源来传输与重复传输的数据不同的数据时,终端设备可以将诸如NDI(新数据指示符)之类的信息添加到与不同数据对应的SCI,并使得能够与重复传输的数据区分开。在那种情况下,基于诸如NDI之类的信息,接收侧的其它终端设备可以确定目标数据是否是重复传输的数据,并且可以基于确定结果来组合数据,以恢复原始传输数据。

  到现在为止,参考图32给出了关于反应型资源预留的解释。

  <3.3.评估>

  如上面所解释的,在根据本申请的第一实施例的系统中,为了在设备间通信期间使用资源中的一些资源,第一类型终端设备控制预留那些资源的第一类型范围。然后,为了控制其中第二类型终端设备选择用于设备间通信的资源的第二类型范围,第一类型终端设备向第二类型终端设备通知关于第一类型范围的信息。而且,第二类型终端设备从第一类型终端设备获得关于由第一类型终端设备为设备间通信而预留的资源的第一类型范围的信息。此外,基于所获得的关于第一类型范围的信息,第二类型终端设备控制第二类型范围以选择要在设备间通信中使用的资源。例如,基于关于第一类型范围的信息,第二类型终端设备限制第二类型范围。

  例如,利用这样的配置,即使在根据流量中包括的抖动成分而在分组传输定时中存在可变性的情况下或者在所传输的分组的尺寸存在变化的情况下,也变得有可能以更灵活的方式分配资源。即,在根据本申请的第一实施例的系统中,可以在包括V2X通信的设备间通信中以更灵活的方式分配资源。特别地,在NR V2X通信中,支持要求高可靠性、低延迟、高速通信和高容量的新用例,这些新用例在过去在基于LTE的V2X通信中是不支持的。而且在这种情况下,在根据本申请的第一实施例的系统中,可以以更灵活的方式来处理在NRV2X通信中支持的各种用例中的每一个。

  <<4.第二实施例>>

  下面给出的是本申请的第二实施例的解释。

  <4.1.与V2X通信中的资源分配相关的研究>

  在根据本申请的第二实施例中,关注于用于NR V2X通信中的V2V通信链路的资源分配。在常规的侧链路通信(特别是V2V通信)中,从根本上假设它具有周期性流量,用于向周围的车辆周期性地广播与安全性相关的消息。

  另一方面,例如,在NR V2X通信中,预期处理新的用例,诸如“传感器数据共享”和“高级驾驶”,并且有可能考虑流量的周期性崩溃的情况。即,虽然流量本质上是周期性的,但是预计抖动成分包括在流量中,并且在物理层中的分组到达的定时(即,从上层到物理层的分组到达的定时)存在一些不匹配。

  而且,关于分组尺寸,常规上也假设主要具有相同尺寸的分组。但是,在新的用例中,有可能考虑其中每个分组的尺寸改变的流量。分组尺寸的这种改变例如归因于以下事实:传输数据取决于汽车的周围环境。

  例如,图13是用于解释NR V2X通信中假设的分组的特征的概述的解释图。在图13中,示意性地图示了NR V2X通信与常规侧链路通信中流量的差异。在图13的上部图中,图示了常规侧链路通信中预期的流量。即,在常规的侧链路通信中,从上层到物理层的分组的分组到达间隔T和那些分组的分组尺寸P被假设为总是恒定的。相反,在图13的下部图中,图示了NR V2X通信中预期的流量的示例。即,在NR V2X通信中,需要考虑从高层到物理层的分组的分组到达间隔T的抖动成分α和分组尺寸P的变化成分β。在这样的背景下,在NR V2X通信中,即使在分组到达间隔T的抖动成分α和分组尺寸P的变化成分β的影响明显的情况下,也要求以以下方式执行资源管理:侧链路通信变得有可能以更合适的方式进行。

  (现有的侧链路资源分配方法)

  下面给出的是用于侧链路资源分配的方法的概述的解释。就用于侧链路资源分配的方法而言,有两种方法,即,其中基站向侧链路分配资源的“模式3资源分配”方法和终端设备本身执行感测并选择侧链路资源的“模式4资源分配”方法。在本申请中,主要关注于模式3资源分配方法。

  ·资源池分配

  出于执行模式3资源分配的目的,预先执行资源池分配。资源池分配例如由基站执行。作为另一个示例,可以预先配置资源池分配。

  例如,图14是图示分配用于侧链路通信的资源(资源池)的示例性配置的示图。在图14中图示了关于其中应用频分复用(FDM)的情况的示例。如图14中所示,资源池被分区为分别在PSCCH(物理侧链路控制信道)和PSSCH(物理侧链路共享信道)的传输中使用的SA(调度指派)区域和数据区域。在下面的解释中,虽然关注于如图14中所示的其中应用FDM的情况,但没必要限制根据本申请的技术的应用。作为具体的示例,即使当应用时分复用(TDM)时,也可以应用如以下解释的根据本申请的技术。同时,当应用TDM时,SA区域和数据区域在时间轴上变得彼此正交。

  ·模式3资源分配

  下面给出的是对模式3资源分配的概述。首先,下面参考图33解释的是常用的模式3资源分配中的操作流程的示例。图33是图示模式3资源分配中的操作流程的示例的序列图。

  如图33中所示,当存在流量时(即,当生成用于传输的目标分组时)(S101),终端设备200经由上行链路(PUCCH)向基站100提供对传输延迟和诸如分组尺寸之类的信息的请求,并请求基站100分配传输资源(S103)。在从终端设备200接收到请求后,基站100将传输资源分配给终端设备200,即,执行传输资源的调度(S105);并经由下行链路(PDCCH)向终端设备200通知传输资源的分配结果(S107)。然后,终端设备200使用由基站100分配的资源来传输分组(S109)。

  但是,作为实现图33中所示方法的结果,诸如请求分配传输资源(S103)、调度传输资源(S105)以及通知分配传输资源的结果(S107)之类的操作针对分组传输的每个实例被执行。这导致与调度相关的操作的大量开销。

  另一方面,在V2X通信中,由于主要流量本质上是周期性的;例如,在执行模式3资源分配时,执行SPS(半持久调度)使得能够实现V2X通信,其中减少了上面提到的与调度相关的开销。例如,图16是图示模式3资源分配的操作流程的另一个示例的序列图。在图16中图示了其中执行SPS的示例。

  如图34中所示,在连接到小区后,即,在与基站100建立通信后(S151),终端设备200向基站100提供UE辅助信息(S153)。UE辅助信息包含基站100在SPS中可用的信息(即,包含SPS辅助信息)。例如,图35是用于解释SPS辅助信息的概述的解释图。如图35中所示,当以规则的间隔生成分组时,终端设备200向基站100提供SPS辅助信息,诸如流量的周期T、子帧0的偏移量α、分组尺寸P和分组优先级。

  然后,基于由终端设备200提供的UE辅助信息,基站100设置用于终端设备200的传输资源的尺寸并设置SPS间隔(半持久调度间隔)(S155)。然后,基站100向终端设备200通知SPS配置(S157)。

  随后,当有流量时(即,当生成用于传输的目标分组时)(S159),终端设备200请求基站100分配传输资源(S161)。在从终端设备200接收到该请求后,基站100指示终端设备200执行SPS激活(S163)。在从基站100接收到指示后,终端设备200选择SPS配置的资源(S165)。然后,终端设备200使用所选择的资源来传输分组(S167)。

  图36是图示当实现SPS时执行的操作流程的示例的时序图。更具体而言,在图36的上部图中,关于由基站100配置的资源,图示了分配给每个资源的定时与该资源的尺寸之间的关系的示例。在图36的中间图中,关于以规则的间隔从上层到达物理层的分组(即,用于传输的目标分组),图示了每个分组的到达定时与该分组的尺寸之间的关系的示例。在图36的下部图中,关于在传输用于传输的目标分组中使用的资源,图示了每个资源的分配定时与该资源的尺寸之间的关系的示例。因此,在图36中的上部图、中间图和下部图中;水平轴表示时间。在图36的上部图中,垂直轴表示已配置的资源的尺寸。在图36的中间图中,垂直轴表示以规则的间隔从上层到达物理层的分组的尺寸。在图36的下部图中,垂直轴表示在传输用于传输的目标分组中使用的资源的尺寸。在下面的解释中,有时将终端设备200中从上层到达物理层的分组称为“到达分组”。即,在下面的解释中,当简单地写“到达分组”时,除非特别指出,否则是指终端设备200中从上层到达物理层的分组。

  当如图36中所示执行SPS时,根据终端设备200的传输周期P(即,终端设备200中从上层到物理层的分组的到达间隔P)预先配置资源。因此,当有流量时(即,当生成用于传输的目标分组时),终端设备200变得能够使用已经设置的资源来传输那些分组。即,终端设备200在分组传输的每个实例处不再需要向基站100请求资源分配。

  ·模式4资源分配

  下面参考图15解释的是模式4资源分配的概述。图15是用于解释在终端设备基于模式4资源分配来传输分组的情况下的操作时间线的示例的解释图。如图15中所示,必须传输分组的终端设备200首先执行感测,以用于从资源池中找到要在传输那些分组中使用的资源的目的。然后,基于感测的结果,终端设备200从资源池中选择资源。随后,终端设备使用选择的资源来传输分组。而且,在那时,终端设备200可以在必要时预留要在后续的分组传输中使用的资源。

  下面参考图16解释的是感测操作的示例。图16是用于解释为了从资源池中选择资源而执行的感测操作的示例的解释图。

  更特别地,基于感测窗口内的干扰模式的测量结果并且基于感测窗口内的资源预留状况,终端设备200在资源选择窗口内选择资源或预留未来的资源。作为具体的示例,在图16所示的示例中,当生成分组D作为用于传输的目标分组时,基于感测的结果,终端设备200对资源的未来使用状况进行预测,诸如关于在未来其它分组A至C的传输中使用的资源的预测。然后,终端设备200参考该预测结果,并且变得能够选择或预留可用于分组D的传输的此类资源,即,被预测在其它分组的传输中保持未使用的此类资源。

  (技术问题)

  如上所述,在常规的侧链路通信中,由于分组具有固定的周期性和固定的分组尺寸;在预留用于周期性分组传输的资源时,无需考虑抖动和分组尺寸的改变。即,在常规的侧链路通信中,在分组到达间隔T经过之后,可以在传输与之前相同尺寸的资源的前提下进行资源的预留。

  另一方面,在NR V2X通信中,需要考虑分组到达间隔T的抖动成分α和分组尺寸P的变化成分β的影响。因此,有时变得难以实现与常规侧链路通信中实现的相同的资源分配方法。

  例如,图37是用于解释在NR V2X通信中实现与常规侧链路通信中实现的相同的资源分配方法的情况(即,适应常规SPS的情况)的解释图。在图37中,水平轴表示时间;并且垂直轴表示到达分组的尺寸(即,分组传输中所需的资源的尺寸)。

  在图37中,图示了关于到达分组与为了传输该到达分组而接受调度(SPS)的资源(下文中,也称为“SPS资源”)之间的关系的具体示例C11至C15。例如,示例C11关于可以使用SPS资源正常传输到达分组的情况。即,在示例C11中,到达分组的尺寸与SPS资源的尺寸基本上相同,并且在生成到达分组的定时之后立即分配SPS资源。

  相反,在示例C12、C14和C15中,或者未满足使用SPS资源的对到达分组的传输请求,或者到达分组难以传输。

  更特别地,示例C12关于由于抖动成分α而延迟了分组的到达定时的情况。即,由于分组的到达定时的延迟,分组已经在分配SPS资源的定时之后到达。因此,在这种情况下,终端设备200没有找到可用于分组的传输的任何资源(SPS资源),并且有时变得难以传输分组。

  示例C14关于分组的尺寸由于其尺寸变化β而增加并且超过意在用于传输该分组的SPS资源的尺寸的情况。在这种情况下,终端设备200不能确保任何资源具有分组传输所需的尺寸,并且有时变得难以传输分组。

  示例C15关于分组的到达定时由于抖动成分α而在时间表之前的情况。这导致分组的到达定时与用于传输分组的SPS资源的分配定时之间的时间差增加。因此,不再满足从分组的到达到其传输的时间段中的延迟的要求值。即,在这种情况下,终端设备200有时发现难以满足关于分组传输的请求当中的关于延迟的请求。

  示例C13是在分组传输中仅使用SPS资源的一部分从而在资源的使用方面造成所谓浪费的情况(换句话说,过多资源预留已发生的情况)。更特别地,在示例C13中,分组的尺寸由于其尺寸变化β而减小,并且已经确保用于传输该分组的SPS资源的某个部分在该分组的传输中保持未使用。即,在这种情况下,由于所确保的SPS资源的某个部分保持未使用,因此关于资源的使用存在浪费。

  鉴于上面解释的情况,在本申请中,提出了一种技术,该技术使得能够在包括V2X通信的设备间通信中以更灵活的方式分配资源。更特别地,在本申请中,提出了一种与侧链路资源分配相关并且可以以更灵活的方式应对分组到达间隔T中的抖动和分组尺寸P中的改变的技术。

  <4.2.技术特征>

  作为根据本申请的系统的技术特征,给出关于与设备间通信中可使用的资源分配(例如,资源向侧链路的分配)相关并且可以以更灵活的方式应对分组到达间隔T中的抖动和分组尺寸P中的改变的技术的示例的以下解释。更特别地,作为意在用于执行资源分配的技术的示例,根据以下两种方法给出解释。

  ·主动型资源分配

  ·反应型资源分配

  <4.2.1.主动型资源分配>

  首先,作为主动型资源预留,给出关于通过考虑分组到达间隔T中的抖动和分组尺寸P中的改变来预先分配资源(进行资源预留)的方法的示例的解释。

  (基本原理)

  首先,给出关于主动型资源分配的基本原理的概述的解释。图38是用于解释主动型资源分配的概述的解释图。如图38中所示,在主动型资源分配中(换句话说,在资源预留中),基站通过考虑终端设备中分组到达间隔T的抖动成分α和分组尺寸P的变化成分β来控制用于进行资源预留的范围(下文中,也称为“用于预留资源的范围”)。作为具体的示例,基站以使得预留资源在时间轴方向上的范围变得更宽的方式来执行控制,以允许分组到达定时的不匹配,即,允许分组到达间隔T的抖动成分α(α_min<α<α_max)。而且,基站控制预留资源的尺寸(换句话说,控制预留资源的允许尺寸的范围),以允许与变化成分β对应的分组资源P的改变(P_min<P<P_max)。在下面的解释中,除非另有指示,否则假设“用于预留资源的范围”包括预留资源在时间轴方向上的范围以及预留资源的允许尺寸的范围。

  如上所述,基站预先考虑终端设备中的抖动和分组尺寸中的改变,然后分配可用于终端设备进行周期性分组传输的资源(进行资源的预留)。因此,即使在分组传输定时中存在某些不匹配时或者即使在分组尺寸中存在某些改变时,终端设备也变得能够使用由基站预留的资源中的至少一些来传输分组。

  (操作流程)

  下面参考图39解释在执行主动型资源分配的情况下在根据本申请的第二实施例的系统中执行的操作流程的示例。图39是图示在根据本申请的第二实施例的系统中执行的操作流程的示例的序列图。

  如图39中所示,在连接到小区后,即,在与基站100建立通信后(S201),终端设备200(通知单元247)向基站100提供UE辅助信息(S203)。UE辅助信息包含基站100在SPS中可使用的信息(即,包含SPS辅助信息)。关于UE辅助信息和SPS辅助信息,稍后参考具体示例分别给出详细解释。同时,如前面所解释的,从终端设备200通知给基站100的信息(即,包括在UE辅助信息中的信息(特别是SPS辅助信息))表示“第一类型信息”的示例。

  基站100(信息获得单元153)从终端设备200获得UE辅助信息(S203)。然后,基于由终端设备200提供的UE辅助信息,基站100(通信控制单元151)执行与由终端设备200在分组传输中使用的资源相关的设置,即,进行资源的调度(SPS)。作为具体的示例,基站100(通信控制单元151)设置预留资源的尺寸,设置预留资源的周期(即,SPS周期)并设置用于预留资源的范围。然后,基站100(通知单元155)向终端设备200通知关于SPS配置的信息(S207)。同时,如前面所解释的,从基站100通知给终端设备200的信息(即,关于SPS配置的信息(特别是关于用于预留资源的范围的信息))表示“第二类型信息”的示例。

  随后,当有流量时(即,当生成用于传输的目标分组时)(S209),终端设备200(通知单元247)请求基站100分配传输资源(S211)。在从终端设备200接收到该请求后,基站100(通知单元155)指示终端设备200执行SPS激活(S213)。在从基站100接收到指示后,终端设备200选择SPS配置的资源(S215)。在那时,基于预先通知的关于SPS配置的信息,终端设备200从用于预留资源的范围内选择要在分组传输中使用的资源。然后,终端设备200(通信控制单元241)使用所选择的资源传输分组(S217)。

  到现在为止,参考图39给出了关于在执行主动型资源分配的情况下在根据本申请的第二实施例的系统中执行的操作流程的示例的解释。

  (UE辅助信息)

  下面给出的是在根据第二实施例的系统中由终端设备200作为UE辅助信息提供给基站100的信息的解释。

  终端设备200向基站100提供例如至少或者关于分组到达间隔T的抖动成分α的信息或者关于分组尺寸P的变化成分β的信息作为UE辅助信息。此外,在根据本申请的第二实施例的系统中,终端设备200还可以向基站100提供在常规系统中作为UE辅助信息提供的信息。

  关于分组到达间隔T的抖动成分α的信息的示例包括以下引用的信息。当然,下面引用的信息仅仅是示例性的,并且,如果基站100能够识别出终端设备200的分组到达间隔中的抖动,那么由终端设备200向基站100提供的信息不必限于以下信息。

  ·抖动成分α的最小值α_min

  ·抖动成分α的最大值α_max

  ·抖动成分α的平均

  ·抖动成分α的方差值

  关于分组尺寸P的变化成分β的信息的示例包括以下引用的信息。当然,下面引用的信息仅仅是示例性的,并且,如果基站100能够识别出终端设备200的分组尺寸中的改变,那么由终端设备200提供给基站100的信息不必限于以下信息。

  ·分组尺寸P的变化成分β的最小值β_min

  ·分组尺寸P的变化成分β的最大值β_max

  ·分组尺寸P的变化成分β的平均

  ·分组尺寸P的变化成分β的方差值

  到现在为止,给出了关于在根据本申请的第二实施例的系统中由终端设备200作为UE辅助信息提供给基站100的信息的示例的解释。

  (SPS配置)

  下面给出的是根据本申请的第二实施例的系统中由基站100基于UE辅助信息控制的SPS配置的解释。

  基于由终端设备200提供的UE辅助信息,基站100向终端设备分配SPS资源(即,为该终端设备进行SPS资源的预留)。在那时,例如,基于抖动成分α和变化成分β,基站100以在时间方向和频率方向上连续并有可能被终端设备200在传输中使用的范围被确保为用于预留资源的范围(换句话说,用于分配SPS资源的范围)的方式进行资源预留。作为具体的示例,关于用于预留资源的范围,根据抖动成分α的预期范围(α_min<α<α_max)和分组尺寸P的预期范围(P_min<P<P_max)执行控制。

  而且,除了考虑UE辅助信息之外,基站100还可以考虑以下信息中的至少一个并分配资源(进行资源预留)。

  ·CBR(信道繁忙率)

  ·分组的优先级信息

  ·操作服务的类型

  ·分组的类型信息

  ·终端设备的位置信息

  ·终端设备的速度

  作为具体的示例,基站100可以根据在所使用的频带中测得的CBR(频带的拥塞程度)来决定用于预留资源的范围。作为更具体的示例,当CBR低于阈值时(即,在非拥塞状态下),基站100控制用于预留资源的范围变得更宽。另一方面,当CBR高于阈值时(即,在拥塞状态下),基站100控制用于预留资源的范围被更加限制。

  作为另一个示例,基站可以根据分组的优先级来决定用于预留资源的范围。作为更具体的示例,关于具有高优先级的分组,基站100可以控制用于预留资源的范围变得更宽。另一方面,关于具有低优先级的分组,基站100可以控制用于预留资源的范围被更加限制。

  作为又一个示例,基站100可以根据诸如“传感器数据共享”或“自动驾驶”之类的操作服务的类型来决定用于预留资源的范围。

  作为又一个示例,基站100可以根据诸如eMBB(增强型移动宽带)或URLLC(超可靠的低时延通信)之类的分组类型信息来决定用于预留资源的范围。

  作为又一个示例,基站100可以根据终端设备200的位置信息来决定用于预留资源的范围。作为更具体的示例,当汽车(相当于终端设备200)在高速公路上行驶时,由于有时抖动减少或传输分组的尺寸中的改变减少,因此基站100可以控制用于预留资源的范围被更加限制。而且,当汽车在交通交叉路口周围行驶时,由于有时抖动增加或传输分组的尺寸中的改变增加,因此基站100可以控制用于预留资源的范围变得更宽。

  作为又一个示例,基站100可以根据终端设备200的速度来决定用于预留资源的范围。作为更具体的示例,当汽车(相当于终端设备200)由于交通拥塞而缓慢行驶时,有时抖动减小并且传输分组的尺寸中的变化减小。因此,基站100可以控制用于预留资源的范围被更加限制。另一方面,当汽车高速行驶时,基站100可以控制用于预留资源的范围变得更宽。

  到现在为止,给出了关于在根据本申请的第二实施例的系统中由基站100基于UE辅助信息来控制的SPS配置的示例的解释。

  (资源选择)

  下面参考示例来解释根据本申请的第二实施例的系统中由终端设备200执行的用于资源选择的操作。

  在常规的模式3资源分配中,基站100仅分配必要的资源以供终端设备200传输分组。相比之下,如前面所解释的,在本申请的第二实施例中,在执行主动型资源分配的情况下,与常规的情况相比,基站100向终端设备200分配更多的资源。即,为终端设备200预留的资源数量大于终端设备200在分组传输中实际使用的资源数量。为此,终端设备200从由基站100预留的资源当中选择资源的至少一部分作为要在分组传输中使用的资源。

  基站100可以向终端设备200指示用于选择要在分组传输中使用的资源的方法。在那种情况下,例如,基站可以使用SIB、RRC、PBCH、PDCCH或PDSSH向终端设备通知资源选择方法。作为另一个示例,可以在终端设备200中预先配置用于选择要在分组传输中使用的资源的方法。

  下面参考具体示例解释的是用于选择要在分组传输中使用的资源的方法。

  ·随机选择

  例如,终端设备200可以以随机方式选择要在分组传输中使用的资源。

  ·基于感测的选择

  作为另一个示例,终端设备200可以执行对由其它终端设备200使用的资源的使用状况的感测,并且基于感测的结果,选择要在分组传输中使用的资源。在那种情况下,例如,基站100可以向终端设备200通知(指示)是否执行感测。

  而且,在那种情况下,根据具有与目标终端设备200相同的SPS配置的终端设备的数量(换句话说,资源可能在之间共享的终端设备的数量),基站100可以决定是否指示目标终端设备200执行感测。作为更具体的示例,当具有与目标终端设备200相同的SPS配置的终端设备的数量等于或小于阈值时,基站不需要指示目标终端设备200执行感测。

  而且,基站100可以向终端设备200通知应当由终端设备200针对其进行感测的区域。

  此外,基站100可以向有关终端设备200通知具有与有关终端设备200相同或部分相同的SPS配置的终端设备的数量(换句话说,可能与其共享资源的终端设备的数量)。在这种情况下,根据由基站100通知的终端设备的数量,有关终端设备200可以决定是否执行感测。同时,在这种情况下,基站100可以向有关终端设备200通知关于条件的信息,基于该信息,有关终端设备200可以决定是否执行感测。作为更具体的示例,基站100可以向有关终端设备200通知指示是否执行感测与和有关终端设备200具有相同或部分相同的SPS配置的终端设备的数量的关系的信息作为关于上面提到的条件的信息。作为另一个示例,可以在终端设备200中预先配置关于条件的信息。

  ·根据分组的可传输定时的资源选择

  作为另一个示例,根据生成的分组的可传输定时,终端设备200可以选择要在分组传输中使用的资源。作为具体的示例,终端设备200可以选择使得能够最早传输所生成的分组的资源作为要在分组传输中使用的资源。

  ·根据与每个资源相关联的级别的资源选择

  作为另一个示例,可以将用于预留资源的范围设置为包括多个部分范围,其中从多个级别中设置互不相同的级别。换句话说,可以将由基站100预留的SPS资源分区为多个资源块,并且可以在资源块中设置多个级别当中互不相同的级别。例如,图40至图42是用于解释在通过对SPS资源进行分区而获得的资源块中设置级别的方法的示例的解释图。

  更特别地,在图40中图示了一个示例,其中根据终端设备200中的分组到达间隔T的抖动成分α的概率密度函数将预留的SPS资源(换句话说,资源的预留范围)分区为多个资源块。作为更具体的示例,在图40中图示了一个示例,其中根据抖动成分α的概率密度函数的平均和方差值来设置级别,并且根据级别将预留的SPS资源分区为多个资源块(即,根据级别1至级别3的资源块)。在图40所示的示例中,与级别1对应的资源块表示很有可能在其中执行分组传输的资源块。相反,与级别3对应的资源块表示其中不太可能执行分组传输的资源块。

  在图41中图示了一个示例,其中根据终端设备200中分组的分组尺寸P的变化成分β的概率密度函数将预留的SPS资源(换句话说,资源的预留范围)分区为多个资源块。作为更具体的示例,在图41中图示了一个示例,其中根据变化成分β的概率密度函数的平均和方差值来设置级别,并且根据级别将预留的SPS资源分区为多个资源块(即,根据级别1至级别3的资源块)。在图41所示的示例中,与级别1对应的资源块表示很有可能在其中执行分组传输的资源块。相反,与级别3对应的资源块表示其中不太可能执行分组传输的资源块。

  在图42中图示了一个示例,其中根据终端设备200中分组的分组到达间隔T的抖动成分α的概率密度函数和分组尺寸P的变化成分β的概率密度函数将预留的SPS资源(换句话说,资源的预留范围)分区为多个资源块。作为更具体的示例,在图42中图示了一个示例,其中根据抖动成分α的概率密度函数的平均和方差值以及根据变化成分β的概率密度函数的平均和方差值来设置级别,并且根据级别将预留的SPS资源分区为多个资源块(即,根据级别1至级别3的资源块)。在图42所示的示例中,与级别1对应的资源块表示很有可能在其中执行分组传输的资源块。相反,与级别3对应的资源块表示不太可能在其中执行分组传输的资源块。

  在这种情况下,在将SPS资源分配给终端设备的情况下(即,在预留终端设备200可使用的资源的情况下),基站100将SPS资源分区为多个资源块并将级别与每个资源块相关联。同时,关于用于将SPS资源分区为多个资源块的条件(例如,分区计数、分区尺寸、分区计数的上限和分区尺寸的上限),条件可以根据情况适当变化。然后,基站100可以向终端设备200通知关于通过对SPS资源进行分区而获得的资源块的信息(例如,关于时间和频率的信息)以及关于与资源块相关联的级别的信息。

  而且,在选择资源的情况下,终端设备200可以决定要使用与多个级别当中的哪个级别相关联的哪个资源块用于选择在分组传输中使用的资源。作为具体的示例,终端设备200可以从多个资源块当中的具有最高级别的资源块中选择资源。作为另一个示例,终端设备200可以从多个资源块当中具有最低级别的资源块中选择资源。

  此外,根据级别,可以单独设置与使用与该级别对应的资源块相关的条件(约束)。作为具体的示例,根据级别,可以以将与该级别对应的资源块的使用分类为排他使用或包含使用的方式来设置条件。更特别地,当为级别设置排他使用时,与该级别对应的资源块的使用条件以有关终端设备200以排他方式使用该资源块的方式受到限制。另一方面,当为级别设置包含使用时,与该级别对应的资源块的使用条件以使得即使当为特定的终端设备200进行预留时也允许具有资源块的重叠使得其它终端设备可以选择资源的方式被减轻。例如,在下面给出的表3中,说明了级别与其分类之间的对应关系的示例。

  表3:级别分类示例

  到现在为止,作为主动型资源分配,参考图38至图42给出了关于方法的示例的解释,在该方法中通过考虑分组到达间隔T中的抖动和分组尺寸P中的改变来预先分配(预留)资源。

  <4.2.2.反应型资源分配>

  下面给出的是反应型资源分配的解释。在反应型资源分配中,以与常规SPS相同的方式,以使得频率和分组尺寸变得恒定的方式预留资源;然后在分组传输中有任何问题的情况下分配单独的资源。

  (概述)

  首先,给出关于反应型资源分配的概述的解释。例如,图43是用于解释反应型资源分配的概述的解释图。在图43中图示了当执行反应型资源分配时由终端设备执行的操作流程的示例。

  如图43中所示,当存在流量时(即,当生成用于传输的目标分组时)(S251),终端设备200向基站100确认是否可以使用由基站100预留的SPS资源来传输分组(S253)。作为具体的示例,如果分组尺寸超过SPS资源的尺寸,从而导致用于分组传输的资源不足,那么终端设备200可以确定难以使用SPS资源来传输分组。而且,当SPS资源用于分组传输时,如果难以满足对传输延迟(时延)的请求,那么终端设备200可以确定难以使用SPS资源来传输分组。

  当有可能使用SPS资源来传输分组时(S253为“是”),终端设备200使用SPS资源来传输用于传输的目标分组(S257)。

  另一方面,当难以使用SPS资源来传输分组时(S253为“否”),终端设备200获得用于传输分组的新资源(S255)。同时,关于终端设备200获得用于分组传输的新资源的方法,主要可以引用“请求基站分配资源的方法”和“在终端设备本身中选择资源的方法”。关于那些方法,稍后分别给出详细解释。随后,使用新获得的资源,终端设备200传输目标分组(S257)。

  到现在为止,已经参考图43给出了关于反应型资源分配的概述的解释。

  (请求基站分配资源的方法)

  作为终端设备200获得用于分组传输的新资源的方法的示例,下面给出的是对终端设备200请求基站100分配资源的方法的示例的解释。

  (A-1)用于分配所请求的资源的方法

  首先,给出关于一个示例的解释,其中,当由终端设备200请求资源分配时,基站100分配用于传输终端设备200在那时正试图传输的分组的资源。例如,图44是用于解释当执行反应型资源分配时由终端设备200执行的操作流程的示例的流程图。更特别地,在图44中图示了在请求基站100分配资源的情况下由终端设备200执行的操作流程的示例。

  如图44中所示,当有流量时(S301),终端设备200向基站100确认是否可以使用由基站100预留的SPS资源来传输分组(S303)。如果可以使用SPS资源来传输分组(S303为“是”),那么终端设备200使用SPS资源来传输用于传输的目标分组(S307)。这个操作与参考图43解释的示例相同。

  另一方面,如果难以使用SPS资源来传输分组(S303为“否”),那么终端设备200请求基站100分配资源(S305)。在那种情况下,例如,终端设备200可以向基站100提供关于在那时将要传输的分组的信息,诸如关于传输延迟的要求值和分组尺寸的信息。而且,终端设备200可以向基站100提供关于分组到达间隔T的抖动成分α和分组尺寸P的变化成分β的信息。

  响应于来自终端设备200的请求,基站100分配用于传输终端设备200在那时试图传输的分组的资源。在本文中,在使用已经预留的SPS资源来传输分组的情况下,基站100可以附加地分配与尺寸上的不足相当的资源。更特别地,当已经预留了相当于10个资源块的SPS资源时,如果终端设备200正试图传输相当于15个资源块的分组,那么基站100将与不足对应的五个资源块分配给终端设备200。在那种情况下,终端设备200使用已经预留的SPS资源和新分配的资源来传输分组(S307)。

  作为另一个示例,与已经预留的SPS资源分开,基站100可以新分配用于传输终端设备200在那时试图传输的分组的资源。更特别地,当终端设备200试图传输相当于15个资源块的分组时,除了已经预留的SPS资源之外,基站100还可以向终端设备200新分配15个资源块。在那种情况下,终端设备200使用新分配的资源来传输分组(S307)。

  同时,在这种情况下,由基站100预留的SPS资源表示“第一类型资源”的示例;并且从终端设备200到基站100的与SPS资源分开的被请求分配的资源表示“第二类型资源”的示例。

  (A-2)除了分配所请求的资源之外用于再次执行SPS配置的方法

  下面给出的是关于一个示例的解释,其中,当终端设备200请求资源分配时,基站100除了分配所请求的资源之外还再次执行SPS配置(即,重置SPS配置)。例如,图45是用于解释当执行反应型资源分配时由终端设备200执行的操作流程的另一个示例的流程图。更特别地,在图45中图示了当终端设备200请求基站100分配资源时由基站100执行的操作流程的示例。由于由终端设备200执行的操作与参考图44解释的示例相同,因此不再再次给出其详细解释。

  如图45中所示,在从终端设备200接收到用于分配用于分组传输的资源的请求后(S351),基站将资源新分配给终端设备200(S353)。该操作与参考图44解释的操作相同。即,在使用已经预留的SPS资源来传输分组的情况下,基站100可以附加地分配与尺寸上的不足相当的资源。而且,与SPS资源分开地,基站100可以新分配用于使终端设备200能够传输分组的资源。

  然后,基站100估计关于由终端设备执行的周期性分组传输的未来情况,并确定是否再次执行SPS配置(即,是否重置SPS配置)(S355)。

  例如,取决于从终端设备200接收的请求的内容,基站100可以确定是否再次执行SPS配置。作为具体的示例,当终端设备200传输分组所需的传输延迟的要求值和分组尺寸与当前SPS设置值相差预定量或更多时,基站100可以确定再次执行SPS配置。作为具体的示例,当已经预留了相当于10个资源块的SPS资源时,假设根据来自终端设备200的请求,要求30个资源块。在那时,如果表示不足的20个资源块超过阈值,那么基站再次执行SPS配置。

  作为另一个示例,取决于从终端设备200接收的请求的计数,基站100可以确定是否再次执行SPS配置。

  作为又一个示例,取决于由终端设备200提供的服务的类型(即,取决于与终端设备200相关联的服务类型),基站100可以确定是否再次执行SPS配置。作为具体的示例,当从传输高优先级消息的终端设备200接收到请求时,基站100可以在估计未来情况之后再次执行SPS配置。

  下面给出的是在再次执行SPS配置的情况下有关设置方法的示例的解释。例如,基于意在用于使终端设备200能够传输分组的各种设置的要求值,基站100可以更新SPS配置。

  作为具体的示例,当已经预留了相当于10个资源块的SPS资源时,假设根据来自终端设备200的请求,要求15个资源块。在那种情况下,例如,基站可以分配15个资源块以使终端设备200能够传输分组,并且,预计在后续的周期性分组传输中的相同尺寸的要求,还可以将SPS资源的尺寸更新为15个资源块。

  而且,基站100可以通过考虑终端设备200中的分组到达间隔T的抖动成分α和分组尺寸P的变化成分β来更新SPS配置。作为具体的示例,当已经预留了相当于10个资源块的SPS资源时,假设根据来自终端设备200的请求,要求15个资源块,并且假设考虑在此之前分组尺寸的变化量,要求20个资源块。在那种情况下,例如,终端设备200请求基站100分配用于分组传输的所需资源(15个资源块),并且还向基站100通知分组尺寸的变化量。然后,例如,基站100可以分配15个资源块以使终端设备200能够传输分组,并且还可以通过预计后续周期性分组传输期间分组尺寸的变化来将SPS资源的尺寸更新为20个资源块。而且,当已经从终端设备200获得了关于分组到达间隔的抖动成分的信息时,基站100可以根据抖动成分来更新SPS资源的分配定时(在时间轴方向上的位置),并且可以控制用于分配SPS资源的时间轴方向上的范围。即,以与“主动型资源分配”前面解释的示例相同的方式,响应于来自终端设备200的请求,基站100可以根据分组到达间隔的抖动成分来进行SPS资源的预留。

  (在终端设备自身中选择资源的方法)

  作为终端设备200获得用于分组传输的新资源的方法的示例,下面参考示例来解释终端设备200自身新选择要在分组传输中使用的资源的方法。

  首先,下面参考图46解释的是在由终端设备200自身新选择用于分组传输的资源的情况下由终端设备200执行的操作流程的示例的概述。图46是用于解释当执行反应型资源分配时由终端设备200执行的操作流程的又一个示例的流程图。更特别地,在图46中图示了在由终端设备200自身新选择用于分组传输的资源的情况下由终端设备200执行的操作流程的示例。

  如图46中所示,当生成用于传输的目标分组时(S401),终端设备200使用由基站100预留的SPS资源来确认是否可以传输分组(S403)。如果可以使用SPS资源来传输分组(S403为“是”),那么终端设备200使用SPS资源传输用于传输的目标分组(S407)。

  另一方面,如果难以使用SPS资源来传输分组(S403为“否”),那么终端设备200选择用于传输分组的新资源(S405)。在那时,终端设备200可以选择由基站100预先确保的资源中的一些作为要在分组传输中使用的资源。作为另一个示例,终端设备200可以选择除由基站100预先确保的资源以外的其它资源作为要在分组传输中使用的资源。关于终端设备200选择资源的方法,稍后分别给出具有具体示例的详细解释。然后,终端设备200使用新选择的资源来传输分组(S407)。

  在这种情况下,由基站100预留的SPS资源表示“第一类型资源”的示例,并且由终端设备200与SPS资源分开地且新选择的资源表示“第二类型资源”的示例。

  下面参考具体示例来解释用于选择要在分组传输中使用的资源的方法的解释。

  (B-1)随机选择

  例如,终端设备200可以以随机方式选择要在分组传输中使用的资源。在那时,终端设备200可以将其它终端设备200可能使用的资源视为选择目标。

  (B-2)基于感测的选择

  作为另一个示例,终端设备200可以执行对由其它终端设备200使用的资源的使用状况的感测,并且基于感测的结果,选择要在分组传输中使用的资源。在那时,终端设备200可以将可能由其它终端设备200使用的资源视为选择目标。

  (B-3)根据分组的可传输定时的资源选择

  作为又一个示例,根据生成的分组的可传输定时,终端设备200可以选择要在分组传输中使用的资源。作为具体的示例,终端设备200可以选择使得最早传输所生成的分组的资源作为要在分组传输中使用的资源。在那时,终端设备200可以将可能由其它终端设备200使用的资源视为选择目标。

  (B-4)从备用资源池(BRP)中选择资源

  终端设备200可以从由基站100确保为备用的资源池中选择要在分组传输中使用的资源。在下面的解释中,由基站100确保为备用的资源池也被称为“备用资源池(BRP)”。

  例如,图47是用于解释关于备用资源池(BRP)的设置执行的操作流程的示例的序列图。如图47中所示,在连接到小区后(即,在与基站100建立通信后)(S451),终端设备200向基站100提供UE辅助信息(S453)。UE辅助信息包含基站100在SPS中可使用的信息(即,包含SPS辅助信息)。基于由终端设备200提供的UE辅助信息,基站100执行SPS配置(S455)。即,例如,基站100决定SPS资源的尺寸和SPS周期,并分配SPS资源。

  而且,除了执行SPS配置之外,基站100还执行BRP设置。在那时,例如,基站100可以将被配置用于终端设备200执行诸如V2X通信之类的设备间通信的公共资源池的某个部分设置为BRP。

  此外,例如,基站100可以为多个终端设备200(最终,所有终端设备200)设置公共BRP。而且,作为另一个示例,基站100可以为多个终端设备200设置互不相同的BRP。作为具体的示例,当多个终端设备200中的每一个具有不同的分组到达定时时;基站100可以为每个终端设备200设置在时间轴上具有根据该终端设备200中的分组到达定时而被调整的位置的BRP。

  此外,基站100可以根据情况改变BRP设置(例如,时间轴上的位置和尺寸)。在那种情况下,例如,基站100可以根据诸如其中将要设置BRP的终端设备200的计数、传输消息的优先级信息、服务类型、终端设备200的行进环境以及终端设备200的行进速度之类的信息来更新BRP设置。当然,基站100不需要改变BRP设置。

  随后,如图47中所示,基站100向终端设备200通知关于所分配的SPS资源和BRP的信息(SPS&BRP资源分配)(S457)。

  如上面所解释的,例如,当难以使用SPS资源执行分组传输时,终端设备200可以从BRP中选择要在分组传输中使用的资源。

  作为具体的示例,当在分组传输中使用SPS资源使得难以满足对传输延迟(时延)的请求时,终端设备200可以从BRP中选择要在分组传输中使用的资源。

  作为又一个示例,当分组尺寸超过SPS资源的尺寸从而导致用于分组传输的资源不足时,终端设备200可以从BRP中选择要在分组传输中使用的资源。在那时,在使用SPS资源传输分组的情况下,终端设备200可以附加地选择与尺寸上的不足相当的资源。在那种情况下,终端设备200可以使用SPS资源和从BRP附加地选择的资源来传输分组。作为又一个示例,与SPS资源分开,终端设备200可以从BRP中选择要在分组传输中使用的资源。在那种情况下,终端设备200可以使用从BRP选择的资源代替使用SPS资源来传输分组。

  (B-5)选择其它终端设备未使用的资源

  作为另一个示例,通过识别关于其它终端设备200选择资源的情况,相关终端设备200可以选择其它终端设备200未使用的资源。

  例如,图48是用于解释当执行反应型资源分配时由终端设备200执行的操作流程的又一个示例的流程图。更特别地,在图48中图示了在终端设备200本身新选择要在分组传输中使用的资源的情况下由终端设备200执行的操作的另一个示例。换句话说,在图48中图示了终端设备200选择其它终端设备200未使用的资源的示例。

  如图48中所示,有关终端设备200获得关于其它终端设备200的SPS配置的信息(S501)。因此,基于获得的信息,相关终端设备200变得能够识别其它终端设备200未使用的资源。在这种情况下,有关终端设备200可以基于例如从基站100传输(例如,广播)的信息来识别其它终端设备200未使用的资源。作为另一个示例,有关终端设备200和其它终端设备200可以相互共享关于相应SPS配置的信息。在那种情况下,基站100可以使用公共SPS小区RNTI在相互共享信息的多个终端设备200中执行SPS配置。在那时,基站100不需要对SPS小区RNTI进行加扰。另一方面,在对SPS小区RNTI进行加扰的情况下,基站100可以将公共加扰序列用于相互共享信息的多个终端设备200。

  随后,当生成用于传输的目标分组时,终端设备200确认是否可以使用SPS资源来传输分组(S503)。如果可以使用SPS资源来传输分组(S503为“是”),那么终端设备200选择SPS资源(S505)并传输用于传输的目标分组(S509)。

  另一方面,如果难以使用SPS资源来传输分组(S503为“否”),那么终端设备200可以选择根据共享的信息识别出的其它终端设备200未使用的资源作为要在分组传输中使用的资源(S507)。然后,终端设备200使用所选择的资源(即,使用其它终端设备200未使用的资源)来传输分组(S509)。

  同时,可以基于预定条件来设置要在之间共享关于SPS配置的信息的终端设备200。

  作为具体的示例,可以根据由那些终端设备200传输的分组的属性来设置要在之间共享信息的终端设备200。作为更具体的示例,可以将具有分组到达定时的近似分布(最终,基本上相同的分布)的多个终端设备200设置为要在之间共享信息的终端设备200。作为另一个示例,可以将具有分组尺寸的近似分布(最终,基本上相同的分布)的多个终端设备200设置为要在之间共享信息的终端设备200。作为又一个示例,可以将具有基本上相同的分组的优先级信息的多个终端设备200设置为要在之间共享信息的终端设备200。作为又一个示例,可以将具有基本上相同的所提供的服务的类型(基本上相同的服务类型)的多个终端设备200设置为要在之间共享信息的终端设备200。

  同时,可以根据它们之间的干扰程度来设置要在其中共享信息的终端设备200。作为更具体的示例,可以将之间难以发生干扰的多个终端设备200设置为要在之间共享信息的终端设备200。

  ·补充解释

  同时,以上解释的选择方法仅仅是示例性的,并且不必限制终端设备200自身选择资源的方法。作为具体示例,也有可能组合上面解释的选择方法中的两种或更多种。作为更具体的示例,终端设备200可以从备用资源池中随机选择要在分组传输中使用的资源。

  <4.2.3.修改示例>

  下面给出的是根据本申请的修改示例的解释。

  在反应型资源分配的情况下,由于可能有使用未预先确保的资源的情况。因此,有可能有分组传输连续不成功的情况,诸如每次周期性分组传输都不成功的情况。鉴于这种情况,当通过参考SPS配置推断出后续分组传输也有可能不成功时,终端设备200可以将其通知给基站100并请求基站100再次执行SPS配置。而且,不管来自终端设备200的请求如何,基站100都可以基于其自己的判断再次执行SPS配置。

  (由终端设备执行的操作)

  下面参考图49和图50解释根据修改示例的系统中由终端设备200执行的操作的示例。例如,图49是用于解释根据修改示例的系统中由终端设备200执行的操作流程的示例的流程图。

  在图49所示的示例中,当有流量时(即,当生成用于传输的目标分组时)(S551),终端设备200向基站100确认是否可以使用由基站100预留的SPS资源来传输分组(S553)。如果可以使用SPS资源传输分组(S553为“是”),那么终端设备200使用SPS资源传输用于传输的目标分组(S561)。

  另一方面,当难以使用SPS资源来传输分组时(S553为“否”),终端设备200如先前在“反应型资源分配”的示例中所解释的那样获得在分组传输中可使用的资源(S555)。而且,基于在那时的SPS配置,终端设备200确定后续分组传输是否可能(即,后续的周期性分组传输是否可能)并确定是否向基站100报告确定结果(S557)。关于用于确定分组传输是否可能的方法的示例,稍后分别给出详细解释。

  如果确定需要向基站100报告(S557为“是”),那么终端设备200向基站100报告后续分组传输可能不成功的事实(S559),并且使用新获得的资源来传输分组(S561)。另一方面,如果确定不需要向基站100报告(S559为“否”),那么终端设备200不向基站100报告并且使用新获得的资源来传输分组(S561)。

  图50是用于解释根据修改示例的系统中由终端设备200执行的操作流程的另一个示例的流程图。

  在图50所示的示例中,当有流量时(即,当生成用于传输的目标分组时)(S601),终端设备200向基站100确认是否可以使用由基站100预留的SPS资源来传输分组(S603)。如果有可能使用SPS资源来传输分组(S603为“是”),那么终端设备200使用SPS资源传输用于传输的目标分组(S605)。

  另一方面,如果难以使用SPS资源来传输分组(S603为“否”),如先前在“反应型资源分配”的示例中所解释的那样,终端设备200获得在传输分组中可使用的资源(S607)。然后,终端设备200使用新获得的资源来传输分组(S609)。

  随后,基于在那时的SPS配置,终端设备200确定是否有可能进行后续的分组传输并确定是否将确定结果报告给基站100(S611)。关于确定分组传输是否可能的方法的示例,稍后分别给出详细解释。

  如果确定需要向基站100报告(S611为“是”);那么终端设备200向基站100报告后续分组传输可能不成功的事实(S613)。另一方面,如果确定不需要向基站100报告(S611为“否”),那么终端设备200不向基站100报告。

  到现在为止,参考图49和图50给出了关于根据修改示例的系统中由终端设备200执行的操作流程的示例的解释。

  (确定是否需要向基站报告)

  下面给出的是对方法的示例的解释,通过该方法,基于在那时的SPS配置,终端设备200确定后续分组传输是否可能并确定是否将确定结果报告给基站100。

  例如,基于在那时的SPS配置,根据是否难以维持通信的QoS(服务质量),终端设备200可以向基站100报告后续分组传输有可能不成功的事实。作为更具体的示例,如果连续j次(其中j是等于或大于一的整数)中连续发生m次传输失败(其中m是等于或大于一的整数),那么终端设备200可以将其报告给基站100。在本文中,变量m和j可以由终端设备200自身决定,或者可以由基站100决定。而且,关于变量m和j,可以在多个终端设备200中共同设置相同的值,或者可以在多个终端设备200中单独设置不同的值。

  作为另一个示例,当接收到针对分组传输的NACK时,终端设备200可以向基站100报告后续分组传输有可能不成功的事实。

  (从终端设备向基站的报告的内容)

  以下给出的是当后续分组传输有可能不成功时由终端设备200向基站100发送的报告的内容的示例的解释。

  例如,在向基站100报告后续分组传输有可能不成功的事实的情况下,终端设备200可以在报告中包括至少关于传输不成功的原因的信息。作为具体的示例,终端设备200可以向基站100报告难以满足传输延迟(时延)的请求的事实或如果仅使用SPS资源则分组传输中的资源不足的事实。

  而且,终端设备200可以在向基站100的报告中包括关于分组传输的信息。作为具体示例,终端设备200可以在向基站100的报告中包括指示过去的分组传输中不能维持QoS的次数的信息。

  (由基站执行的操作)

  下面参考图51解释的是在从终端设备200接收到报告后由基站100执行的操作流程的示例。图51是用于解释在根据修改示例的系统中由基站100执行的操作流程的示例并且特别用于解释在从终端设备200接收到报告后执行的操作流程的流程图。

  如图51中所示,当从终端设备200接收到指示后续分组传输有可能不成功的报告时(S651),基站100根据报告的内容确定是否再次执行SPS配置(即,是否执行SPS重新配置)(S653)。作为具体的示例,当确定从其接收到报告的终端设备200发现难以维持通信的QoS时,基站100可以确定需要再次执行SPS配置。作为更具体的示例,当从终端设备200接收到报告n次以上时(n为等于或大于一的整数),基站100确定终端设备200发现难以维持通信的QoS,并且可以确定需要再次执行SPS配置。在本文中,关于变量n,可以在多个终端设备200中共同设置相同的值,或者可以在多个终端设备200中分别设置不同的值。

  当决定再次执行SPS配置时(S653为“是”),基站100根据从终端设备200接收的报告的内容来重新配置SPS资源(S655)。在那时,以如“主动型资源分配”先前解释的示例相同的方式,基站100可以根据分组到达间隔的抖动成分来重新配置SPS资源(即,可以进行SPS资源的预留)。然后,基站100向终端设备200通知关于新SPS配置的信息(S657)。因此,在后续分组传输定时,基于新SPS配置,终端设备200变得能够识别将在分组传输中使用的SPS资源。

  同时,如果确定不需要再次执行SPS配置(S653为“否”),那么基站100无需执行S655和S657的操作。

  到现在为止,给出了根据本申请的系统的修改示例的解释。

  <4.3.评估>

  如上面所解释的,在根据本申请的第二实施例的系统中,终端设备向基站通知关于在设备间通信期间向其它终端设备执行周期性分组传输的条件的第一类型信息。第一类型信息例如包含至少或者与在设备间通信期间周期性地传输的分组中的抖动相关的信息或者关于分组的尺寸变化的信息。在通知第一类型信息之后,终端设备从基站获得关于被分配为在周期性分组传输中可使用的传输资源的第二类型信息。然后,基于第二类型信息,终端设备选择要在周期性分组传输中使用的资源。

  利用这种配置,例如,根据流量中包括的抖动成分而在分组传输定时中存在可变性的情况,或者在所传输的分组的尺寸中存在变化的情况,基站变得能够以更灵活的方式分配资源。即,在根据本申请的第二实施例的系统中,可以在包括V2X通信的设备间通信中以更灵活的方式分配资源。同时,在执行设备间通信的多个终端设备当中,一些终端设备表示“第一类型终端设备”的示例,并且剩余终端设备表示“第二类型终端设备”的示例。

  而且,在根据本申请的实施例的系统中,根据关于被分配用于在设备间通信期间的分组传输中使用的第一类型资源的信息,并且根据关于被调度进行传输的分组的信息,终端设备请求基站分配与第一类型资源不同的第二类型资源。

  例如,利用这样的配置,即使当难以使用预先分配的(预留的)第一类型资源来传输分组时,终端设备也可以使用由基站响应于请求而新分配的第二类型资源来传输分组。即,即使在根据流量中包括的抖动成分而在分组传输定时中存在可变性的情况下或者在所传输的分组的尺寸存在变化的情况下,终端设备也可以根据情况向基站发布资源分配请求,并且因此可以以稳定的方式传输分组。

  而且,在根据本申请的实施例的系统中,根据关于在设备间通信期间被分配用于在分组传输中使用的第一类型资源的信息并且根据关于被调度进行传输的分组的信息,终端设备选择与第一类型资源不同的第二类型资源。

  例如,利用这样的配置,即使当难以使用预先分配的(预留的)第一类型资源来传输分组时,终端设备也可以使用新选择的第二类型资源来传输分组。即,即使在根据流量中包括的抖动成分而在分组传输定时中存在可变性的情况下或者在所传输的分组的尺寸存在变化的情况下,终端设备也可以根据情况新选择资源并且因此可以以稳定的方式传输分组。

  特别地,在NR V2X通信中,支持要求高可靠性、低延迟、高速通信和高容量的用例,这些在过去基于LTE的V2X通信中是不支持的。而且在这种情况下,在根据本申请的第二实施例的系统中,基于上面解释的构造,可以以更灵活的方式来处理NR V2X通信中支持的各种用例中的每一个。

  <<5.应用示例>>

  本申请中公开的技术可以应用于各种产品。例如,基站100可以被实现为或者宏eNB类型或者小eNB类型的eNB(演进节点B)。诸如微微eNB或微eNB或家庭(毫微微)eNB之类的小eNB可以是覆盖比宏小区更小的小区的eNB。可替代地,基站100可以被实现为某种其它类型的基站,诸如NodeB或BTS(基站收发信台)。基站100可以包括控制无线通信的主体(也称为基站设备),并且包括放置在与主体不同的位置处的一个或多个RRH(远程无线电头)。仍然可替代地,各种类型的终端(稍后描述)可以被配置为临时或永久地执行基站功能,并且作为基站100来操作。

  同时,例如,终端设备200或300可以被实现为移动设备,诸如智能电话、平板PC(个人计算机)、笔记本PC、便携式游戏终端、便携式/加密狗式移动路由器或数码相机;或者可以被实现为车载终端,诸如汽车导航设备。可替代地,终端设备200或300可以被实现为执行M2M(机器对机器)通信的终端(也称为MTC(机器类型通信)终端)。还可替代地,终端设备200或300可以是安装在这样的终端上的无线通信模块(例如,使用单个基站100管芯配置的集成电路模块)。

  <5.1.与基站相关的应用示例>

  (第一应用示例)

  图52是图示eNB的示意性配置的第一示例的框图,其中在本申请中公开的技术是适用的。eNB 800包括一个或多个天线810以及基站设备820。天线810可以通过RF电缆连接到基站设备820。

  每个天线810包括一个或多个天线元件(例如,构成MIMO天线的多个天线元件),并且被基站设备820用于传输和接收无线电信号。eNB 800包括如图52中所示的多个天线810,并且每个天线810与例如由eNB 800使用的多个频带之一对应。同时,在图52所示的示例中,虽然eNB 800包括多个天线810,但是它可以可替代地仅包括单个天线810。

  基站设备820包括控制器821、存储器822、网络接口823和无线通信接口825。

  控制器821可以是例如CPU或DSP,并且实现基站设备820的上层的各种功能。例如,控制器821根据存在于由无线通信接口825处理的信号中的数据生成数据分组,并且经由网络接口823传送生成的数据分组。而且,控制器821可以通过捆绑从多个基带处理器接收的数据来生成捆绑的分组,并且传送捆绑的分组。此外,控制器821可以具有用于执行诸如无线电资源控制、无线电承载控制、移动性管理、准入控制和调度之类的控制的逻辑功能。可以与周围的eNB或核心网络节点协作执行该控制。存储器822包括RAM和ROM,并且被用于存储由控制器821执行的程序并存储各种控制数据(诸如终端列表、传输功率数据和调度数据)。

  网络接口823是用于将基站设备820连接到核心网络824的通信接口。控制器821可以经由网络接口823与核心网络节点和其它eNB通信。在那种情况下,eNB 800可以通过逻辑接口(诸如S1接口或X2接口)连接到核心网络节点和其它eNB。网络接口823可以是有线通信接口,或者可以是用于无线电回程的无线通信接口。当网络接口823是无线通信接口时,它可以使用比无线通信接口825所使用的频带更高的频带来执行无线通信。

  无线通信接口825支持诸如LTE(长期演进)或LTE-Advanced之类的任何一种蜂窝通信方法,并且经由天线810向位于eNB 800的小区内部的终端提供无线连接。通常,无线通信接口825可以包括基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及多路复用/逆多路复用;并且对每一层(例如,L1、MAC(介质访问控制)、RLC(无线电链路控制)和PDCP(分组数据汇聚协议))执行各种信号处理。BB处理器826可以代替控制器821包括前面提到的一些或全部逻辑功能。BB处理器826可以是模块,其包括用于存储通信控制程序的存储器、用于执行该程序的处理器以及相关电路,并且BB处理器826的功能可以通过更新通信控制程序来改变。可替代地,模块可以是插入到基站设备820的插槽中的卡或刀片,或者可以是安装在卡或刀片上的芯片。RF电路827可以包括混频器、滤波器和放大器,并且经由天线810传输和接收无线电信号。

  无线通信接口825包括多个BB处理器826,如图52中所示,并且每个BB处理器826可以与例如由eNB 800使用的多个频带之一对应。而且,无线通信接口825包括多个RF电路827,如图52中所示,并且每个RF电路827可以与例如多个天线元件之一对应。在图52中图示了其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例。但是,可替代地,无线通信接口825可以包括仅单个BB处理器826或仅单个RF电路827。

  在图52所示的eNB 800中,参考图2解释的基站100的一个或多个构成元件(即,通信控制单元151、信息获得单元153和通知单元155中的至少一个)可以在无线通信接口825中实现。可替代地,可以将构成元件中的至少一些安装在控制器821中。作为示例,在eNB800中,可以安装包括或者无线通信接口825的某个部分(例如,BB处理器826)或者整个无线通信接口825和/或控制器821的模块,并且上面提到的一个或多个构成元件可以在该模块中实现。在那种情况下,模块可以在其中存储意在用于使处理器用作上面提到的一个或多个构成元件的程序(换句话说,意在用于在处理器中执行上面提到的一个或多个构成元件的操作的程序),并且可以执行该程序。作为另一个示例,意在用于使处理器用作上面提到的一个或多个构成元件的程序可以安装在eNB 800中,并且无线通信接口825(例如,BB处理器826)和/或控制器821可以执行该程序。如上所述,可以提供eNB 800或基站设备820或上面提到的模块作为包括上面提到的一个或多个构成元件的设备,或者可以提供意在用于使处理器用作上面提到的一个或多个构成元件的程序。可替代地,可以提供其中记录有程序的可读记录介质。

  此外,在图52所示的eNB 800中,参考图2解释的无线通信单元120可以在无线通信接口825(例如,RF电路827)中实现。此外,天线单元110可以在天线810中实现。而且,网络通信单元130可以在控制器821和/或网络接口823中实现。此外,存储器单元140可以在存储器822中实现。

  (第二应用示例)

  图53是图示eNB的示意性配置的第二示例的框图,其中在本申请中公开的技术是适用的。eNB 830包括一个或多个天线840、基站设备850以及RRH 860。每个天线840通过RF电缆连接到RRH 860。而且,基站设备850和RRH 860可以通过诸如光纤电缆之类的高速线路彼此连接。

  每个天线840包括一个或多个天线元件(例如,构成MIMO天线的多个天线元件),并且被RRH 860用于传输和接收无线电信号。如图53中所示,eNB 830包括多个天线840,并且每个天线840例如与由eNB 830使用的多个频带之一对应。同时,在图53所示的示例中,虽然eNB 830包括多个天线840,但是其可以可替代地仅包括单个天线840。

  基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855和连接接口857。控制器851、存储器852和网络接口853分别与参考图52解释的控制器821、存储器822和网络接口823相同。

  无线通信接口855支持诸如LTE或LTE-Advanced之类的任何一种蜂窝通信方法,并且经由RRH 860和天线840向位于与RRH 860对应的扇区内的终端提供无线连接。通常,无线通信接口855可以包括BB处理器856。除BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参考图52解释的BB处理器826相同。无线通信接口855包括多个BB处理器856,如图53中所示,并且每个BB处理器856可以与例如由eNB 830使用的多个频带之一对应。同时,在图53所示的示例中,虽然无线通信接口855包括多个BB处理器856,但是其可以可替代地仅包括单个BB处理器856。

  连接接口857意在用于将基站设备850(无线通信接口855)连接到RRH 860。连接接口857可以是用于使得能够在上面提到的连接基站设备850(无线通信接口855)和RRH 860的高速线路中进行通信的通信模块。

  RRH 860包括连接接口861和无线通信接口863。

  连接接口861是用于将RRH 860(无线通信接口863)连接到基站设备850的接口。连接接口861可以是使得能够在高速线路中进行通信的通信模块。

  无线通信接口863经由天线840传输和接收无线电信号。通常,无线通信接口863可以包括RF电路864。RF电路864可以包括混频器、滤波器和放大器;并经由天线840传输和接收无线电信号。无线通信接口863包括多个RF电路864,如图53中所示,并且每个RF电路864可以与例如多个天线元件之一对应。同时,在图53所示的示例中,虽然无线通信接口863包括多个RF电路864,但是其可以可替代地仅包括单个RF电路864。

  在图53所示的eNB 830中,参考图2解释的基站100中包括的一个或多个构成元件(即,通信控制单元151、信息获得单元153和通知单元155中的至少一个)可以在无线通信接口855和/或无线通信接口863中实现。可替代地,构成元件中的至少一些可以安装在控制器851中。作为示例,在eNB 830中,可以安装包括或者无线通信接口855的某个部分(例如,BB处理器856)或者整个无线通信接口855和/或控制器851的模块,并且上面提到的一个或多个构成元件可以在该模块中实现。在那种情况下,模块可以在其中存储意在用于使处理器用作上面提到的一个或多个构成元件的程序(换句话说,用于在处理器中执行上面提到的一个或多个构成元件的操作的程序),并且可以执行该程序。作为另一个示例,意在用于使处理器用作上面提到的一个或多个构成元件的程序可以安装在eNB 830中,并且无线通信接口855(例如,BB处理器856)和/或控制器851可以执行该程序。如上所述,可以将eNB 830、基站设备850或上面提到的模块作为包括上面提到的一个或多个构成元件的设备来提供;或者可以提供意在用于使处理器用作上面提到的一个或多个构成元件的程序。可替代地,可以提供其中记录有程序的可读记录介质。

  此外,在图53所示的eNB 830中,参考图2解释的无线通信单元120可以在无线通信接口863(例如,RF电路864)中实现。此外,天线单元110可以在天线840中实现。而且,网络通信单元130可以在控制器851和/或网络接口853中实现。此外,存储器单元140可以在存储器852中实现。

  <5.2.与终端设备相关的应用示例>

  (第一应用示例)

  图54是图示智能电话900的示意性配置的示例的框图,其中在本申请中公开的技术是适用的。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、相机906、传感器907、麦克风908、输入设备909、显示设备910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918和辅助控制器919。

  处理器901可以是例如CPU或SoC(片上系统),并且控制智能电话900的应用层和其它层的功能。存储器902包括RAM和ROM,并且用于存储由处理器901执行的程序并存储数据。存储装置903可以包括诸如半导体存储器或硬盘之类的存储介质。外部连接接口904是用于将诸如存储卡或USB(通用串行总线)设备之类的外部设备连接到智能电话900的接口。

  相机906包括成像设备,诸如CCD(电荷耦合器件)或CMOS(互补金属氧化物半导体),并生成捕获的图像。传感器907可以包括一组传感器,诸如定位传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换成声音信号。输入设备909包括例如用于检测在显示设备910的屏幕上的触摸的触摸传感器,或者小键盘或键盘或按钮或开关;并接收从用户输入的操作和信息。显示设备910具有诸如液晶显示器(LCD)或有机发光二极管(OLED)显示器之类的屏幕,并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的声音信号转换成声音。

  无线通信接口912支持诸如LTE或LTE-Advanced之类的任何一种蜂窝通信方法,并实现无线通信。通常,无线通信接口912可以包括BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及多路复用/逆多路复用;并执行各种信号处理用于无线通信。RF电路914可以包括混频器、滤波器和放大器;并经由天线916传输和接收无线电信号。同时,无线通信接口912可以是其中集成了BB处理器913和RF电路914的单芯片模块。而且,无线通信接口912可以包括多个BB处理器913和多个RF电路914,如图54中所示。同时,在图54所示的示例中,虽然无线通信接口912包括多个BB处理器913和多个RF电路914,但是其可替代地可以包括仅单个BB处理器913或仅单个RF电路914。

  此外,除了支持蜂窝通信方法之外,无线通信接口912还可以支持其它类型的无线通信方法,诸如近场通信方法、近距离无线通信方法和无线LAN(局域网)方法。在那种情况下,对于每种无线通信方法,无线通信接口912都可以分别包括BB处理器913和RF电路914。

  每个天线开关915在无线通信接口912中包括的多个电路(例如,意在用于不同的无线通信方法的电路)之间切换天线916的连接目的地。

  每个天线916包括一个或多个天线元件(例如,构成MIMO天线的多个天线元件),并且被无线通信接口912用于传输和接收无线电信号。如图54中所示,智能电话900可以包括多个天线916。同时,在图54所示的示例中,虽然智能电话900包括多个天线916,但是其可以可替代地仅包括单个天线916。

  此外,智能电话900可以针对每种无线通信方法分别包括天线916。在该情况下,可以从智能电话900的配置中省略天线开关915。

  总线917将处理器901、存储器902、存储装置903、外部连接接口904、相机906、传感器907、麦克风908、输入设备909、显示设备910、扬声器911、无线通信接口912和辅助控制器919彼此连接。电池918经由电源线向图54中所示的智能电话900的每个块供电,该电源线在图54中使用虚线部分地示出。辅助控制器919在例如睡眠模式下实现智能电话900的最小所需功能。

  在图54所示的智能电话900中,包括在参考图3解释的终端设备200中的一个或多个构成元件(即,通信控制单元241、信息获得单元243、确定单元245和通知单元247中的至少一个)可以在无线通信接口912中实现。可替代地,可以将构成元件中的至少一些安装在处理器901或辅助控制器919中。作为示例,在智能电话900中,可以安装包括或者无线通信接口912的某个部分(例如,BB处理器913)或者整个无线通信接口912、处理器901和/或辅助控制器919的模块;并且上面提到的一个或多个构成元件可以在该模块中实现。在那种情况下,模块可以在其中存储用于使处理器用作上面提到的一个或多个构成元件的程序(换句话说,意在用于在处理器中执行上面提到的一个或多个构成元件的操作的程序),并且可以执行该程序。作为另一个示例,意在用于使处理器用作上面提到的一个或多个构成元件的程序可以安装在智能电话900中;并且无线通信接口912(例如,BB处理器913)、处理器901和/或辅助控制器919可以执行该程序。如上所述,可以将智能电话900或上面提到的模块作为包括上面提到的一个或多个构成元件的设备来提供;或者可以提供意在用于使处理器用作上面提到的一个或多个构成元件的程序。可替代地,可以提供其中记录有程序的可读记录介质。

  此外,在图54所示的智能电话900中,参考图3解释的无线通信单元220可以在无线通信接口912(例如,RF电路914)中实现。此外,天线单元210可以在天线916中实现。而且,存储器单元230可以在存储器902中实现。

  (第二应用示例)

  图55是图示汽车导航设备920的示意性配置的示例的框图,其中在本申请中公开的技术是适用的。汽车导航设备920包括处理器921、存储器922、GPS(全球定位系统)模块924、传感器925、数据接口926、内容播放器927、存储器介质接口928、输入设备929、显示设备930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937和电池938。

  处理器921可以是例如CPU或SoC,并且控制汽车导航设备920的导航功能和其它功能。存储器922包括RAM和ROM,并且用于存储由处理器921执行的程序并存储数据。

  GPS模块924使用从GPS卫星接收的GPS信号,并测量汽车导航设备920的位置(例如,纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和压力传感器。数据接口926经由端子(未示出)连接到例如车载网络941,并且获得诸如在车辆中生成的车速数据之类的数据。

  内容播放器927再现在存储器介质接口928中插入的存储器介质(例如,CD或DVD)中存储的内容。输入设备929包括用于检测显示设备930的屏幕上的触摸的触摸传感器、或者包括按钮或者包括开关;并接收从用户输入的操作和信息。显示设备930具有诸如LCD或OLED显示器之类的屏幕,并且显示导航功能或再现的内容的图像。扬声器931输出导航功能的声音或再现的内容的声音。

  无线通信接口933支持诸如LTE或LTE-Advanced之类的任何一种蜂窝通信方法,并实现无线通信。通常,无线通信接口933可以包括BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及多路复用/逆多路复用;并执行各种信号处理用于无线通信。RF电路935可以包括混频器、滤波器和放大器;并且经由天线937传输和接收无线电信号。同时,无线通信接口933可以是其中集成了BB处理器934和RF电路935的单芯片模块。此外,无线通信接口933可以包括多个BB处理器934和多个RF电路935,如图55中所示。同时,在图55所示的示例中,虽然无线通信接口933包括多个BB处理器934和多个RF电路935,但是其可替代地可以包括仅单个BB处理器934或仅单个RF电路935。

  此外,除了支持蜂窝通信方法之外,无线通信接口933还可以支持其它类型的无线通信方法,诸如近场通信方法、近距离无线通信方法和无线LAN方法。在那种情况下,对于每种无线通信方法,无线通信接口933可以分别包括BB处理器934和RF电路935。

  每个天线开关936在无线通信接口933中包括的多个电路(例如,用于不同的无线通信方法的电路)之间切换天线937的连接目的地。

  每个天线937包括一个或多个天线元件(例如,构成MIMO天线的多个天线元件),并且被无线通信接口933用于传输和接收无线电信号。汽车导航设备920可以包括多个天线937,如图55中所示。同时,在图55所示的示例中,虽然汽车导航设备920包括多个天线937,但是其可替代地可以仅包括单个天线937。

  而且,汽车导航设备920可以针对每种无线通信方法分别包括天线937。在那种情况下,可以从汽车导航设备920的配置中省略天线开关936。

  电池938经由电源线向图55所示的汽车导航设备920的每个块供电,该电源线在图55中使用虚线部分地示出。此外,电池938存储从车辆供应的电力。

  在图55所示的汽车导航设备920中,参考图3解释的终端设备200中包括的一个或多个构成元件(即,通信控制单元241、信息获得单元243、确定单元245和通知单元247中的至少一个)可以在无线通信接口933中实现。可替代地,构成元件中的至少一些可以安装在处理器921中。作为示例,在汽车导航设备920中,可以安装包括或者无线通信接口933的某个部分(例如,BB处理器934)或者整个无线通信接口933和/或处理器921的模块;并且上面提到的一个或多个构成元件可以在该模块中实现。在那种情况下,模块可以在其中存储用于使处理器用作上面提到的一个或多个构成元件的程序(换句话说,意在用于在处理器中执行上面提到的一个或多个构成元件的操作的程序),并且可以执行该程序。作为另一个示例,意在用于使处理器用作上面提到的一个或多个构成元件的程序可以安装在汽车导航设备920中;并且无线通信接口933(例如,BB处理器934)和/或处理器921可以执行该程序。如上所述,可以将汽车导航设备920或上面提到的模块作为包括上面提到的一个或多个构成元件的设备来提供;或者可以提供意在用于使处理器用作上面提到的一个或多个构成元件的程序。可替代地,可以提供其中记录有程序的可读记录介质。

  此外,在图55所示的汽车导航设备920中,参考图3解释的无线通信单元220可以在无线通信接口933(例如,RF电路935)中实现。此外,天线单元210可以在天线937中实现。此外,存储器单元230可以在存储器922中实现。

  同时,在本申请中公开的技术可以被实现为包括汽车导航设备920的一个或多个块、车载网络941以及车辆侧模块942的车载系统(或车辆)940。车辆侧模块942生成车辆数据,例如车速、发动机转数和故障信息,并将生成的数据输出到车载网络941。

  <<6.总结>>

  虽然以上参考附图以实施例的形式详细描述了本申请,但是本申请的技术范围不限于上述实施例。即,本申请将被解释为实施对于本领域技术人员而言可以想到的完全落入本文所述的基本教导内的所有修改,诸如其它实施例、增加、替代构造和删除。以其任何形式,只要实现了本申请的功能/效果,这些修改就都包括在本申请的范围内。

  在本书面说明书中描述的效果仅仅是说明性和示例性的,并且在范围上不受限制。即,除了上述效果之外或代替上述效果,在本申请中公开的技术使得能够实现本领域技术人员可能想到的其它效果。

  同时,如下面所解释的配置也落入本申请的技术范围内。

  (1)一种通信设备,包括:

  通信单元,执行无线通信;

  获得单元,从其它通信设备获得关于由所述其它通信设备已预留用于在设备间通信中使用的资源中的一些的第一类型范围的信息;以及

  控制单元,基于所获得的关于第一类型范围的信息,控制从中选择用于在设备间通信中使用的资源的第二类型范围。

  (2)根据(1)所述的通信设备,其中控制单元基于关于第一类型范围的信息来限制第二类型范围。

  (3)根据(1)或(2)所述的通信设备,其中

  第一类型范围包括多个第三类型范围,

  所述多个第三类型范围中的每一个第三类型范围关联有多个级别之一,

  在关于第一类型范围的信息中,关联有包括在第一类型范围中的关于第三类型范围的信息,以及

  控制单元根据所获得的关于第三类型范围的信息来控制第二类型范围。

  (4)根据(3)所述的通信设备,其中

  关于第三类型范围的信息包含关于对第三类型范围设置的级别的级别信息,以及

  根据所获得的级别信息,控制单元以使得所述多个第三类型范围中的一些包括在第二类型范围中的方式来执行控制。

  (5)根据(4)所述的通信设备,其中

  所述多个级别包括

  与以排他方式使用的第三类型范围相关联的第一级别,以及与以包含方式使用的第三类型范围相关联的第二级别,以及

  根据所获得的级别信息,控制单元从与第二级别相关联的第三类型范围当中决定要包括在第二类型范围中的第三类型范围的候选。

  (6)根据(4)或(5)所述的通信设备,其中控制单元基于从基站通知的条件,根据级别信息来决定要包括在第二类型范围中的第三类型范围的候选。

  (7)根据(4)至(6)中的任一项所述的通信设备,其中

  根据在第二类型范围中执行的搜索的结果,该第二类型范围被控制为包括与所述多个级别当中的一些级别对应的第三类型范围,对于设备间通信中可使用的资源,

  控制单元控制第二类型范围以包括与除所述一些级别以外的其它不同级别对应的第三类型范围,并且在第二类型范围中对在设备间通信中可使用的资源进行重新搜索。

  (8)根据(7)所述的通信设备,其中

  控制单元根据指示以下内容的至少任意一项的信息来决定用于执行重新搜索的其它级别

  使用从由其它通信设备设置的第一类型范围中选择的资源执行的设备间通信的优先级,

  使用从第二类型范围中选择的资源执行的设备间通信的优先级,

  设备间通信中使用的频带的拥塞。

  (9)根据(1)至(8)中的任一项所述的通信设备,其中

  关于第一类型范围的信息包含第一类型优先级信息,所述第一类型优先级信息由所述其它通信设备设置并且关于使用从第一类型范围中选择的资源的设备间通信的优先级,以及

  控制单元基于第一类型优先级信息来控制第二类型范围。

  (10)根据(9)所述的通信设备,其中控制单元基于第一类型优先级信息并且基于第二类型优先级信息来控制第二类型范围,所述第二类型优先级信息关于使用从第二类型范围中选择的资源的设备间通信的优先级。

  (11)根据(1)至(10)中的任一项所述的通信设备,其中

  设备间通信表示在多个通信设备之间周期性地传输分组的无线通信,以及

  第一类型范围被设置为在与分组的传输相关的时段期间按时间次序连续的单个范围。

  (12)根据(1)至(10)中的任一项所述的通信设备,其中

  设备间通信表示在多个通信设备之间周期性地传输分组的无线通信,以及

  第一类型范围被设置为在关于分组的传输的时段期间按时间次序相互分离的多个范围。

  (13)根据(12)所述的通信设备,其中,关于作为第一类型范围被设置为按时间次序相互分离的所述多个范围,根据使用从第一类型范围选择的资源的设备间通信中的最大允许延迟量和最大抖动量中的至少任意一项来决定它们之间的距离。

  (14)根据(12)或(13)所述的通信设备,其中,根据分组的传输定时,控制单元从被设置为按时间次序相互分离的所述多个范围当中决定用于在分组的传输中使用的资源的选择范围。

  (15)根据(12)至(14)中的任一项所述的通信设备,其中,在与分组的传输相关的时段期间,设置与互不相同的预留组相关联的多个第一类型范围。

  (16)根据(1)至(15)中的任一项所述的通信设备,其中设备间通信表示经由无线电链路在多个通信设备之间执行的通信,所述多个通信设备中的每一个通信设备被配置为可移动的。

  (17)一种通信设备,包括:

  通信单元,执行无线通信;

  控制单元,为了在设备间通信中使用资源中的一些,控制要从其预留资源的第一类型范围;以及

  通知单元,为了控制其它通信设备从中选择要在设备间通信中使用的资源的第二类型范围,向所述其它通信设备通知关于第一类型范围的信息。

  (18)根据(17)所述的通信设备,其中

  控制单元设置包括在第一类型范围中的多个第三类型范围,所述多个第三类型范围中的每一个第三类型范围与多个级别之一相关联,以及

  通知单元将与包括在第一类型范围中的第三类型范围相关的级别信息关联到关于第一类型范围的信息。

  (19)根据(18)所述的通信设备,其中关于设备间通信的条件包括与在设备间通信中传输的分组的最大抖动量和分组的最大尺寸变化中的至少任意一项相关的条件。

  (20)根据(18)或(19)所述的通信设备,其中根据与第三类型范围相关联的级别来设置使用从第三类型范围中选择的资源能够传输的数据的尺寸。

  (21)根据(18)至(20)中的任一项所述的通信设备,其中从基站通知与用于设置与级别相关联的第三类型范围的条件相关的信息。

  (22)根据(18)至(21)中的任一项所述的通信设备,其中基于使用从第一类型范围中选择的资源的设备间通信中的抖动成分的概率密度函数来设置所述多个级别。

  (23)一种通信设备,包括:

  通信单元,执行无线通信;

  通知单元,向基站通知关于在设备间通信期间向其它终端设备的周期性分组传输的条件的第一类型信息;

  获得单元,在通知第一类型信息之后,从基站获得关于被分配在周期性分组传输中能够使用的传输资源的第二类型信息;以及

  控制单元,基于第二类型信息来选择要在周期性分组传输中使用的资源。

  (24)根据(23)所述的通信设备,其中第一类型信息包含在设备间通信期间周期性地传输的分组中的抖动的信息和关于分组的尺寸变化的信息中的至少任意一项。

  (25)根据(23)或(24)所述的通信设备,其中基于第一类型信息和与设备间通信相关的条件来决定资源选择的范围。

  (26)根据(25)所述的通信设备,其中

  与设备间通信相关的条件包括与以下至少一项相关的条件:

  在设备间通信中使用的频带的拥塞,

  在设备间通信期间传输的分组的优先级,

  在设备间通信中使用的服务的类型,

  在设备间通信期间传输的分组的类型,

  执行设备间通信的终端设备的位置信息,以及

  执行设备间通信的终端设备的速度。

  (27)根据(23)至(26)中的任一项所述的通信设备,其中,基于第二类型信息和与资源选择相关的条件,控制单元选择要在周期性分组传输中使用的资源。

  (28)根据(27)所述的通信设备,其中从基站通知与资源选择相关的条件。

  (29)根据(27)或(28)所述的通信设备,其中

  与资源选择相关的条件包括以下至少一项:

  与随机资源选择相关的条件,

  与基于感测的资源选择相关的条件,

  与根据用于生成的分组的可传输定时的资源选择相关的条件,以及

  与根据每个资源相关联的级别的资源选择相关的条件。

  (30)根据(29)所述的通信设备,其中级别是根据至少以下内容中的任意一项设置的:

  在周期性分组传输中抖动成分的概率密度函数,和

  分组的尺寸变化的成分的概率密度函数。

  (31)一种通信设备,包括:

  通信单元,执行无线通信;以及

  控制单元,根据关于在设备间通信期间在分组传输中能够使用的第一类型资源的信息并且根据关于被调度要传输的分组的信息,选择与第一类型资源不同的第二类型资源。

  (32)根据(31)所述的通信设备,其中第一类型资源表示被预留用于在设备间通信期间的分组传输中使用的资源。

  (33)根据(32)所述的通信设备,其中,当被调度要传输的分组的尺寸超过使用第一类型资源能够传输的数据的尺寸时,控制单元以使得使用第一类型资源和第二类型资源传输分组的方式来执行控制。

  (34)根据(33)所述的通信设备,其中控制单元将控制信息关联到第一类型资源和第二类型资源中的至少任意一项,所述控制信息中使用第一类型资源传输的分组的一部分数据关联到使用第二类型资源传输的分组的另一部分数据。

  (35)根据(31)所述的通信设备,其中第一类型资源表示被分配用于在设备间通信期间向其它终端设备的周期性分组传输中使用的资源。

  (36)根据(35)所述的通信设备,其中控制单元向基站发出用于分配第二类型资源的请求,并且获得第二类型资源。

  (37)根据(36)所述的通信设备,其中

  第一类型资源表示被分配用于在设备间通信期间向其它终端设备的周期性分组传输中使用的资源,以及

  根据响应于所述请求的第二类型资源的分配结果来分配第一类型资源。

  (38)根据(35)所述的通信设备,其中控制单元选择第二类型资源从而获得该第二类型资源。

  (39)根据(38)所述的通信设备,其中控制单元随机地选择第二类型资源。

  (40)根据(38)所述的通信设备,其中控制单元根据在设备间通信中能够使用的资源的感测结果来选择第二类型资源。

  (41)根据(38)所述的通信设备,其中控制单元根据用于所生成的分组的可传输定时来选择第二类型资源。

  (42)根据(41)所述的通信设备,其中控制单元选择使得能够最早传输所生成的分组的第二类型资源。

  (43)根据(38)至(42)中的任一项所述的通信设备,其中控制单元从由基站分配的在设备间通信中能够使用的资源池中选择第二类型资源。

  (44)根据(43)所述的通信设备,其中资源池中的至少一些资源与其它终端设备分开分配。

  (45)根据(43)所述的通信设备,其中资源池的至少一些资源与其它终端设备分开分配。

  (46)根据(38)至(45)中的任一项所述的通信设备,其中控制单元根据所述其它终端设备在设备间通信期间的资源使用状况来选择第二类型资源。

  (47)根据(46)所述的通信设备,其中从基站通知所述其它终端设备在设备间通信期间的资源使用状况相关的信息。

  (48)根据(46)所述的通信设备,其中从所述其它终端设备通知所述其它终端设备在设备间通信期间的资源使用状况相关的信息。

  (49)根据(46)至(48)中的任一项所述的通信设备,其中根据至少以下内容中的任意一项来决定要从其获得与设备间通信期间的资源使用状况相关的信息的其它终端设备:

  由所述其它终端设备传输的分组的属性,和

  与所述其它终端设备的干扰程度。

  (50)根据(38)至(49)中的任一项所述的通信设备,还包括:

  确定单元,确定是否能够进行使用第一类型资源的周期性分组传输;以及

  通知单元,向基站通知确定结果,其中

  根据通知来控制第一类型资源的分配。

  (51)一种通信设备,包括:

  通信单元,执行无线通信;

  获得单元,从第一类型终端设备获得关于在设备间通信期间从第一类型终端设备到第二类型终端设备的周期性分组传输的条件的第一类型信息;

  控制单元,基于第一类型信息来控制在周期性分组传输中能够使用的资源的分配;以及

  通知单元,向第一类型终端设备通知关于在周期性分组传输中能够使用的资源的分配的第二类型信息。

  (52)一种在计算机中实现的通信方法,包括:

  执行无线通信;

  从其它通信设备获得关于由所述其它通信设备已预留用于在设备间通信中使用的资源中的一些的第一类型范围的信息;以及

  基于所获得的关于第一类型范围的信息,控制从中选择用于在设备间通信中使用的资源的第二类型范围。

  (53)一种在计算机中实现的通信方法,包括:

  执行无线通信;

  为了在设备间通信中使用资源中的一些,控制要从其预留资源的第一类型范围;以及

  为了控制其它通信设备从中选择要在设备间通信中使用的资源的第二类型范围,向所述其它通信设备通知关于第一类型范围的信息。

  (54)一种在计算机中实现的通信方法,包括:

  执行无线通信;

  向基站通知关于在设备间通信期间向其它终端设备的周期性分组传输的条件的第一类型信息;

  在通知第一类型信息之后,从基站获得被分配在周期性分组传输中能够使用的传输资源的第二类型信息;以及

  基于第二类型信息来选择要在周期性分组传输中使用的资源。

  (55)一种在计算机中实现的通信方法,包括:

  执行无线通信;以及

  根据关于在设备间通信期间在分组传输中能够使用的第一类型资源的信息并且根据关于被调度要传输的分组的信息,选择与第一类型资源不同的第二类型资源。

  (56)一种在计算机中实现的通信方法,包括:

  执行无线通信;以及

  从第一类型终端设备获得关于在设备间通信期间从第一类型终端设备到第二类型终端设备的周期性分组传输的条件的第一类型信息;

  基于第一类型信息来控制在周期性分组传输中能够使用的资源的分配;以及

  向第一类型终端设备通知关于在周期性分组传输中能够使用的资源的分配的第二类型信息。

  (57)一种程序,使得计算机执行:

  执行无线通信;

  从其它通信设备获得关于由所述其它通信设备已预留用于在设备间通信中使用的资源中的一些的第一类型范围的信息;以及

  基于所获得的关于第一类型范围的信息,控制从中选择用于在设备间通信中使用的资源的第二类型范围。

  (58)一种程序,使得计算机执行:

  执行无线通信;

  为了在设备间通信中使用资源中的一些,控制要从中预留资源的第一类型范围;以及

  为了控制其它通信设备从中选择要在设备间通信中使用的资源的第二类型范围,向所述其它通信设备通知关于第一类型范围的信息。

  (59)一种程序,使得计算机执行:

  执行无线通信;

  向基站通知关于在设备间通信期间向其它终端设备的周期性分组传输的条件的第一类型信息;

  在通知第一类型信息之后,从基站获得被分配在周期性分组传输中能够使用的传输资源的第二类型信息;以及

  基于第二类型信息来选择要在周期性分组传输中使用的资源。

  (60)一种程序,使得计算机执行:

  执行无线通信;以及

  根据关于在设备间通信期间在分组传输中能够使用的第一类型资源的信息并且根据关于被调度要传输的分组的信息,选择与第一类型资源不同的第二类型资源。

  (61)一种程序,使得计算机执行:

  执行无线通信;以及

  从第一类型终端设备获得关于在设备间通信期间从第一类型终端设备到第二类型终端设备的周期性分组传输的条件的第一类型信息;

  基于第一类型信息来控制在周期性分组传输中能够使用的资源的分配;以及

  向第一类型终端设备通知关于在周期性分组传输中能够使用的资源的分配的第二类型信息。

  附图标记列表

  1系统

  100基站

  110天线单元

  120无线通信单元

  130网络通信单元

  140存储器单元

  150控制单元

  151通信处理单元

  153信息获得单元

  155通知单元

  200终端设备

  210天线单元

  220无线通信单元

  230存储器单元

  240控制单元

  241通信处理单元

  243信息获得单元

  245确定单元

  247通知单元

《通信设备.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)