欢迎光临小豌豆知识网!
当前位置:首页 > 电学技术 > 电通讯技术> 用于建立窄带IOT设备连接的系统、装置和方法独创技术73293字

用于建立窄带IOT设备连接的系统、装置和方法

2021-02-19 08:09:33

用于建立窄带IOT设备连接的系统、装置和方法

  (诸)相关申请的交叉引用

  本申请要求于2019年3月28日在美国专利商标局提交的美国专利申请No.16/368,670以及于2018年4月3日在印度专利局提交的印度专利申请No.201841012581的专利优先权,这些申请的全部内容通过援引如同在下文全面阐述那样且出于所有适用目的被整体纳入于此。

  背景技术

  领域

  各种特征涉及用于建立设备(诸如用户装备(UE)设备)到节点的连接的通信技术。更具体地,各种特征涉及特别是在嘈杂的环境下建立用于UE设备与节点的无线连接。

  背景技术

  无线通信系统被广泛部署以提供诸如语音、数据等等各种类型的通信内容。这些系统可以是能够通过共享可用系统资源(例如,带宽和发射功率)来支持与多个用户的通信的多址系统。此类多址系统的示例包括码分多址(CDMA)系统、时分多址(TDMA)系统、频分多址(FDMA)系统、第三代伙伴项目(3GPP)长期演进(LTE)/高级LTE系统、以及正交频分多址(OFDMA)系统。

  一般而言,无线多址通信系统能同时支持多个无线终端的通信。每个终端经由前向和反向链路上的传输与一个或多个基站通信。前向链路(或即下行链路)是指从基站到终端的通信链路,而反向链路(或即上行链路)是指从终端到基站的通信链路。这种通信链路可经由单输入单输出、多输入单输出或多输入多输出(MIMO)系统来建立。

  无线通信网络可包括能支持数个无线设备通信的数个基站。无线设备可包括用户装备(UE)。机器类型通信(MTC)可以是指涉及在通信的至少一端的至少一个远程设备的通信,并且可包括涉及不一定需要人机交互的一个或多个实体的数据通信形式。MTC UE可包括能够通过例如公共陆地移动网络(PLMN)来与MTC服务器和/或其他MTC设备进行MTC通信的UE。

  窄带物联网(NB-IOT)是被开发以使各种设备和服务将要使用蜂窝电信频带连接的低功率广域网(LPWAN)无线电技术标准。NB-IoT是被设计用于物联网(IoT)的窄带无线电技术,并且是由第三代伙伴项目(3GPP)标准化的一系列移动IoT(MIoT)技术之一。其它3GPPIoT技术包括eMTC(增强型机器类型通信)和扩展覆盖(EC)全球移动通信系统(GSM)IoT(EC-GSM-IoT)。

  NB-IoT尤其专注于室内低成本、长电池寿命、以及实现大量连通设备。NB-IoT技术使用普通LTE载波内的资源块(或LTE载波保护带内未使用资源块中)在被分配给长期演进(LTE)的频谱中来“带内”部署,或针对专用频谱中的部署来“自立”部署。它也适合于对GSM频谱的重新分配(re-farming)。

  当NB-IoT设备正连接到节点(例如,基站)并且尝试建立下行链路连接时,信道中的干扰和/或噪声可能妨碍或阻止建立连接。此外,当前技术限制了设备可以如何报告下行链路信道质量。需要允许无线设备有效且高效地传达下行链路信道质量并且因此建立改进的连接的技术和技艺。

  概述

  各种特征涉及用于特别是在NB-IoT环境中在设备与节点之间建立通信的各种技术和技艺。

  在一些解说性实施例中,公开了一种用于通信的方法。该方法可以由设备(诸如用户装备(UE))执行。该方法包括:在设备中确定信号质量以供与节点进行通信;在该设备中基于该信号质量确定覆盖水平,其中该覆盖水平指示要被用于与该节点进行通信的资源;在该设备中基于该覆盖水平确定最大重复水平和重复值以供与该节点进行通信;在该设备中基于该最大重复水平生成指示该重复值的多比特重复范围标识符;以及传送该多比特重复范围标识符。

  在一些解说性实施例中,公开了一种用于通信的装置。该装置可以是UE。该装置可包括一个或多个天线和操作地耦合到该一个或多个天线的处理装置。该处理装置可被配置成:确定信号质量以供与节点进行通信;基于该信号质量确定覆盖水平,其中该覆盖水平指示要被资源;基于该覆盖水平确定最大重复水平和重复值以供与该节点进行通信;基于该最大重复水平生成指示该重复值的多比特重复范围标识符;以及传送该多比特重复范围标识符。

  在一些解说性实施例中,公开了一种设备。该设备可以包括:用于确定信号质量以供与节点进行通信的装置;用于基于该信号质量确定覆盖水平的装置,其中该覆盖水平指示要被用于与该节点进行通信的资源;用于基于该覆盖水平确定最大重复水平和重复值以供与该节点进行通信的装置;用于基于该最大重复水平生成指示该重复值的多比特重复范围标识符的装置;以及用于传送该多比特重复范围标识符的装置。

  在一些解说性实施例中,公开了一种存储计算机可执行代码的非瞬态计算机可读介质。计算机可执行代码可包括用于致使计算机执行以下操作的代码:确定信号质量以供与节点进行通信,基于该信号质量确定覆盖水平,其中该覆盖水平指示要被用于与该节点进行通信的资源;基于该覆盖水平来确定最大重复水平和重复值以供与该节点进行通信;基于该最大重复水平生成指示该重复值的多比特重复范围标识符;以及传送该多比特重复范围标识符。

  在值上。

  在一些解说性实施例中,公开了一种用于通信的方法。该方法包括:在设备中确定信号质量以供与节点进行通信;在该设备中确定用于指示要被用于与该节点进行通信的资源的覆盖水平;在该设备中基于该覆盖水平确定最大重复水平以供与该节点进行通信;以及在该设备中基于该最大重复水平生成和传送多比特重复范围标识符,其中该多比特重复范围标识符被配置成允许该设备接收用于重复在随机接入规程期间所接收到的一个或多个信号的重复值。在一些解说性实施例中,最大重复水平基于解码具有预定最小块差错率(BLER)的窄带物理下行链路控制信道(NPDCCH)信号所需的值,并且该预定BLER小于或等于1%。

  在一些解说性实施例中,多比特重复范围标识符包括多个比特,该多个比特指示用于解码窄带物理下行链路控制信道(NPDCCH)信号的期望重复(R’)值。

  在一些解说性实施例中,生成多比特重复范围标识符包括处理从节点接收到的具有最大重复水平的缩放值。

  在一些解说性实施例中,该方法进一步包括在确定最大重复水平之后监视一个或多个较低水平的最大重复水平;确定该一个或多个较低水平的最大重复水平是否适合于供所确定的覆盖水平使用;以及使用该较低水平的最大重复水平中的最低者作为新的最大重复水平。

  在一些解说性实施例中,该方法进一步包括:基于新的最大重复水平来生成新的多比特重复范围标识符,其中该新的多比特重复范围标识符被配置成允许该设备接收用于重复在随机接入规程期间所接收到的一个或多个信号的新重复值。

  在一些解说性实施例中,确定最大重复水平包括:生成基于一个或多个预定参数的虚拟窄带物理下行链路控制信道(NPDCCH)信号。在一些解说性实施例中,该预定参数包括以下各项中的至少一者:其中接收到随机接入响应的搜索空间、其中接收到针对随机接入请求调度的DCI的NPDCCH、携带消息2消息的物理下行链路共享信道(PDSCH)、用于携带消息3信号的第一窄带物理上行链路共享信道(NPUSCH)子帧的子帧、随机接入请求(RAR)窗口的起始、以及在消息3信号的传输之后。

  在一些解说性实施例中,公开了一种用于通信的装置,该装置包括:一个或多个天线,操作地耦合到该一个或多个天线的处理装置,处理器被配置成:确定信号质量以供与节点进行通信;确定用于指示要被用于与该节点进行通信的资源的覆盖水平;基于该覆盖水平确定最大重复水平以供与该节点进行通信;以及基于该最大重复水平来生成和传送多比特重复范围标识符,其中该多比特重复范围标识符被配置成允许该设备接收用于重复在随机接入规程期间所接收到的一个或多个信号的重复值。在一些解说性实施例中,最大重复水平基于解码具有预定最小块差错率(BLER)的窄带物理下行链路控制信道(NPDCCH)信号所需的值,其中该预定BLER小于或等于1%。

  在一些解说性实施例中,公开了一种用于通信的基于处理器的方法,该方法包括:在设备中确定信号质量以供与节点进行通信;在该设备中确定解码具有预定最小块差错率(BLER)的窄带物理下行链路控制信道(NPDCCH)信号所需的重复值;向该节点传送该重复值;以及使用该重复值来解码该NPDCCH信号以建立与该节点的通信。

  在一些解说性实施例中,公开了一种用于通信的装置,该装置包括:一个或多个天线;操作地耦合到该一个或多个天线的处理装置,其中该处理装置被配置成:确定信号质量以供与节点进行通信;确定解码具有预定最小块差错率(BLER)的窄带物理下行链路控制信道(NPDCCH)信号所需的重复值;经由一个或多个天线来将该重复值传送给该节点;以及使用该重复值解码该NPDCCH信号以建立与该节点的通信。

  在一些解说性实施例中,公开了一种用于执行设备的随机接入规程(RAP)的方法,包括:测量下行链路窄带参考信号收到功率(NRSRP);基于测得NRSRP来确定窄带物理随机接入(NPRACH)资源;接收包括至少一个重复值的最大重复水平(R最大);基于该最大重复值来监视窄带物理下行链路控制信道(NPDCCH);基于该重复值(R')来检测并解码NPDCCH信号;以及从该设备传送消息(消息3)以供发起该RAP的完成;以及基于该最大重复水平来传送下行链路信号质量数据。

  在一些解说性实施例中,确定NPRACH资源包括来自无线电资源控制(RRC)信令的信息。在一些解说性实施例中,RRC信令包括一个或多个RSRP阈值和至少一些NPRACH资源。在一些解说性实施例中,NPRACH资源包括数个NPRACH重复和用于监视NPDCCH的最大重复水平。

  在一些解说性实施例中,该方法进一步包括基于重复值来传送下行链路信号质量数据。

  在一些解说性实施例中,公开了一种配置成执行随机接入规程的装置,该装置包括:一个或多个天线,操作地耦合到该一个或多个天线的处理装置,该处理装置被配置成:测量下行链路窄带参考信号收到功率(NRSRP);基于测得NRSRP来确定窄带物理随机接入(NPRACH)资源;接收包括至少一个重复值的最大重复水平(R最大);基于该最大重复值来监视窄带物理下行链路控制信道(NPDCCH);基于该重复值(R')来检测并解码NPDCCH信号;以及从该设备传送消息(消息3)以供发起该RAP的完成。

  附图

  在结合附图理解下面阐述的详细描述时,各种特征、本质和优点会变得明显,在附图中,相同的附图标记始终作相应标识。

  图1是概念性地解说根据本公开的一些解说性实施例的无线通信网络的示例的简化框图。

  图2示出了概念性地解说根据本公开的一些解说性实施例的无线通信网络中基站与用户装备(UE)处于通信中的示例的简化框图。

  图3是概念性地解说根据本公开的一些解说性实施例的无线通信网络中的帧结构的示例的框图。

  图4示出了在解说性实施例下的用于发起UE与节点之间的数据传递的窄带物联网(NB-IoT)随机接入规程。

  图5示出了在解说性实施例下的用于建立资源分配的窄带物理下行链路控制信道(NPDCCH)因UE而异的搜索空间候选的表。

  图6示出了在解说性实施例下的用于UE的搜索空间配置的简化示例。

  图7示出了在解说性实施例下的用于确定针对最大重复水平(R最大)的覆盖水平以生成多比特R’范围标识符以供确定重复候选的长度的流图;

  图8示出了在解说性实施例下的用于多个多比特R最大范围标识符的表,该多比特R最大范围标识符用于接收相关联的重复值以供确定重复候选的长度。

  图9示出了在解说性实施例下的用于确定针对R最大的覆盖水平以使用缩放值生成多比特R’范围标识符以供确定重复候选的长度的流图。

  图10示出了在解说性实施例下的用于确定R最大并监视适合于供随机接入规程使用的较低水平R最大值的流图。

  图11A示出了在解说性实施例下的简化的随机接入响应(RAR)窗口,以及用于定义窄带物理下行链路控制信道(NPDCCH)的特定技术。

  图11B示出了在解说性实施例下的用于使用图11A的RAR窗口来定义窄带物理下行链路控制信道(NPDCCH)的特定技术。

  图11C示出了在解说性实施例下的用于使用图11A的RAR窗口来定义窄带物理下行链路控制信道(NPDCCH)的进一步技术。

  图11D示出了在解说性实施例下的用于使用图11A的RAR窗口来定义窄带物理下行链路控制信道(NPDCCH)的又进一步技术。

  图12解说了在解说性实施例下的UE用于在随机接入规程期间传送随机接入规程的第三消息(Msg3)的流程图。

  图13示出了在解说性实施例下的用于确定针对最大重复水平(R最大)的覆盖水平以生成多比特R’范围标识符以供确定重复候选的长度的流图。

  图14是在解说性实施例下的装置的解说。

  详细描述

  本公开的一些解说性实施例一般涉及用于窄带(NB)物联网(IOT)的寻呼和随机接入规程。更具体地,本公开的各方面提供涉及特别是在嘈杂的环境下建立UE设备与节点的无线连接的各种特征。

  在一些解说性实施例中,基站(BS)可以确定可用于与UE(例如,IoT设备、旧式设备等)的窄带通信的多个资源集。BS可以至少部分地基于每个UE的类型(或能力)来确定向UE中的一者或多者分配可用资源集。例如,UE的类型可以指UE支持的标准版本(例如,UE是否是旧式UE、窄带UE、高级UE等)、UE的一个或多个能力(例如,UE是否支持NB-IoT的多个物理资源块(PRB)操作、UE是否支持单频调/多频调传输等),等等。

  一旦确定了分配,BS就可以将对分配的指示发信号通知给UE。进而,UE可以使用所指示的分配来确定可用窄带资源的多个不同集合中的哪个集合要用于与BS进行通信。在一个参考示例中,UE可以使用该指示来确定资源集以监视来自BS的寻呼消息。在一个参考示例中,UE可以使用该指示来确定资源集以用于窄带物理随机接入(NPRACH)规程。

  本文所描述的技术可用于各种无线通信网络,诸如码分多址(CDMA)系统、时分多址(TDMA)系统、频分多址(FDMA)系统、正交频分多址(OFDMA)系统、单载波FDMA(SC-FDMA)系统以及其他网络。术语“网络”和“系统”经常被可互换地使用。CDMA网络可以实现诸如通用地面无线电接入(UTRA)、cdma2000等无线电技术。UTRA包括宽带CDMA(WCDMA)、时分同步CDMA(TD-SCDMA)和CDMA的其他变体。cdma2000涵盖IS-2000、IS-95和IS-856标准。TDMA网络可实现诸如全球移动通信系统(GSM)之类的无线电技术。OFDMA网络可以实现诸如演进型UTRA(E-UTRA)、超移动宽带(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE802.20、Flash-OFDM.RTM等的无线电技术。UTRA和E-UTRA是通用移动电信系统(UMTS)的一部分。频分双工(FDD)和时分双工(TDD)两者中的3GPP长期演进(LTE)及高级LTE(LTE-A)是UMTS的使用E-UTRA的新版本,其在下行链路上采用OFDMA而在上行链路上采用SC-FDMA。UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM在来自名为“第三代伙伴项目”(3GPP)的组织的文献中描述。cdma2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。新兴电信标准的示例是新无线电(NR),例如,5G无线电接入。NR是由3GPP颁布的LTE移动标准的增强集。它被设计成通过改善频谱效率、降低成本、改善服务、利用新频谱、并且更好地与在下行链路(DL)和上行链路(UL)上使用具有循环前缀(CP)的OFDMA的其他开放标准进行整合来更好地支持移动宽带因特网接入,以及支持波束成形、MIMO天线技术和载波聚集。这些通信网络仅仅作为其中可应用本公开中描述的技术的网络的示例来列出;然而,本公开并不限于上述通信网络。本文所描述的技术可被用于以上所提及的无线网络和无线电技术以及其他无线网络和无线电技术。为了清楚起见,以下针对LTE/高级LTE来描述这些技术的一些解说性实施例,并且在以下大部分描述中使用LTE/高级LTE术语。LTE和LTE-A一般被称为LTE。

  无线通信网络可包括能支持数个无线设备通信的数个基站。无线设备可包括用户装备(UE)。UE可包括物联网(IoT)(例如,NB-IoT)设备。UE的一些示例可包括蜂窝电话、智能电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、无绳电话、无线本地环路(WLL)站、音乐播放器、保健/医疗设备、车载设备、导航/定位设备、手持式设备、平板、膝上型计算机、上网本、智能本、超级本、可穿戴设备(例如,智能手表、智能项链、智能眼镜、虚拟现实目镜、智能指环、智能服饰)、显示器(例如,平视显示器)、娱乐设备(例如,音乐播放器、游戏控制台)等。一些UE可被认为是机器类型通信(MTC)UE,其可包括可与基站、另一远程设备、或某个其他实体通信的远程设备(诸如无人机、机器人、传感器、计量仪、位置标签、监视器、相机、等)。MTC设备以及其他类型的设备可包括万物联网(IoE)或IoT设备(诸如NB-IoT设备),并且本文公开的技术可被应用于MTC设备、NB-IoT设备、以及其他设备。机器类型通信(MTC)可以是指涉及在通信的至少一端的至少一个远程设备的通信,并且可包括涉及不一定需要人机交互的一个或多个实体的数据通信形式。

  注意到,虽然各方面在本文可使用通常与3G和/或4G无线技术相关联的术语来描述,但本公开的各方面可以在基于其他代的通信系统(诸如5G和后代)中应用。

  示例无线通信网络

  图1解说了其中可实践本公开的各方面的示例无线通信网络100。例如,本文提出的技术可被用于执行对具有单个或多个物理资源块(PRB)的窄带IoT的寻呼和/或随机接入操作。在一些解说性实施例中,网络100中的一个或多个UE 120(例如,IoT设备)可具有与网络100中的其他UE 120相比不同的能力。在一个示例中,一些UE 120可具有支持针对NB IoT的多个PRB操作的能力,而一些UE 120可具有支持针对窄带IoT的单个PRB操作的能力。

  在一些解说性实施例中,基站(例如,eNB 110)可确定可用于与UE 120(例如,IoT设备)的一个或多个不同集合的窄带通信的不同资源集。UE 120的每个集合可包括特定类型(或能力)的UE(例如,诸如各UE是否支持用于NB IoT的多个PRB操作)。eNB 110可至少部分地基于UE 120的类型来将不同的资源集分配给不同集合中的UE 120。eNB 110可向各UE120发信号通知对该分配的指示。

  网络100可以是LTE网络或某个其他无线网络。无线网络100可包括数个演进型B节点(eNB)110和其他网络实体。eNB是与用户装备(UE)通信的实体并且也可被称为基站、B节点、接入点等。每个eNB可为特定地理区域提供通信覆盖。在3GPP中,术语“蜂窝小区”取决于使用该术语的上下文可指eNB的覆盖区域和/或服务该覆盖区域的eNB子系统。

  eNB可提供对宏蜂窝小区、微微蜂窝小区、毫微微蜂窝小区、和/或其他类型的蜂窝小区的通信覆盖。宏蜂窝小区可以覆盖相对较大的地理区域(例如,半径为数千米),并且可允许由具有服务订阅的UE无约束地接入。微微蜂窝小区可以覆盖相对较小的地理区域,并且可允许由具有服务订阅的UE无约束地接入。毫微微蜂窝小区可覆盖相对较小的地理区域(例如,住宅),并且可允许由与该毫微微蜂窝小区有关联的UE(例如,封闭订户群(CSG)中的UE)有约束地接入。用于宏蜂窝小区的eNB可被称为宏eNB。用于微微蜂窝小区的eNB可被称为微微eNB。用于毫微微蜂窝小区的eNB可被称为毫微微eNB或家用eNB(HeNB)。在图1中所示的示例中,eNB 110a可以是用于宏蜂窝小区102a的宏eNB,eNB 110b可以是用于微微蜂窝小区102b的微微eNB,而eNB 110c可以是用于毫微微蜂窝小区102c的毫微微eNB。一eNB可支持一个或多个(例如,三个)蜂窝小区。术语“eNB”、“基站”和“蜂窝小区”可在本文中可互换地使用。

  无线网络100还可包括中继站。中继站是能接收来自上游站(例如,eNB或UE)的数据的传输并向下游站(例如,UE或eNB)发送该数据的传输的实体。中继站也可以是能为其他UE中继传输的UE。在图1中所示的示例中,中继站110d可与宏eNB 110a和UE 120d通信以促成eNB 110a与UE 120d之间的通信。中继站也可被称为中继eNB、中继基站、中继等。

  无线网络100可以是包括不同类型的eNB(例如,宏eNB、微微eNB、毫微微eNB、中继eNB等)的异构网络。这些不同类型的eNB可具有不同发射功率电平、不同覆盖区域,并对无线网络100中的干扰产生不同影响。例如,宏eNB可具有高发射功率电平(例如,5到40瓦),而微微eNB、毫微微eNB和中继eNB可具有较低发射功率电平(例如,0.1到2瓦)。

  网络控制器130可耦合至一组eNB并且可提供对这些eNB的协调和控制。网络控制器130可以经由回程与各eNB通信。这些eNB还可以彼此例如经由无线或有线回程直接或间接地通信。

  UE 120(例如,120a、120b、120c)可分散遍及无线网络100,并且每个UE可以是驻定的或移动的。UE还可被称为接入终端、终端、移动站、订户单元、站等等。在图1中,具有双箭头的实线指示UE与服务eNB之间的期望传输,该服务eNB是被指定在下行链路和/或上行链路上服务该UE的eNB。具有双箭头的虚线指示UE与eNB之间的潜在干扰传输。

  无线通信网络100(例如,LTE网络)中的一个或多个UE 120还可以是窄带带宽UE。这些UE可以与旧式和/或高级UE(例如,其能够在较宽带宽上操作)在LTE网络中共存并且可具有与无线网络中的其它UE相比受限的一个或多个能力。例如,在LTE版本12中,与LTE网络中的旧式和/或高级UE相比,窄带UE可以按以下一者或多者来操作:最大带宽的减小(相对于旧式UE)、单接收射频(RF)链、峰值速率的减小(例如,可支持针对传输块大小(TBS)的最大1000比特)、发射功率的减小、秩1传输、半双工操作等。在一些情形中,如果支持半双工操作,则窄带UE可具有放宽的从传送到接收(或从接收到传送)操作的切换定时。例如,在一个情形中,与用于旧式和/或高级UE的20微秒(μs)的切换定时相比,窄带UE可具有放宽的1毫秒(ms)的切换定时。

  在一些情形中,窄带UE(例如,在LTE版本-12及更高版本中,例如,5G版本中)可以以与LTE网络中的旧式和/或高级UE监视下行链路(DL)控制信道相同的方式来监视DL控制信道。版本12窄带UE可以仍按与常规UE相同的方式监视下行链路(DL)控制信道,例如,监视前几个码元中的宽带控制信道(例如,物理下行链路控制信道(PDCCH))以及占用相对窄带、但跨越子帧长度的窄带控制信道(例如,增强型PDCCH(ePDCCH))。

  窄带UE可被限于1.4MHz的特定窄带指派或者从可用系统带宽分割出而同时共存于较宽系统带宽内(例如,在1.4/3/5/10/15/20MHz处)的六个资源块(RB)。另外,窄带UE还可以能够支持一种或多种覆盖操作模式。例如,窄带UE可以能够支持至多达15dB的覆盖增强。

  如本文所使用的,具有有限通信资源(例如,较小带宽)的设备可被一般性地称为窄带UE。类似地,旧式设备(诸如旧式和/或高级UE(例如,在LTE中))可被一般性地称为宽带UE。一般地,宽带UE相较于窄带UE而言能够在更大的带宽量上操作。

  在一些情形中,UE(例如,窄带UE或宽带UE)可于在网络中进行通信之前执行蜂窝小区搜索和捕获规程。在一种情形中,参照图1中解说的LTE网络作为示例,可在UE未连接至LTE蜂窝小区并且想要接入LTE网络时执行蜂窝小区搜索和捕获规程。在这些情形中,UE可能刚刚上电,在暂时丢失至LTE蜂窝小区的连接之后刚恢复连接,等等。

  在其它情形中,可在UE已连接至LTE蜂窝小区时执行蜂窝小区搜索和捕获规程。例如,UE可能已检测到新LTE蜂窝小区并且可能准备至新蜂窝小区的切换。作为另一示例,UE可在一个或多个低功率状态中操作(例如,可支持非连续接收(DRX)),并且在退出该一个或多个低功率状态之际,可能不得不执行蜂窝小区搜索和捕获规程(即使UE仍处于连通模式)。

  图2示出了BS 110和UE 120的设计的框图,BS/eNB 110和UE 120可以是图1中BS/eNB之一和UE之一。BS 110可装备有T个天线234a到234t,并且UE 120可装备有R个天线252a到252r,其中一般而言,T≥1并且R≥1。

  在BS 110处,发射处理器220可从数据源212接收给一个或多个UE的数据,基于从每个UE接收的CQI来选择针对该UE的一种或多种调制及编码方案(MCS),基于为每个UE选择的MCS来处理(例如,编码和调制)给该UE的数据,并提供针对所有UE的数据码元。发射处理器220还可以处理系统信息(例如,针对SRPI等)和控制信息(例如,CQI请求、准予、上层信令等),并提供开销码元和控制码元。处理器220还可以生成用于参考信号(例如,CRS)和同步信号(例如,PSS和SSS)的参考码元。发射(TX)多输入多输出(MIMO)处理器230可在适用的情况下对数据码元、控制码元、开销码元、和/或参考码元执行空间处理(例如,预编码),并且可将T个输出码元流提供给T个调制器(MOD)232a到232t。每个调制器232可处理各自相应的输出码元流(例如,针对OFDM等等)以获得输出采样流。每个调制器232可进一步处理(例如,转换至模拟、放大、滤波、及上变频)输出采样流以获得下行链路信号。来自调制器232a至232t的T个下行链路信号可分别经由T个天线234a到234t被传送。

  在UE 120处,天线252a到252r可接收来自基站110和/或其他基站的下行链路信号并且可分别向解调器(DEMOD)254a到254r提供收到信号。每个解调器254可调理(例如,滤波、放大、下变频、及数字化)其收到信号以获得输入采样。每个解调器254可进一步处理输入采样(例如,针对OFDM等)以获得收到码元。MIMO检测器256可获得来自所有R个解调器254a到254r的收到码元,在适用的情况下对这些收到码元执行MIMO检测,并且提供检出码元。接收处理器258可处理(例如,解调和解码)这些检出码元,将针对UE 120的经解码数据提供给数据阱260,并且将经解码的控制信息和系统信息提供给控制器/处理器280。信道处理器可以确定RSRP、RSSI、RSRQ、CQI等。

  在上行链路上,在UE 120处,发射处理器264可接收和处理来自数据源262的数据和来自控制器/处理器280的控制信息(例如,针对包括RSRP、RSSI、RSRQ、CQI等的报告)。处理器264还可生成一个或多个参考信号的参考码元。来自发射处理器264的码元可在适用的场合由TX MIMO处理器266预编码,进一步由调制器254a到254r处理(例如,用于SC-FDM、OFDM等),并且传送给基站110。在BS 110处,来自UE 120和其他UE的上行链路信号可由天线234接收,由解调器232处理,在适用的情况下由MIMO检测器236检测,并由接收处理器238进一步处理以获得经解码的由UE 120发送的数据和控制信息。处理器238可将经解码的数据提供给数据阱239并将经解码的控制信息提供给控制器/处理器240。BS 110可包括通信单元244并且经由通信单元244与网络控制器130通信。网络控制器130可包括通信单元294、控制器/处理器290、以及存储器292。

  控制器/处理器240和280可分别指导BS 110和UE 120处的操作以执行本文呈现的用于窄带IoT与多个PRB的寻呼和/或随机接入规程的技术。例如,处理器240和/或BS 110处的其他处理器和模块、以及处理器280和/或UE 120处的其他处理器和模块可分别执行或指导BS 110和UE 120的操作。例如,UE 120处的控制器/处理器280和/或其他控制器/处理器和模块可执行或指导图7中的操作700、图9中的操作900、图13中的操作1300和/或用于本文中所描述的技术的其他过程。类似地,BS 110处的控制器/处理器240和/或其他控制器/处理器和模块可执行或指导图6中的操作600、图8中的操作800、图10中的操作1000、图11中的操作1100、图12中的操作1200、图13中的操作1300和/或用于本文中所描述的技术的其他过程。存储器242和282可分别存储用于基站110和UE 120的数据和程序代码。调度器246可以调度UE以进行下行链路和/或上行链路上的数据传输。

  图3示出了在解说性示例下的用于LTE中的FDD的简化帧结构300。下行链路和上行链路中的每一者的传输时间线可被划分成以无线电帧为单位。每个无线电帧可具有预定历时(例如,10毫秒(ms)),并且可被划分成具有索引0至9的10个子帧。每个子帧可包括两个时隙。每个无线电帧可由此包括具有索引0至19的20个时隙。每个时隙可包括L个码元周期,例如,对于正常循环前缀(如图3中所示)为7个码元周期,或者对于扩展循环前缀为6个码元周期。每个子帧中的2L个码元周期可被指派索引0至2L-1。

  在LTE的示例中,eNB可在下行链路上在用于该eNB所支持的每个蜂窝小区的系统带宽的中心传送主同步信号(PSS)和副同步信号(SSS)。PSS和SSS可在具有正常循环前缀的每个无线电帧的子帧0和5中分别在码元周期6和5中被传送,如图3中示出的。PSS和SSS可由UE用于蜂窝小区搜索和捕获。eNB可跨用于该eNB所支持的每个蜂窝小区的系统带宽来传送因蜂窝小区而异的参考信号(CRS)。CRS可在每个子帧的某些码元周期中被传送,并且可被UE用于执行信道估计、信道质量测量、和/或其他功能。eNB还可在某些无线电帧的时隙1中的码元周期0到3中传送物理广播信道(PBCH)。PBCH可携带一些系统信息。eNB可在某些子帧中传送其他系统信息,诸如物理下行链路共享信道(PDSCH)上的系统信息块(SIB)。eNB可在子帧的前B个码元周期中在物理下行链路控制信道(PDCCH)上传送控制信息/数据,其中B可以是可针对每个子帧来配置的。eNB可在每个子帧的其余码元周期中在PDSCH上传送话务数据和/或其他数据。

  图4示出了在解说性实施例下的用于发起UE 402与节点404之间的数据传递的NB-IoT随机接入规程400。UE 402和节点404可以分别表示以上结合图1所解说的UE和eNB中的任何一者。

  一般而言,UE 402可被配置为机器到机器(M2M)(也被称为机器类型通信(MTC))设备,诸如移动终端、或者能够自主传送数据的任何其他合适设备。在操作期间,UE 402在多种操作情况中触发对节点404(其可以是基站)的接入规程:

  1)在对网络的初始接入之际,即,在关联过程中;

  2)当接收或传送新数据且UE设备不同步时;

  3)当上行链路控制信道上没有配置调度请求资源时在新数据的传输之际;

  4)在切换(改变相关联基站)的情形中,以避免会话丢失;以及

  5)在无线电链路故障之后,以便重新建立连接。

  为了处置所有这些情况,可定义两种不同形式的随机接入(RA)规程。一种情况被认为是基于争用的,其中设备竞争信道接入。由于可能发生冲突,因此这种类型的接入被保留用于延迟容忍接入请求。另一种情况是无争用规程,其中基站(例如,演进型B节点)为必须具有高接入概率(延迟约束接入)(诸如切换)的那些接入请求分配特定接入资源。尽管本公开可以在各种各样的环境中操作,但是本实施例将关注被用于与网络的初始关联、对传输资源的请求以及在失败之际重新建立连接的基于争用的RA机制。

  当建立连接时,随机接入信道(RACH)可以通过所分配的时间-频率资源(被称为RA时隙)的周期性序列来形成。这些时隙被保留在网络的上行链路信道中以用于接入请求的传输。在时域中,每个RA时隙的历时取决于接入请求的格式。在频域中,每个RA时隙可以占用预定带宽(例如,1.08MHz),其对应于多个(例如,6个)物理资源块(PRB)的带宽。节点404可以藉由被称为物理RACH(PRACH)配置索引的变量来广播RA时隙的周期性。该周期性可以在每2个帧(即,每20ms)的1个RA时隙的最小值与每1个子帧(即,每1ms)1个RA时隙的最大值之间变化。

  通常,RACH被分配在上行链路中,并且因此,调度器设计需要平衡每帧要调度的接入机会量与可用于数据传输的资源量之间的折衷。这可能变成M2M应用中的重要因素,其中请求方设备的数目可能非常高,并且可用带宽受约束。

  如在图4的示例中可见,基于争用的RA规程可被配置为UE设备402与节点404之间的四个消息握手。如果成功交换了四个消息,则接入请求将完成,如图4中所描绘的。开始于框406,UE 402使用消息1(MSG1)上的窄带物理随机接入信道(NPRACH)来提供随机接入前置码传输。典型地,每当UE 402需要接入信道时,它可以选择NPRACH的下一可用RA时隙来传送接入请求。这可包括UE 402在RA时隙中传送的前置码(例如,数字签名)。在一些解说性实施例中,可存在48或64个正交伪随机前置码可用于RA,并且节点404可以在可在其上使用前置码的下行链路控制信道中周期性地广播信息。然而,节点404可以将其中一些前置码保留用于无争用接入。如果两个或更多个设备在相同RA时隙中传送相同的前置码,则可能发生冲突。

  否则,不同的前置码由于它们的正交性而可被节点404检测到。典型地,蜂窝小区大小越大、前置码的历时将越长,以便于提高在蜂窝小区边缘处接收的可靠性。可以随机地选择(在可用于基于争用的接入之中选择)要为每个请求传送的前置码。在前置码的传输之后使用多个(例如,3个)子帧,UE 402可等待一时间窗口以从节点404接收握手的响应(例如,消息2 408)。这一等待窗口的历时可以由节点404广播,并且可被针对给定时段(例如,在2至10个子帧之间)定义。

  随机接入响应(RAR)408可被配置成经由窄带物理下行链路共享信道(NPDSCH)进行传达。对于每个成功解码的前置码,节点404可以运算出标识符(例如,随机接入无线电网络临时标识符(RA-RNTI)),该标识符可以基于发送每个前置码的RA时隙来计算。然后,节点404可以通过以下各项来传送随机接入响应:具有附加信息(包括标识所检测到的前置码)的NPDSCH、用于同步上行链路传输的定时对准指令、将由UE 402用来传送握手的第三消息的上行链路资源分配、经指派临时蜂窝小区无线电网络临时标识符(C-RNTI)、和/或在失败的情形中可任选的退避指示符(BI)。

  随机接入响应408(也被称为消息2)可包含关联到每一检出前置码的不同子报头。如果设备(例如,UE 402)接收到寻址到与传送前置码的RA时隙相关联的RA-RNTI的随机接入响应消息,但是它不包含所使用的前置码的标识符,则该设备可在调度另一前置码传输尝试(消息1)之前执行随机退避时间(根据附连到随机接入响应的BI参数)。

  UE 402在与所选RA时隙中传送的前置码相关联的消息2中所准予的资源中向节点404提供窄带物理上行链路共享信道(NPUSCH)RRC连接恢复请求410(也被称为消息3)。消息3 410可以与混合自动重传请求(HARQ)一起传送。对于初始接入,该消息可包括设备标识符(C-RNTI)和接入请求的原因。消息3 410可作为调度消息被传送以便开始争用解决过程。相关联的争用解决消息可被传送到UE 402,以便指示RACH规程的成功完成。

  在前置码的传输之际,UE 402可首先从传输时间计算其RA-RNTI。然后,UE 402在NPDCCH中寻找用RA-RNTI加扰的下行链路控制信息(DCI)格式N1,该DCI格式N1调度包括随机接入响应在内的NPDSCH。UE 402在响应窗口内期望该消息,该响应窗口可以在最后前置码子帧之后的多个(例如,3个)子帧中开始,并且具有在系统信息块(例如,SIB2-NB)中给出的与覆盖增强(CE)相关的长度。如果前置码传输没有成功,即,没有接收到相关联的随机接入响应(RAR)消息,则UE 402可以传送另一前置码。这可被完成至多达一最大数目,该最大数目又取决于CE水平。对于没有成功达到此最大数目的情形,如果已配置此水平,则UE进入下一CE水平。如果达到接入尝试的总数,则将相关联的失败报告给RRC。使用随机接入响应,UE 402除了临时C-RNTI之外还可以获得定时提前命令。因此,以下消息3 410已经是时间对准的,这对于在NPUSCH上进行传输是必需的。此外,随机接入响应为消息3 410提供UL准予,其包含消息3 410传输的所有相关数据。

  在接收到消息3 410之际,节点404可以响应于消息3 410而传送争用解决消息412(也被称为消息4)。如果UE 402没有接收到消息4 412,则其声明争用解决失败,并且调度新的接入尝试,即新的前置码传输,从而再次开始该过程。每个UE 402可被配置成在每次不成功尝试之后保持增大的前置码传输计数器。当计数器达到最大允许值(由节点404通知为系统信息)时,设备将声明网络不可用并且向上层指示随机接入问题。

  当利用NPDCCH和NPDSCH信道时,重复的使用在改善UE 402与节点404之间的通信方面可能是有利的。一般而言,重复是相同传输可被重复若干次的技术。每个重复可以是可自解码的,并且可以针对每个传输利用和改变扰码和/或冗余版本以帮助组合。在一些解说性实施例中,重复可以仅被确收一次(ACK)。

  对于连通模式规程(包括随机接入规程),诸如图4中所描述的,设备(诸如UE 402)可被配置成利用NPDCCH搜索空间来执行连通模式调度以及空闲模式寻呼。一般而言,搜索空间可被定义为设备可以在其中搜索以寻找寻址到该设备的DCI的一个或多个子帧。例如,多个搜索空间可包括类型-1搜索空间、类型2搜索空间和/或因UE而异的搜索空间(USS)。类型-1搜索空间可被用于监视寻呼。类型2搜索空间可被用于监视随机接入响应、消息3HARQ重传和消息4无线电资源指派。因UE而异的搜索空间(USS)可被用于监视下行链路(DL)或上行链路(UL)调度信息。

  对于可以在一些解说性实施例中利用的类型2搜索空间,搜索空间包含用于定义NPDCCH搜索空间的数个参数。例如,这些参数可包括NPDCCH的最大重复因子(R最大)、搜索时段中的起始子帧的偏移(α偏移)、被用于确定搜索时段的参数G、以及搜索空间周期T。例如,参数T可以表示子帧数并且可被定义为T=R最大G。参数R最大、α偏移、和G可被配置成要在系统信息块SIB2-NB中发信号通知。可以根据与R最大相关联的NPRACH覆盖类(见图7)来配置R最大。

  转向图5中所解说的表500,R最大值502可被配置成使得R最大、或NPDCCH的最大重复次数可被设为1、2、4、8或更大。然后,如504中所示,重复次数R(NPDCCH重复因子)被配置成对应于每个R最大值。因此,R最大为1仅导致1次重复,R最大为2可能导致1或2次重复,R最大为4可能导致1、2或4次重复,而R最大为8或更大的结果会导致R最大/8、R最大/4、R最大/2或R最大次重复。此外,每个重复值R 504具有对应的DCI子帧重复次数506。此外,每个重复值R 504可具有可用于PDCCH的CCE的对应数目(NCCE)和具有用于传送DCI的聚集等级(L')1或2的受监视NPDCCH候选508的索引。在L'=1的情况下,可以在一个子帧中复用两个DCI,否则一个子帧仅携带一个DCI(例如,L'=2),从而导致较低的编码率和改善的覆盖。NCCE可被认为是用于PDCCH的资源分配单元。可以在多种格式(格式0和格式1)下配置NCCE,其中NPDCCH格式0仅占据一个NCCE,而NPDCCH格式1占据两个NCCE。

  在搜索时段内,UE(例如,UE 402)需要监视的子帧数可被设为R最大,并且所定义的搜索空间候选数目也可以基于R最大。在一些解说性实施例中,UE 402需要在搜索时段内监视的R最大个子帧可以排除被用于传送窄带物理广播信道(NPBCH)、窄带主同步信号(NPSS)、窄带副同步信号(NSSS)和系统信息(SI)的子帧。而且,根据有效子帧位图,这些子帧应当是NB-IoT子帧。

  转向图6,提供了搜索空间配置的简化示例,其解说UE(例如,UE 402)在要求以至多达2次重复来传送的NPDCCH的覆盖条件中。如此,在该示例中,R最大将被设为2。在该示例中,假设调度周期性被配置成比最大重复水平长八倍(G=8)。附加地,选择1/8的偏移α偏移。使用这些参数,可以看出搜索时段是T=R最大G=16个子帧。由于偏移值被设为搜索时段的1/8,所以起始子帧被移位两个子帧。

  如可以从图5中的表中看出的,其中R最大=2,搜索空间可具有NPDCCH重复值R=1或R=2。此外,对于R=1的情形,可以使用L′=1,并且因此可以将NCCE0和NCCE1两者联合用作搜索候选。在图6中解说了所有搜索空间候选,其在搜索时段内包括以下候选集:

  在R=1和L'=1的情况下,4个候选,

  在R=1和L'=2的情况下,2个候选,以及

  在R=2的情况下,1个候选。

  在操作期间,UE(例如,UE 402)可以监视未被窄带物理广播信道(NPBCH)(例如,图6中的子帧0 606)、窄带主同步信号(NPSS)(例如,图6中的子帧5 608)、窄带副同步信号(NSSS)(例如,图6中的子帧9 610,以偶数编号SFN)、和系统信息(SI)占用的搜索空间子帧集(例如,子帧602、604)。

  图7示出了在解说性实施例下的用于确定针对最大重复水平(R最大)的覆盖水平(或覆盖类)以生成多比特(R’)范围标识符以供确定重复候选的长度的流图700。在框702,UE(例如,UE 402)可以测量或估计所接收到的功率电平和路径损耗,以确定窄带参考信号收到功率(NRSRP),并且将该信号与一个或多个NRSRP的阈值进行比较。根据该比较,UE可以在框704确定可以经由SIB2-NB发信号通知的至多达三个不同的覆盖水平。例如,三个覆盖水平可以包括正常水平、稳健水平和极端水平。每个覆盖水平可被配置有分别为0、1和2的相关联覆盖增强水平。此外,每个覆盖水平可被配置有分别为144dB、154dB和164dB的相关联最大耦合损耗。在框706所选覆盖水平确定要使用的资源,包括NPRACH资源,诸如副载波子集、NPRACH重复、尝试的最大数目,等等。除了功率电平/损耗之外,框702还可执行信道质量测量以确定信噪比(SNR)、信号与干扰加噪声比(SINR)和/或信号与噪声加失真比(SNDR)。框702的测量可包括收到信号强度指示符(RSSI)、收到信号收到功率(RSRP)、和/或收到信号收到质量(RSTQ)、或允许UE确定信号质量的任何其他合适的信号。

  在框708,UE确定覆盖水平的最大重复水平(R最大)和重复值(R')。R’可以是指示重复次数的正整数。在一些解说性实施例中,R’可以被计算、估计和/或基于该UE需要以最小块差错率(BLER)来解码NPDCCH的重复因子(重复次数)。在一些解说性实施例中,可以将BLER设为1%,尽管本领域技术人员将理解,其他合适的BLER值可取决于应用来利用。基于所确定的R',UE在框710可以生成多比特R'范围标识符。然后,可以在系统中利用该多比特R'范围标识符来确定重复R'的候选长度。

  图8示出了在解说性实施例下的用于多个多比特R’范围标识符的表800,该多比特R’范围标识符用于接收相关联的重复因子以供确定重复候选的长度。从表800可以看出,在表的最上面一行中示出了不同的R最大值802(1-2048)。在该示例中,每个多比特R’范围标识符810被表示为两个比特(例如,‘01’、‘10’和‘11’)。对于每个多比特R’范围标识符,可以提供特定重复指令以供获得该R’。在该示例中,

  ‘00’=不支持/旧式UE

  ‘01’=要求R’<R最大/2

  ‘10’=要求R’在R最大/2与2R最大之间

  ‘11’=要求R’>2R最大。

  如表800中可以看出,多比特R’范围标识符‘01’产生重复值R最大/2,如行804中所示(1-512)。类似地,多比特R’范围标识符‘01’产生R最大/2与2R最大之间的重复值,如行806中所示(2-1024),而多比特R’范围标识符‘11’产生重复值>2R最大,在行808中所示(4-2048)。本领域技术人员应当理解,两比特示例只是一个示例,并且该概念可被扩展到更多数目的比特(例如,3个比特,各自具有7个条目)。通过使用此类配置,UE(例如,UE 402)可以有利地发信号通知在预定BLER之处或之下满足NPDCCH解码要求的最小重复值,从而提高效率并节省UE资源。

  在另一解说性实施例中,图9示出了用于确定针对R最大的覆盖水平以使用缩放值生成多比特R’范围标识符(也被称为多比特重复范围标识符)以供确定重复候选的长度的流图900。在框902-906,UE确定覆盖水平、要使用的资源和R最大,类似于以上结合图7在框702-706以及图8的表800中所描述的技术和技艺。在框908,UE从节点(例如,节点404)接收缩放值S。在框910,UE可以使用缩放值来生成多比特R’范围标识符以供确定R个候选。在一个示例中,节点(例如,节点404)可以发信号通知缩放值S,其中S={2,4,8}。当使用2比特示例来生成多比特R’范围标识符时,UE可以使用以下配置:

  00=不支持/旧式UE

  01=要求R’<R最大/S

  10=要求R’在R最大/S与S*R最大之间

  11=要求R’>S*R最大。

  本领域技术人员应当理解,两比特示例仅是一个示例,并且该概念可被扩展到更多数目的比特。通过使用此类配置,UE(例如,UE 402)可以有利地缩放R以满足NPDCCH解码要求,尤其是在非常嘈杂(或几乎不嘈杂)的环境中。

  在另一实施例中,图10示出了用于确定R最大并监视适合于供随机接入规程使用的较低水平的R值的流图1000。在该示例中,在框1002-1008执行的确定NRSRP、相关联的覆盖水平、要使用的资源以及最大重复R最大类似于以上结合图7所描述的框702-708。然而,在框1010,取代使用R最大值,UE(例如,UE 402)在框1012监视较低水平的R值,以确定那些R值中的任一者是否适合于解码。在一个示例中,再参照图8的表800,UE(例如,UE 402)可以确定针对覆盖水平01的R最大=16,这意味着R重复值8将被用作候选。在图10的实施例中,UE(例如,UE 402)可以监视给定R最大的预定数目个(例如,3个)较低水平R重复值,以计算较低的R值是否仍然适合于满足NPDCCH解码要求。因此,给定初始R值为8,则UE(例如,UE 402)可以监视R值4、2和1,并且,如果那些较低的重复R值(例如,4)中的任一者适合于解码,则UE(例如,UE402)在框1014使用较低的重复R值。如果较低的重复R值中没有一个值适合于满足NPDCCH解码要求,则UE在框1016继续原始重复R值。在一些解说性实施例中,所使用的R值可以在DCI中携带。

  为了确定NPDCCH解码要求(例如,≤1%的BLER),UE(例如,UE 402)可被配置成以类似于在LTE环境中利用物理下行链路共享信道(PDSCH)处理信道状态信息(CSI)的方式来处理“虚拟NPDCCH”。CSI是指通信链路的信道属性,并且此信息描述信号如何从发射机传播到接收机,并且表示例如散射、衰落和功率随距离衰减的组合效应。CSI使传输有可能适配当前信道条件,该信道条件被用于在多天线系统中以高数据率达成可靠的通信。CSI可以在接收机处被估计,并且通常可被量化并反馈到发射机(尽管在TDD系统中有可能进行反向链路估计)。因此,发射机和接收机可具有不同的CSI。

  在本公开中,NPDCCH参考资源(配置为经修改的CSI参考资源)可被用于估计/确定NPDCCH解码要求和报告重复次数。图11A示出了解说性实施例下的简化的随机接入响应(RAR)窗口1102,以及用于定义NPDCCH的特定技术。在该示例中,RAR窗口1102被解说为具有两个搜索空间1104、1106,其中搜索空间1 1104被公开为覆盖下行链路,而搜索空间2 1106覆盖上行链路。如从图中可以看出,可以从多个候选中选择一NPCCH候选,并将其携带在NPDSCH上以经由NPUSCH来建立上行链路。

  在1110A的示例中,可以相对于在其中接收到随机接入响应准予的搜索空间来定义NPDCCH参考。例如,NPDCCH参考资源是从调度随机接入响应的搜索空间1104的起始而开始的R个窄带下行链路子帧(NB-IoT DL SF)。在1110B的示例中,NPDCCH参考资源是从调度随机接入响应的搜索空间1104的结束而开始的R个窄带下行链路子帧(NB-IoT DL SF)。

  转向图11B,该图继续图11A的RAR窗口1102配置。在1110C的示例中,可以相对于在其中接收到调度随机接入响应的DCI的NPDCCH来定义NPDCCH参考。例如,NPDCCH参考资源是从调度随机接入响应的NPDCCH的结束而开始的前R个NB-IoT DL子帧(SF)。在1110D的示例中,NPDCCH参考资源是从调度随机接入响应的NPDCCH的起始而开始的前R个NB-IoT DL子帧。

  转向图11C,该图继续图11A的RAR窗口1102配置。在1110E的示例中,可以相对于携带Msg2的NPDSCH定义NPDCCH参考。例如,NPDCCH参考是从携带随机接入响应的NPDSCH的结束而开始的前R个NB-IoT DL子帧来定义的,如图所示。在1110F的示例中,NPDCCH参考是从携带随机接入响应的NPDSCH的起始而开始的前R个NB-IoT DL子帧来定义的。

  转向图11D,该图继续图11A的RAR窗口1102配置。在1110G的示例中,可以相对于消息3传输定义NPDCCH参考。例如,如果N是用于携带消息3的第一子帧NPUSCH的子帧,则NPDCCH参考资源可被定义为在N+k之前的R个NB-IoT DL子帧。在1110H的示例中,NPDCCH参考可相对于RAR窗口1102的起始来定义,例如,RAR窗口1102内的前R个NB-IoT DL子帧。在1110J的示例中,可以相对于RAR窗口中的最后NPDCCH搜索空间来定义NPDCCH参考。在1110K的示例中,可以相对于消息3的传输之后来定义NPDCCH参考。在此示例中,这种配置将等效于“长期SNR”,因为UE必须猜测或估计未来信道状态将是什么。本领域技术人员将认识到,图11A-D的实施例认为“NB-IoT DL子帧”(例如,不能在其上传送NPDCCH的子帧)不被计数。

  本公开还提供了用于建立测量资源的不同选项。在一个示例中,测量资源可以与在旧式LTE中所使用的资源相同(不受时间和频率的约束)。在此情形中,可以相对于携带窄带参考信号(NRS)的相同NB-IoT载波中的子帧来配置“无约束”。在此配置下,UE(例如,UE402)可以过滤NRS(取决于多普勒)以估计CSI参考资源中的SNR。在另一示例中,测量资源可以在确定要在随机接入响应窗口中携带NRS的子帧期间分配。

  在一些解说性实施例中,可以假设NPDCCH参考资源(图11A-D)被放置在与传送RAR相同的载波中。然而,对于多载波操作,有可能节点(例如,节点404)将UE重配置有用于单播操作的不同NB-IoT载波。在此类情形中,RAR CSI信息可能被忽略,因为它是在不同的NB-IoT载波中测量的。如此,可以允许UE(例如,UE 402)在连通模式期间报告RAR CSI信息。在此情形中,可以用与图11A-D类似的方式来定义NPDCCH参考资源,但是由因UE而异的搜索空间代替共用搜索空间(例如,1104、1106)。如此,可以在DCI或MAC控制元素(MAC CE)中配置CSI触发。在MAC CE的情形中,可能需要不同的无线电网络临时标识符(RNTI)来避免发送提早ACK,取而代之是用MAC CE发送NPUSCH。用于多载波操作的另一选项是要具有周期性的报告(例如,由RRC配置的),其中目标R可以在MAC CE中传送。

  本文所公开的技术和技艺可以用附加方式来优化。例如,当测量SNR时,UE(例如,UE 402)可以使用NPDCCH/NPDSCH的经解码比特来重构所传送的信号并且具有附加观察。为此,节点(例如,404)可发信号通知用于NPDCCH/NPDSCH两者的T2P(话务导频比)以用于测量目的,如上所描述的。节点(例如,节点404)还可发信号通知UE(例如,UE 402)是否被允许将经重构NPDCCH/NPDSCH用于测量。

  在一些解说性实施例中,对消息3报告的支持由节点(例如,节点404)在SIB中启用。随后,节点(例如,节点404)可报告它是否理解和/或使用消息3中的这些比特。如果该字段存在于SIB中,则UE(例如,UE 402)将执行测量和报告。否则,UE(例如,UE 402)可以仅传送零(或者,替换地传送任何事物,因为eNB将不查看那些比特)。作为另一替换方案,节点(例如,节点404)可以在RAR准予(即,携带消息2的PDSCH)中发送信息以启用对消息3报告的支持。

  图12解说了在解说性实施例下的使用本文中所描述的技术UE(例如,UE 402)在随机接入规程期间传送消息3的流程图1200。从框1202开始,UE(例如,UE 402)测量下行链路RSRP,并且基于测得RSRP,UE可以在框1204选择NPRACH资源。在框1206,UE向节点(例如,节点404)传送NPRACH。框1204的NPRACH资源可以基于RRC信令,其作为一组RSRP阈值和NPRACH资源被广播。NPRACH资源可包括NPRACH重复次数和R最大,以监视用于随机接入响应的NPDCCH。

  在框1208,UE根据R最大来监视NPDCCH。在框1210,UE检测具有重复水平R的NPDCCH,并且UE(例如,402)在框1212基于在NPDCCH上所解码的DCI来解码NPDSCH在框1214,UE可以随后基于该NPDSCH中所包括的准予来传送消息3。此时,UE具有选项:在框1216A基于R最大(例如,<R最大/2、在R最大/2与2R最大之间、>2R最大)来报告DL信号质量编码,或者在框1216B基于R(例如,<R/2、在R/2与2R之间、>2R)来报告DL信号质量编码。

  图13示出了在解说性实施例下的用于确定针对最大重复水平(R最大)的覆盖水平,以生成多比特(R’)范围标识符以供确定重复候选的长度的流图1300。流图1300中的操作(例如,框1302至1312)可以由UE(例如,UE 402、装置1400)执行。图13中用虚线表示的框表示可任选的框。

  在框1302,UE可以确定信号质量以供与节点进行通信。在一些方面,UE可以通过测量下行链路窄带参考信号收到功率(NRSRP)来确定信号质量。在框1304,UE可以基于信号质量来确定覆盖水平,其中,该覆盖水平指示要被用于与该节点进行通信的资源。在一些方面,UE可以通过比较测得NRSRP与一个或多个阈值来确定覆盖水平,其中每个阈值对应于不同的覆盖水平。

  在框1306,UE可以基于覆盖水平确定最大重复水平以供与节点进行通信。例如,最大重复水平可以是如本文所描述的R最大。在一些方面,最大重复水平基于解码窄带物理下行链路控制信道(NPDCCH)所需的重复次数。

  在框1308,UE可以生成与重复值相对应的多比特重复范围标识符,其中该重复值基于最大重复水平。在一些方面,多比特重复范围标识符包括多个比特组合(例如,“01”、“10”、“11”)之一,并且重复值指示用于解码具有预定BLER的窄带物理下行链路控制信道(NPDCCH)信号的重复次数。例如,多个比特组合可以至少包括映射到第一值的第一比特组合,映射到第二值的第二比特组合以及映射到第三值的第三比特组合,其中第一值是最大重复水平的一半,第二值是最大重复水平的两倍,而第三值在最大重复水平的一半与最大重复水平的两倍之间。

  在框1310,UE可以传送多比特重复范围标识符。在框1312,UE可以基于重复值检测和解码窄带物理下行链路控制信道(NPDCCH)信号。

  示例性装置(例如,UE)

  图14是根据本公开的一个或多个方面的装置1400的解说。装置1400包括通信接口(例如,至少一个收发机)1402、存储介质1404、用户接口1406、存储器设备1408以及处理电路1410。

  这些组件可以经由信令总线或其他合适的组件(由图14中的连接线一般化地表示)彼此耦合和/或彼此进行电通信。取决于处理电路1410的具体应用和整体设计约束,信令总线可包括任何数目的互连总线和桥接器。信令总线将各种电路链接在一起以使得通信接口1402、存储介质1404、用户接口1406和存储器设备1408中的每一者与处理电路1410耦合和/或处于电通信。信令总线还可链接各种其他电路(未示出),诸如定时源、外围设备、稳压器和功率管理电路,这些电路在本领域中是众所周知的,且因此将不再进一步描述。

  通信接口1402可被适配成促成装备1400的无线通信。例如,通信接口1402可包括被适配成促成关于网络中的一个或多个通信设备进行双向信息通信的电路系统和/或代码(例如,指令)。通信接口1402可耦合到一个或多个天线1412以用于在无线通信系统内进行无线通信。通信接口1402可配置有一个或多个自立接收机和/或发射机以及一个或多个收发机。在所解说的示例中,通信接口1402包括发射机1414和接收机1416。

  存储器设备1408可表示一个或多个存储器设备。如所指示的,存储器设备1408可维持网络相关信息连同装置1400所使用的其他信息。在一些实现中,存储器设备1408和存储介质1404被实现为共用存储器组件。存储器设备1408还可被用于存储由处理电路1410或装置1400的某种其他组件操纵的数据。

  存储介质1404可表示用于存储代码(诸如处理器可执行代码或指令(例如,软件、固件))、电子数据、数据库、或其他数字信息的一个或多个计算机可读、机器可读、和/或处理器可读设备。存储介质1404还可被用于存储由处理电路1410在执行代码时操纵的数据。存储介质1404可以是能被通用或专用处理器访问的任何可用介质,包括便携式或固定存储设备、光学存储设备、以及能够存储、包含或携带代码的各种其他介质。

  作为示例而非限制,存储介质1404可包括:磁存储设备(例如,硬盘、软盘、磁条)、光盘(例如,压缩碟(CD)或数字多功能碟(DVD))、智能卡、闪存设备(例如,记忆卡、记忆棒、或钥匙驱动器)、随机存取存储器(RAM)、只读存储器(ROM)、可编程ROM(PROM)、可擦式PROM(EPROM)、电可擦式PROM(EEPROM)、寄存器、可移动盘、以及任何其他用于存储可由计算机访问和读取的代码的合适介质。存储介质1404可被实施在制品(例如,计算机程序产品)中。作为示例,计算机程序产品可包括封装材料中的计算机可读介质。鉴于上述内容,在一些实现中,存储介质1404可以是非瞬态(例如,有形的)存储介质。

  存储介质1404可被耦合至处理电路1410,以使得该处理电路1410能从存储介质1404读取信息以及向存储介质1404写入信息。即,存储介质1404可被耦合至处理电路1410,以使得存储介质1404至少能由处理电路1410访问,包括其中至少一个存储介质被集成到处理电路1410的示例和/或其中至少一个存储介质与处理电路1410分开(例如,驻留在装置1400中、在装置1400外部、跨多个实体分布等)的示例。

  由存储介质1404存储的代码和/或指令在由处理电路1410执行时使处理电路1410执行本文描述的各种功能和/或过程操作中的一者或多者。例如,存储介质1404可包括被配置用于以下动作的操作:调节处理电路1410的一个或多个硬件块处的操作以及将通信接口1402用于利用其相应通信协议的无线通信。

  处理电路1410一般被适配成用于处理,包括执行存储在存储介质1404上的此类代码/指令。如本文中使用的,术语“代码”或“指令”应当被宽泛地解读成包括但不限于编程、指令、指令集、数据、代码、代码段、程序代码、程序、子程序、软件模块、应用、软件应用、软件包、例程、子例程、对象、可执行件、执行的线程、规程、函数等,无论其被称为软件、固件、中间件、微代码、硬件描述语言、还是其他术语。

  处理电路1410被安排成获得、处理和/或发送数据,控制数据访问和存储,发布命令,以及控制其他期望操作。在至少一个示例中,处理电路1410可包括被配置成实现由恰适介质提供的期望代码的电路系统。例如,处理电路1410可被实现为一个或多个处理器、一个或多个控制器、和/或配置成执行可执行代码的其他结构。处理电路1410的示例可包括被设计成执行本文中所描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑组件、分立的门或晶体管逻辑、分立的硬件组件或其任何组合。通用处理器可包括微处理器,以及任何常规的处理器、控制器、微控制器或状态机。处理电路1410还可被实现为计算组件的组合,诸如DSP与微处理器的组合、数个微处理器、与DSP核协作的一个或多个微处理器、ASIC和微处理器、或任何其他数目的变化配置。处理电路1410的这些示例是为了解说,并且还设想了落在本公开范围内的其他合适的配置。

  根据本公开的一个或多个方面,处理电路1410可适配成执行用于本文中描述的任何或所有装置的特征、过程、功能、操作和/或例程中的任一者或全部。如本文所使用的,涉及处理电路1410的术语“适配”可指处理电路1410被配置、采用、实现和/或编程(以上一者或多者)为执行根据本文描述的各种特征的特定过程、功能、操作和/或例程。

  根据装置1400的至少一个示例,处理电路1410可包括确定电路/模块1420、生成电路/模块1422、监视电路/模块1424、解码电路/模块1426、传送电路模块1428、以及接收电路/模块1430中的一者或多者,这些电路/模块被适配成执行本文所描述的特征、过程、功能、操作和/或例程(例如,参照图7、9、10、12和/或13描述的特征、过程、功能、操作和/或例程)中的任一者或全部。

  确定电路/模块1420可包括被适配成执行与例如以下操作相关的若干功能的电路系统和/或指令(例如,存储在存储介质1404上的确定指令1440):确定信号质量以供与节点进行通信;基于该信号质量来确定覆盖水平,其中该覆盖水平指示要被用于与该节点进行通信的资源;确定用于指示要被用于与该节点进行通信的资源的覆盖水平;基于该覆盖水平来确定最大重复水平和重复值以供与该节点进行通信;确定一个或多个较低水平的最大重复水平是否适合于供所确定的覆盖水平使用;使用该较低水平的最大重复水平中的最低者作为新的最大重复水平;确定解码具有预定最小块差错率(BLER)的窄带物理下行链路控制信道(NPDCCH)信号所需的重复值;基于测得NRSRP来确定窄带物理随机接入(NPRACH)资源;和/或测量下行链路窄带参考信号收到功率(NRSRP)。

  生成电路/模块1422可包括被适配成执行与例如以下操作相关的若干功能的电路系统和/或指令(例如,存储在存储介质1404上的生成指令1442):基于该最大重复水平来生成指示该重复值的多比特重复范围标识符;和/或基于该最大重复水平来生成多比特重复范围标识符,其中该多比特重复范围标识符被配置成允许设备接收重复值以供重复在随机接入规程期间所接收到的一个或多个信号。

  监视电路/模块1424可包括被适配成执行与例如以下操作相关的若干功能的电路系统和/或指令(例如,存储在存储介质1404上的监视指令1444):在确定最大重复水平之后监视一个或多个较低水平的最大重复水平;以及基于最大重复值来监视窄带物理下行链路控制信道(NPDCCH)。

  解码电路/模块1426可包括被适配成执行与例如以下操作相关的若干功能的电路系统和/或指令(例如,存储在存储介质1404上的解码指令1446):使用该重复值来解码该NPDCCH信号以建立与该节点的通信;和/或基于该重复值来检测并解码NPDCCH信号。

  传送电路/模块1428可包括适配成执行例如与以下操作相关的若干功能的电路系统和/或指令(例如,存储在存储介质1404上的传送指令1448):传送多比特重复范围标识符;向节点传送重复值;从设备传送消息(消息3)以供发起随机接入规程的完成;基于该最大重复水平来传送下行链路信号质量数据;和/或基于该重复值来传送下行链路信号质量数据。

  接收电路/模块1430可包括适配成执行与例如以下操作相关的若干功能的电路系统和/或指令(例如,存储在存储介质1404上的接收指令1450):接收包括至少一个重复值的最大重复水平(R最大)。

  如以上所提及的,由存储介质1404存储的指令在由处理电路1410执行时使处理电路1410执行本文所描述的各种功能和/或过程操作中的一者或多者。例如,存储介质1404可包括确定指令1440、生成指令1442、监视指令1444、解码指令1446、传送指令1448、接收指令1450中的一者或多者。

  本领域技术人员将可进一步领会,结合本文中公开的实现描述的各种解说性逻辑框、模块、电路、和算法步骤可被实现为硬件、软件、固件、中间件、微代码、或其任何组合。为了清楚地解说这种可互换性,各种解说性组件、框、模块、电路和步骤在上文已经以其功能性的形式一般性地作了描述。此类功能性是被实现为硬件还是软件取决于具体应用和施加于整体系统的设计约束。

  在本公开内,措辞“示例性”用于表示“用作示例、实例或解说”。本文中描述为“示例性”的任何实现或方面不必被解释为优于或胜过本公开的其他方面。同样,术语“方面”不要求本公开的所有方面都包括所讨论的特征、优点或操作模式。术语“耦合”在本文中用于指代两个对象之间的直接或间接耦合。例如,如果对象A物理地接触对象B,且对象B接触对象C,则对象A和C仍可被认为是彼此耦合的——即便它们并非彼此直接物理接触。例如,第一管芯可以在封装中耦合至第二管芯,即便第一管芯从不直接与第二管芯物理接触。术语“电路”和“电路系统”被宽泛地使用且意在包括电子器件和导体的硬件实现以及信息和指令的软件实现两者,这些电子器件和导体在被连接和配置时使得能执行本公开中描述的功能而在电子电路的类型上没有限制,这些信息和指令在由处理器执行时使得能执行本公开中描述的功能。

  如本文中使用的,术语“确定”涵盖各种各样的动作。例如,“确定”可包括演算、计算、处理、推导、研究、查找(例如,在表、数据库或其他数据结构中查找)、查明、及类似动作。而且,“确定”可包括接收(例如接收信息)、访问(例如访问存储器中的数据)、及类似动作。同样,“确定”还可包括解析、选择、选取、建立、及类似动作。

  提供先前描述是为了使本领域任何技术人员均能够实践本文中所描述的各种方面。对这些方面的各种修改将容易为本领域技术人员所明白,并且在本文中所定义的普适原理可被应用于其他方面。因此,权利要求并非旨在被限定于本文中所示出的各方面,而是应被授予与权利要求的语言相一致的全部范围,其中对要素的单数形式的引述并非旨在表示“有且仅有一个”——除非特别如此声明,而是旨在表示“一个或多个”。除非特别另外声明,否则术语“一些/某个”指的是一个或多个。引述一列项目“中的至少一者”的短语指代这些项目的任何组合,包括单个成员。作为示例,“a、b或c中的至少一个”旨在涵盖:a;b;c;a和b;a和c;b和c;以及a、b和c。本公开通篇描述的各个方面的要素为本领域普通技术人员当前或今后所知的所有结构上和功能上的等效方案通过引述被明确纳入于此,且旨在被权利要求所涵盖。

  本文中所描述的本公开的各种特征可实现于不同系统中而不会脱离本公开。应当注意,本公开的以上各方面仅是示例,且不应被解释成限定本公开。对本公开的各方面的描述旨在是解说性的,而非限定所附权利要求的范围。由此,本发明的教导可以现成地应用于其他类型的装置,并且许多替换、修改和变形对于本领域技术人员将是显而易见的。

《用于建立窄带IOT设备连接的系统、装置和方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)