欢迎光临小豌豆知识网!
当前位置:首页 > 电学技术 > 电通讯技术> 终端装置、基站装置以及通信方法独创技术97899字

终端装置、基站装置以及通信方法

2021-03-20 21:04:35

终端装置、基站装置以及通信方法

  技术领域

  本发明的一个方案涉及终端装置、基站装置以及通信方法。

  本申请基于2018年3月26日在日本提出申请的日本专利申请2018-058037号主张优先权,并将其内容援引于此。

  背景技术

  在第三代合作伙伴计划(3GPP:3rd Generation Partnership Project)中,对蜂窝移动通信的无线接入方式以及无线网络(以下称为“长期演进(Long Term Evolution(LTE))”或“演进通用陆地无线接入(EUTRA:Evolved Universal Terrestrial RadioAccess)”)进行了规范。在LTE中,基站装置也称为eNodeB(evolved NodeB:演进型节点B),终端装置也称为UE(User Equipment:用户设备)。LTE是以小区状配置多个基站装置所覆盖的区域的蜂窝通信系统。单个基站装置也可以管理多个小区。

  3GPP中,为了向国际电信联盟(ITU:International Telecommunication Union)所制定的作为下一代移动通信系统标准的IMT(International MobileTelecommunication:国际移动通信)-2020提出建议而对下一代标准(NR:New Radio(新无线技术))进行了研究(非专利文献1)。要求NR在单一技术框架中满足假定了以下三个场景的要求:eMBB(enhanced Mobile BroadBand:增强型移动宽带)、mMTC(massive MachineType Communication:海量机器类通信)、URLLC(Ultra Reliableand Low LatencyCommunication:超高可靠超低延迟通信)。

  此外,对NR在未许可频带(Unlicensed Spectrum)中的应用进行了研究(非专利文献2)。研究了将支持100MHz宽带的NR应用于未许可频带的载波来实现数Gbps的数据速率。

  现有技术文献

  非专利文献

  非专利文献1:“New SID proposal:Study onNew Radio Access Technology”,RP-160671,NTT docomo,3GPP TSG RANMeeting#71,Goteborg,Sweden,7th-10thMarch,2016.

  非专利文献2:“Revised SID on NR-based Access to Unlicensed Spectrum”,RP-171601,Qualcomm Incorporated,3GPP TSG RAN Meeting#77,Sapporo,Japan,11th-14th September,2017.

  发明内容

  发明要解决的问题

  在世界上的一些国家,需要在未许可频带中应用先听后说(LBT:先听后说(Listen-Before-Talk))。在开始发送前进行载波侦听,并仅在通过载波侦听确认了资源(信道)未被应用在附近的其他系统中的情况下,才能在规定的时间长度内进行发送的机制为LBT。

  本发明的一个方案实现在未许可频带中应用LBT,并且应用NR。本发明的一个方案提供能高效地进行通信的终端装置、用于该终端装置的通信方法、能高效地进行通信的基站装置以及用于该基站装置的通信方法。

  技术方案

  (1)本发明的第一方案的终端装置是一种在时隙中从基站装置接收PDCCH的终端装置,其特征在于,具备:无线资源控制层处理部,基于RRC信令设定第一控制资源集和第二控制资源集;接收部,在所述第一控制资源集和所述第二控制资源集内监测PDCCH候选;以及解码部,对所述PDCCH候选进行解码,所述第一控制资源集由所述时隙的前半部分的OFDM符号构成,所述第二控制资源集由所述时隙的后半部分的OFDM符号构成,在所述时隙中,在所述第一控制资源集内监测第一数量的所述PDCCH候选,在所述第二控制资源集内监测第二数量的所述PDCCH候选,直至判断为所述基站装置发送信号为止,在判断为所述基站装置发送信号后,在所述时隙中,在所述第一控制资源集内监测第三数量的所述PDCCH候选。

  (2)本发明的第一方案的终端装置的特征还在于,所述第三数量多于所述第一数量。

  (3)本发明的第一方案的终端装置的特征还在于,所述第一数量与所述第二数量的总和等于所述第三数量。

  (4)本发明的第二方案的通信方法是一种用于在时隙中从基站装置接收PDCCH的终端装置的通信方法,其特征在于,具备如下步骤:基于RRC信令设定第一控制资源集和第二控制资源集;在所述第一控制资源集和所述第二控制资源集内监测PDCCH候选;以及对所述PDCCH候选进行解码,所述第一控制资源集由所述时隙的前半部分的OFDM符号构成,所述第二控制资源集由所述时隙的后半部分的OFDM符号构成,在所述时隙中,在所述第一控制资源集内监测第一数量的所述PDCCH候选,在所述第二控制资源集内监测第二数量的所述PDCCH候选,直至判断为所述基站装置发送信号为止,在判断为所述基站装置发送信号后,在所述时隙中,在所述第一控制资源集内监测第三数量的所述PDCCH候选。

  (5)本发明的第二方案的通信方法的特征还在于,所述第三数量多于所述第一数量。

  (6)本发明的第二方案的通信方法的特征还在于,所述第一数量与所述第二数量的总和等于所述第三数量。

  (7)本发明的第三方案的基站装置是一种在时隙中发送PDCCH的基站装置,其特征在于,具备:无线资源控制层处理部,对终端装置设定第一控制资源集和第二控制资源集;以及发送部,在所述时隙中使用所述第一控制资源集或所述第二控制资源集内的PDCCH候选来发送所述PDCCH,在所述第一控制资源集中构成第一数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙,在所述第二控制资源集中构成第二数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙,在所述第一控制资源集中构成第三数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙的接下来的时隙。

  (8)本发明的第三方案的基站装置的特征还在于,所述第三数量多于所述第一数量。

  (9)本发明的第三方案的基站装置的特征还在于,所述第一数量与所述第二数量的总和等于所述第三数量。

  (10)本发明的第四方案的通信方法是一种用于在时隙中发送PDCCH的基站装置的通信方法,其特征在于,包括如下步骤:对终端装置设定第一控制资源集和第二控制资源集;以及在所述时隙中,使用所述第一控制资源集或所述第二控制资源集内的PDCCH候选来发送所述PDCCH,在所述第一控制资源集中构成第一数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙,在所述第二控制资源集中构成第二数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙,在所述第一控制资源集中构成第三数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙的接下来的时隙。

  (11)本发明的第四方案的通信方法的特征还在于,所述第三数量多于所述第一数量。

  (12)本发明的第四方案的通信方法的特征还在于,所述第一数量与所述第二数量的总和等于所述第三数量。

  有益效果

  根据本发明,终端装置能高效地进行通信。此外,基站装置能高效地进行通信。

  附图说明

  图1是本实施方式的一个方案的无线通信系统的概念图。

  图2是表示本实施方式的一个方案的无线帧、子帧以及时隙的构成的一个示例。

  图3是表示本实施方式的一个方案的时隙和微时隙的构成例的图。

  图4是表示本实施方式的一个方案的控制资源集的映射的一个示例的图。

  图5是表示本实施方式的一个方案的时隙中包括的资源元素的一个示例的图。

  图6是表示本实施方式的一个方案的一个REG的构成的一个示例的图。

  图7是表示本实施方式的一个方案的CCE的构成例的图。

  图8是表示本实施方式的一个方案的构成REG的组的REG数与PDCCH候选的映射方法的关联的一个示例的图。

  图9是表示本实施方式的一个方案的构成CCE的REG的映射的一个示例的图。

  图10是表示本实施方式的终端装置1的构成的概略框图。

  图11是表示本实施方式的基站装置3的构成的概略框图。

  图12是表示本实施方式的一个方案的第一初始连接过程(4-step contentionbased RACH procedure:4步骤竞争RACH过程)的一个示例的图。

  图13是表示本实施方式的一个方案的在终端装置1中设定的第一控制资源集和第二控制资源集的一个示例的图。

  图14是表示本实施方式的一个方案的在终端装置1中设定的第一控制资源集和第二控制资源集的一个示例的图。

  图15是表示本实施方式的一个方案的在终端装置1中设定的第一控制资源集和第二控制资源集的一个示例的图。

  图16是表示本实施方式的一个方案的由终端装置1监测的PDCCH候选的一个示例的图。

  图17是表示本实施方式的一个方案的由终端装置1监测的PDCCH候选的一个示例的图。

  具体实施方式

  以下,对本发明的一实施方式进行说明。

  图1是本实施方式的一个方案的无线通信系统的概念图。在图1中,无线通信系统具备终端装置1A~1C以及基站装置3(gNB)。以下,也将终端装置1A~1C称为终端装置1(UE)。

  以下,对关于终端装置1与基站装置3之间的通信的各种无线参数进行说明。在此,至少一部分的无线参数(例如子载波间隔(SCS:Subcarrier Spacing))也称为Numerology(参数集)。无线参数包括子载波间隔、OFDM符号的长度、子帧的长度、时隙的长度以及微时隙的长度的至少一部分。

  在无线通信中使用的子载波间隔是用于在终端装置1与基站装置3之间的无线通信中使用的通信方式(例如,OFDM:Orthogonal Frequency Division Multiplex(正交频分复用)、OFDMA:Orthogonal Frequency Division Multiple Access(正交频分多址)、SC-FDMA:Single Carrier-Frequency Division Multiple Access(单载波频分多址)、DFT-s-OFDM:Discrete Fourier Transform-spread-OFDM(离散傅立叶变换扩展OFDM))的无线参数中的一种。例如,子载波间隔可以是15kHz、30kHz、60kHz、120kHz。

  图2是表示本实施方式的一个方案的无线帧、子帧以及时隙的构成的一个示例。在图2所示的一个示例中,时隙的长度为0.5ms,子帧的长度为1ms,无线帧的长度为10ms。时隙可以是时域上的资源分配的单位。例如,时隙可以是映射一个传输块的单位。例如,传输块可以映射至一个时隙。在此,传输块可以是在由上层(例如,MAC:Mediam Access Control(媒体接入控制)、RRC:Radio Resource Control(无线资源控制))规定的规定间隔(例如传输时间间隔(TTI:Transmission Time Interval))内发送的数据的单位。

  例如,时隙的长度可以根据OFDM符号的个数来给出。例如,OFDM符号的个数可以是7个或14个。时隙的长度也可以至少基于OFDM符号的长度给出。OFDM符号的长度可以至少基于子载波间隔而不同。此外,OFDM符号的长度也可以至少基于用于生成OFDM符号的快速傅里叶变换(FFT:Fast Fourier Transform)的点数来给出。此外,OFDM符号的长度也可以包括附加于该OFDM符号的循环前缀(CP:Cyclic Prefix)的长度。在此,OFDM符号也可以称为符号。此外,在终端装置1与基站装置3之间的通信中,在使用OFDM以外的通信方式的情况(例如,使用SC-FDMA、DFT-s-OFDM的情况等)下,所生成的SC-FDMA符号和/或DFT-s-OFDM符号也称为OFDM符号。此外,除非另外说明,OFDM包括SC-FDMA或DFT-s-OFDM。

  例如,时隙的长度可以是0.125ms、0.25ms、0.5ms、1ms。例如,在子载波间隔为15kHz的情况下,时隙的长度可以是1ms。例如,在子载波间隔为30kHz的情况下,时隙的长度可以是0.5ms。例如,在子载波间隔为120kHz的情况下,时隙的长度可以是0.125ms。例如,在子载波间隔为15kHz的情况下,时隙的长度可以是1ms。例如,在时隙的长度为0.125ms的情况下,一个子帧可以由八个时隙构成。例如,在时隙的长度为0.25ms的情况下,一个子帧可以由四个时隙构成。例如,在时隙的长度为0.5ms的情况下,一个子帧可以由两个时隙构成。例如,在时隙的长度为1ms的情况下,一个子帧可以由一个时隙构成。

  OFDM包括应用了波形整形(Pulse Shape;脉冲形状)、PAPR降低、频带外幅射降低或滤波和/或相位处理(例如相位旋转等)的多载波的通信方式。多载波的通信方式可以是生成/发送对多个子载波进行了复用的信号的通信方式。

  无线帧可以根据子帧的个数来给出。用于无线帧的子帧的个数例如可以是10个。无线帧也可以根据时隙的个数来给出。

  图3是表示本实施方式的一个方案的时隙和微时隙的构成例的图。在图3中,构成一个时隙的OFDM符号的个数为7个。微时隙可以由比构成时隙的多个OFDM符号的个数少的个数为一个以上的OFDM符号构成。此外,微时隙的长度可以比时隙短。图3作为微时隙的构成的一个示例,示出微时隙#0至微时隙#5。如微时隙#0所示,微时隙可以由一个OFDM符号构成。此外,如微时隙#1至#3所示,微时隙也可以由两个OFDM符号构成。此外,如微时隙#1和微时隙#2所示,可以在两个微时隙间插入间隔(时间间隔)。此外,如微时隙#5所示,微时隙也可以跨过时隙#0和时隙#1的边界而构成。就是说,微时隙可以跨过时隙的边界而构成。在此,微时隙也称为子时隙。此外,微时隙也称为sTTI(short TTI(短TTI):TransmissionTime Interval(传输时间间隔))。此外,以下,可以将时隙替换为微时隙。微时隙可以由与时隙相同的OFDM符号的个数构成。微时隙也可以由比构成时隙的多个OFDM符号的个数多的个数的OFDM符号构成。微时隙的时域的长度可以比时隙长度短。微时隙的时域的长度也可以比子帧长度短。

  以下,对本实施方式的各种方案的物理信道和物理信号进行说明。

  在图1中,在从终端装置1向基站装置3的上行链路的无线通信中,至少使用以下的上行链路物理信道。上行链路物理信道被物理层用来收发从上层输出的信息。

  ·PUCCH(Physical Uplink Control Channel:物理上行链路控制信道)

  ·PUSCH(Physical Uplink Shared Channel:物理上行链路共享信道)

  ·PRACH(Physical Random Access Channel:物理随机接入信道)

  PUCCH用于收发上行链路控制信息(UCI:Uplink Control Information)。上行链路控制信息包括:下行链路信道的信道状态信息(CSI:Channel State Information)、用于请求初始发送用的PUSCH(UL-SCH:Uplink-Shared Channel)资源的调度请求(SR:Scheduling Request)、针对下行链路数据(TB:Transport block(传输块)、MAC PDU:Medium Access Control Protocol Data Unit(媒体接入控制协议数据单元)、DL-SCH:Downlink-Shared Channel(下行链路共享信道)、PDSCH:Physical Downlink SharedChannel(物理下行链路共享信道))的HARQ-ACK(Hybrid Automatic Repeat requestACKnowledgement:混合自动重传请求肯定应答)。HARQ-ACK表示ACK(acknowledgement:肯定响应)或NACK(negative-acknowledgement:否定响应)。也将HARQ-ACK称为HARQ反馈、HARQ信息、HARQ控制信息以及ACK/NACK。

  信道状态信息(CSI:Channel State Information)至少包括信道质量指示符(CQI:Channel Quality Indicator)。信道状态信息可以包括秩指示符(Rank Indicator:RI)。信道状态信息可以包括预编码矩阵指示符(PMI:Precoder Matrix Indicator)。CQI是与信道质量(传输强度)关联的指示符,PMI是指示预编码的指示符。RI是指示发送秩(或发送层数)的指示符。

  PUSCH用于收发上行链路数据(TB、MAC PDU、UL-SCH、PUSCH)。PUSCH也可以用于与上行链路数据一同收发HARQ-ACK和/或信道状态信息。此外,PUSCH也可以用于仅收发信道状态信息或仅收发HARQ-ACK和信道状态信息。PUSCH可以用于收发随机接入消息3。

  PRACH用于收发随机接入前导(随机接入消息1)。PRACH用于表示初始连接建立(initial connection establishment)过程、切换过程(Handover procedure)、连接重新建立(connection re-establishment)过程、针对上行链路数据的发送的同步(定时调整)以及PUSCH(UL-SCH)资源的请求。随机接入前导可以用于将由终端装置1的上层给出的索引(随机接入前导索引)通知给基站装置3。

  随机接入前导可以通过对与物理根序列索引u对应的Zadoff-Chu序列进行循环移位来给出。Zadoff-Chu序列可以基于物理根序列索引u来生成。可以在一个小区中定义多个随机接入前导。随机接入前导可以至少基于随机接入前导的索引来确定。与随机接入前导的不同的索引对应的不同的随机接入前导可以对应于物理根序列索引u和循环移位的不同的组合。物理根序列索引u和循环移位可以至少基于系统信息中所包括的信息来给出。物理根序列索引u可以是识别随机接入前导中所包括的序列的索引。随机接入前导也可以至少基于物理根序列索引u来确定。

  在图1中,在上行链路的无线通信中,使用以下上行链路物理信号。上行链路物理信号可以不用于收发从上层输出的信息,但被物理层使用。

  ·上行链路参考信号(UL RS:Uplink Reference Signal)

  在本实施方式中,可以至少使用至少以下两种类型的上行链路参考信号。

  ·DMRS(Demodulation Reference Signal:解调参考信号)

  ·SRS(Sounding Reference Signal:探测参考信号)

  DMRS与PUSCH和/或PUCCH的收发关联。DMRS与PUSCH或PUCCH复用。基站装置3使用DMRS来进行PUSCH或PUCCH的传输路径校正。以下,将一同发送PUSCH和DMRS仅称为发送PUSCH。以下,将一同发送PUCCH和DMRS仅称为发送PUCCH。以下,将一同接收PUSCH和DMRS仅称为接收PUSCH。以下,将一同接收PUCCH和DMRS仅称为接收PUCCH。

  SRS与PUSCH或PUCCH的收发可以不关联。基站装置3可以使用SRS来进行信道状态的测量。可以在上行链路时隙中的子帧的最后或倒数规定数的OFDM符号中收发SRS。

  在图1中,在从基站装置3向终端装置1的下行链路的无线通信中,使用以下的下行链路物理信道。下行链路物理信道被物理层用来收发送从上层输出的信息。

  ·PBCH(Physical Broadcast Channel:物理广播信道)

  ·PDCCH(Physical Downlink Control Channel:物理下行链路控制信道)

  ·PDSCH(Physical Downlink Shared Channel:物理下行链路共享信道)

  PBCH用于广播在终端装置1中通用的主信息块(MIB:Master Information Block、BCH:Broadcast Channel(广播信道))。PBCH可以基于规定的发送间隔来发送。例如,PBCH可以以80ms的间隔来发送。PBCH中所包括的信息的内容可以按每80ms来更新。PBCH可以由288个子载波构成。PBCH也可以构成为包括2个、3个或4个OFDM符号。MIB可以包括与关于同步信号的标识符(索引)关联的信息。MIB也可以包括指示发送PBCH的时隙的编号、子帧的编号以及无线帧的编号的至少一部分的信息。

  PDCCH(NR PDCCH)用于发送、接收下行链路控制信息(DCI:Downlink ControlInformation)。下行链路控制信息也称为DCI格式。下行链路控制信息可以至少包括下行链路授权(downlink grant)或上行链路授权(uplink grant)的任一种。下行链路授权也称为下行链路指配(downlink assignment)或下行链路分配(downlink allocation)。下行链路控制信息可以包括Unlicensed access(未许可接入)共同信息。Unlicensed access共同信息是关于未许可频带中的接入、收发等的控制信息。Unlicensed access共同信息可以是下行链路的子帧结构(Subframe configuration for Unlicensed Access)的信息。下行链路的子帧结构示出:在配置有包括下行链路的子帧结构的信息的PDCCH的子帧中被占用的OFDM符号的位置和/或在配置有包括下行链路的子帧结构的信息的PDCCH的子帧的下一个子帧中被占用的OFDM符号的位置。在所占用的OFDM符号中进行下行链路物理信道、下行链路物理信号的收发。Unlicensed access共同信息可以是上行链路的子帧结构(ULduration and offset)的信息。上行链路的子帧结构示出:以配置有包括上行链路的子帧结构的信息的PDCCH的子帧为基准而开始上行链路子帧的子帧的位置和上行链路子帧的子帧的数量。终端装置1不请求在由上行链路的子帧结构的信息表示的子帧中接收下行链路物理信道、下行链路物理信号。

  例如,通过PDCCH来收发包括C-RNTI(Cell-Radio Network TemporaryIdentifier:小区无线网络临时标识符)在内的包括下行链路授权或上行链路授权的下行链路控制信息。例如,通过PDCCH收发包括CC-RNTI(Common Control-Radio NetworkTemporary Identifier:公共控制无线网络临时标识符)在内的Unlicensed access共同信息。

  一个下行链路授权至少用于调度一个服务小区内的一个PDSCH。下行链路授权至少用于调度与发送该下行链路授权的时隙相同的时隙内的PDSCH。下行链路授权也可以用于调度与发送该下行链路授权的时隙不同的时隙内的PDSCH。

  一个上行链路授权至少用于调度一个服务小区内的一个PUSCH。

  终端装置1设定(构成)一个或多个控制资源集(CORESET)(control resourceset)用于PDCCH的搜索。终端装置1在设定的控制资源集中尝试PDCCH的接收。

  在后文对控制资源集的详细内容加以叙述。

  PDSCH用于发送、接收下行链路数据(DL-SCH、PDSCH)。PDSCH至少用于收发随机接入消息2(随机接入响应)。PDSCH至少用于收发包括用于初始接入的参数的系统信息。

  在图1中,在下行链路的无线通信中,使用以下的下行链路物理信号。下行链路物理信号可以不用于发送、接收从上层输出的信息,但被物理层使用。

  ·同步信号(SS:Synchronization signal)

  ·下行链路参考信号(DL RS:Downlink Reference Signal)

  同步信号用于供终端装置1获取下行链路的频域和时域的同步。同步信号包括PSS(Primary Synchronization Signal:主同步信号)和SSS(Secondary SynchronizationSignal:辅同步信号)。

  下行链路参考信号用于供终端装置1进行下行链路物理信道的传输路径校正。下行链路参考信号用于供终端装置1计算下行链路的信道状态信息。

  在本实施方式中,至少使用以下类型的下行链路参考信号。

  ·DMRS(DeModulation Reference Signal:解调参考信号)

  DMRS与PDCCH和/或PDSCH的收发对应。DMRS与PDCCH或PDSCH复用。终端装置1可以使用与PDCCH或PDSCH对应的DMRS来进行该PDCCH或该PDSCH的传输路径校正。以下,一同发送PDCCH和与该PDCCH对应的DMRS仅称为发送PDCCH。以下,一同接收PDCCH和与该PDCCH对应的DMRS仅称为接收PDCCH。以下,一同发送PDSCH和与该PDSCH对应的DMRS仅称为发送PDSCH。以下,一同接收PDSCH和与该PDSCH对应的DMRS仅称为接收PDSCH。

  DMRS可以是对终端装置1单独设定的RS。DMRS的序列可以至少基于对终端装置1单独设定的参数给出。DMRS可以为了PDCCH和/或PDSCH而单独发送。DMRS可以是对多个终端装置1共同设定的RS。DMRS的序列也可以是与对终端装置1单独地设定的参数无关地给出。例如,DMRS的序列可以基于时隙的编号、微时隙的编号以及小区ID(identity)中的至少一部分来给出。DMRS也可以是与是否发送PDCCH和/或PDSCH无关地发送的RS。

  下行链路物理信道和下行链路物理信号也称为下行链路信号。上行链路物理信道和上行链路物理信号也称为上行链路信号。将下行链路物理信道和上行链路物理信道统称为物理信道。将下行链路物理信号和上行链路物理信号统称为物理信号。

  BCH、UL-SCH以及DL-SCH为传输信道。在媒体接入控制(MAC:Medium AccessControl)层中使用的信道称为传输信道。在MAC层使用的传输信道的单位也称为传输块或MAC PDU。在MAC层按每个传输块来进行HARQ(Hybrid Automatic Repeat reQuest:混合自动重传请求)的控制。传输块是MAC层转发(deliver)至物理层的数据的单位。在物理层中,传输块映射至码字,并按每个码字进行调制处理。

  基站装置3和终端装置1在上层(higher layer)交换(收发)信号。例如,基站装置3和终端装置1可以在无线资源控制(RRC:Radio Resource Control)层收发RRC信令(也称为RRC message:Radio Resource Control message(无线资源控制消息)、RRC information:Radio Resource Control information(无线资源控制信息))。此外,基站装置3和终端装置1也可以在MAC层收发MAC CE(Control Element:控制元素)。在此,也将RRC信令和/或MACCE称为上层的信号(higher layer signaling:上层信令)。

  PUSCH和PDSCH至少用于收发RRC信令和MAC CE。在此,由基站装置3通过PDSCH发送的RRC信令可以是对小区内的多个终端装置1通用的信令。对小区内的多个终端装置1通用的信令也称为公共RRC信令。从基站装置3通过PDSCH发送的RRC信令也可以是对某个终端装置1专用的信令(也称为dedicated signaling或UE specific signaling)。对终端装置1专用的信令也称为专用RRC信令。可以使用公共信令对小区内的多个终端装置1发送小区特定参数或者使用专用信令对某个终端装置1发送小区特定参数。也可以使用专用信令对某个终端装置1发送UE特定参数。包括专用RRC信令的PDSCH可以通过控制资源集内的PDCCH来调度。包括公共RRC信令的PDSCH可以通过控制资源集内的PDCCH来调度。

  BCCH(Broadcast Control Channel:广播控制信道)、CCCH(Common ControlChannel:公共控制信道)以及DCCH(Dedicated Control CHaneel:专用控制信道)是逻辑信道。例如,BCCH是用于收发MIB的上层的信道。此外,CCCH(Common Control Channel)是用于在多个终端装置1中收发共同的信息的上层的信道。在此,CCCH例如用于未进行RRC连接的终端装置1。此外,DCCH(Dedicated Control Channel)是用于对终端装置1进行专用的控制信息(dedicated control information)的收发的上层的信道。在此,DCCH例如用于进行了RRC连接的终端装置1。

  逻辑信道中的BCCH可以在传输信道中映射至BCH、DL-SCH或UL-SCH。逻辑信道中的CCCH可以在传输信道中映射至DL-SCH或UL-SCH。逻辑信道中的DCCH可以在传输信道中映射至DL-SCH或UL-SCH。

  传输信道中的UL-SCH在物理信道中映射至PUSCH。传输信道中的DL-SCH在物理信道中映射至PDSCH。传输信道中的BCH在物理信道中映射至PBCH。

  以下,对控制资源集进行说明。

  图4是表示本实施方式的一个方案的控制资源集的映射的一个示例的图。控制资源集可以是能够映射一个或多个控制信道的时域/频域。控制资源集可以是终端装置1尝试PDCCH的接收和/或检测(盲检测(BD:Blind Decoding))的区域。如图4的(a)所示,控制资源集(控制资源集#0)可以由在频域上连续的资源(Localized resource)构成。此外,如图4的(b)所示,控制资源集(控制资源集#1)可以由在频域上非连续的资源(distributedresource)构成。

  在频域上,控制资源集的映射单位可以是资源块。控制资源集可以由多个资源块构成。在频域上,控制资源集的映射单位可以是多个资源块。在时域上,控制资源集的映射单位可以是OFDM符号。控制资源集可以由1个、2个或3个OFDM符号构成。

  控制资源集的频域可以与服务小区的系统带宽相同。此外,控制资源集的频域可以至少基于服务小区的系统带宽而给出。控制资源集的频域也可以至少基于上层信令或系统信息来给出。例如,由基站装置3使用上层信令通知终端装置1构成控制资源集的资源块的位置。由基站装置3使用上层信令通知终端装置1按每个控制资源构成控制资源集的资源块的位置。

  控制资源集的时域可以至少基于上层信令或系统信息而给出。例如,使用上层信令将构成控制资源集的OFDM符号的个数从基站装置3通知给终端装置1。例如,使用上层信令将构成控制资源集的OFDM符号的开始位置从基站装置3通知给终端装置1。例如,使用上层信令将构成控制资源集的OFDM符号的结束位置从基站装置3通知给终端装置1。例如,使用上层信令将配置有控制资源集的子帧的位置从基站装置3通知给终端装置1。例如,使用上层信令将配置有控制资源集的时隙的位置从基站装置3通知给终端装置1。例如,使用上层信令将配置有控制资源集的子帧的周期从基站装置3通知给终端装置1。例如,使用上层信令将配置有控制资源集的时隙的周期从基站装置3通知给终端装置1。

  控制资源集可以使用公共控制资源集(Common control resource set)(CommonCORESET)和专用控制资源集(Dedicated control resource set)(UE specific CORESET)的一方或两方。公共控制资源集可以是对多个终端装置1共同设定的控制资源集。公共控制资源集可以至少基于同步信号、MIB、第一系统信息、第二系统信息、公共RRC信令、专用RRC信令、小区ID等来给出。例如,配置有公共控制资源集的子帧(时隙)的位置可以至少基于同步信号、MIB、公共RRC信令等来给出。专用控制资源集可以是设定为由单独的终端装置1专用的控制资源集。专用控制资源集可以至少基于专用RRC信令和/或C-RNTI的值来给出。

  控制资源集可以是终端装置1所监测的控制信道(或控制信道的候选)的集合。控制资源集可以包括终端装置1所监测的控制信道(或控制信道的候选)的集合。控制资源集可以构成为包括一个或多个搜索区域(搜索空间、SS:Search Space)。

  搜索区域构成为包括一个或多个PDCCH候选(PDCCH candidate)。终端装置1接收搜索区域中所包括的PDCCH候选,并尝试PDCCH的接收(监测PDCCH)。在此,PDCCH候选也称为盲检测候选(blind detection candidate)。

  搜索区域包括CSS(Common Search Space:公共搜索区域)和USS(UE-specificSearch Space:UE特定搜索空间)这两种类型。CSS可以是对多个终端装置1共同设定的搜索区域。USS可以是包括由单独的终端装置1专用的设定的搜索区域。CSS可以至少基于同步信号、MIB、第一系统信息、第二系统信息、公共RRC信令、专用RRC信令、小区ID等来给出。USS可以至少基于专用RRC信令和/或C-RNTI的值来给出。

  对于CSS,可以使用针对通过用于在主小区中发送系统信息的SI-RNTI进行了加扰的DCI格式的类型0PDCCH CSS和针对通过用于初始接入的INT-RNTI进行了加扰的DCI格式的类型1PDCCH CSS。对于CSS,可以使用针对通过用于Unlicensed access的CC-RNTI进行了加扰的DCI格式的类型PDCCH CSS。终端装置1能监测这些搜索区域中的PDCCH候选。通过规定的RNTI进行了加扰的DCI格式可以是附加有通过规定的RNTI进行了加扰的CRC(CyclicRedundancy Check:循环冗余校验)的DCI格式。

  需要说明的是,在CSS中包括的PDCCH和/或DCI中可以不包括表示该PDCCH/DCI调度针对哪个服务小区(或哪个分量载波)的PDSCH或PUSCH的CIF(Carrier IndicatorField:载波指示符字段)。

  需要说明的是,在对终端装置1设定聚合多个服务小区和/或多个分量载波来进行通信(发送和/或接收)的载波聚合(CA:载波聚合)的情况下,在针对规定的服务小区(规定的分量载波)的USS中包括的PDCCH和/或DCI中包括表示该PDCCH/DCI调度针对哪个服务小区和/或哪个分量载波的PDSCH或PUSCH的CIF。

  需要说明的是,在使用一个服务小区和/或一个分量载波与终端装置1进行通信的情况下,在USS中包括的PDCCH和/或DCI中可以不包括表示该PDCCH/DCI调度针对哪个服务小区和/或哪个分量载波的PDSCH或PUSCH的CIF。

  公共控制资源集可以包括CSS。公共控制资源集也可以包括CSS和USS双方。专用控制资源集可以包括USS。专用控制资源集可以包括CSS。

  在公共控制资源集中,可以收发包括Unlicensed access所需的控制信息(Unlicensed access共同信息)的PDCCH。可以在公共控制资源集中收发包括含有RMSI(Remaining Minimum System Information:剩余最低限度系统信息)的PDSCH的资源分配信息的PDCCH。也可以在公共控制资源集中收发包括含有RAR(Random Access Response:随机接入响应)的PDSCH的资源分配信息的PDCCH。也可以在公共控制资源集中收发包括表示预先空出的资源(Pre-emption resources)的控制信息的PDCCH。也可以在公共控制资源集中收发包括表示时隙格式指示符的控制信息的PDCCH。需要说明的是,可以构成多个公共控制资源集,并将各公共控制资源集配置于不同的子帧(时隙)。需要说明的是,也可以构成多个公共控制资源集,并将各公共控制资源集配置于相同的子帧(时隙)。需要说明的是,也可以构成多个公共控制资源集,并在各公共控制资源集中配置不同的PDCCH、不同的控制信息。

  可以在子帧(时隙)内构成多个专用控制资源集。可以构成多个专用控制资源集,并将各专用控制资源集配置于相同的子帧(时隙)。也可以构成多个专用控制资源集,并将各专用控制资源集配置于不同的子帧(时隙)。

  搜索区域的物理资源由控制信道的构成单位(CCE:Control Channel Element(控制信道元素))构成。CCE由规定个数的资源元素组(REG:Resource Element Group)构成。例如,CCE可以由6个REG构成。REG可以包括1个PRB(Physical Resource Block:物理资源块)的1个OFDM符号。就是说,REG可以构成为包括12个资源元素(RE:Resource Element)。PRB也仅称为RB(Resource Block:资源块)。

  就是说,终端装置1能通过对控制资源集内的搜索区域中包括的PDCCH候选进行盲检测来检测针对该终端装置1的PDCCH和/或DCI。

  针对一个的服务小区和/或一个分量载波中的一个控制资源集的盲检测的次数可以基于针对该控制资源集中包括的PDCCH的搜索区域的种类、聚合等级的种类、PDCCH候选的个数来确定。在此,搜索区域的种类可以包括CSS和/或USS和/或UGSS(UE Group SS:UE组SS)和/或GCSS(Group CSS:组CSS)中的至少一种。聚合等级的种类表示对于构成搜索区域的CCE所支持的最大聚合等级,可以根据{1,2,4,8……X}(X为规定值)中的至少一个进行规定/设定。PDCCH候选的个数可以表示针对某个聚合等级的PDCCH候选的个数。就是说,可以分别对多个聚合等级规定/设定PDCCH候选的个数。需要说明的是,UGSS可以是对一个或多个终端装置1共同分配的搜索区域。GCSS可以是向一个或多个终端装置1映射包括与CSS关联的参数的DCI的搜索区域。需要说明的是,聚合等级表示规定的CCE数的聚合等级,与构成一个PDCCH和/或搜索区域的CCE的总数关联。

  需要说明的是,聚合等级的大小可以与对应于PDCCH和/或搜索区域的覆盖范围或PDCCH和/或搜索区域中包括的DCI的大小(DCI格式大小、有效载荷大小)建立关联。

  需要说明的是,在对一个控制资源集设定PDCCH符号的开始位置(起始符号)的情况下,并且在规定的时段中能检测到多于一个的控制资源集内的PDCCH的情况下,可以分别对与各起始符号对应的时域设定针对该控制资源集中包括的PDCCH的搜索区域的种类、聚合等级的种类、PDCCH候选的个数。针对该控制资源集中包括的PDCCH的搜索区域的种类、聚合等级的种类、PDCCH候选的个数可以按每个控制资源集分别进行设定,也可以经由DCI和/或上层信号来提供/设定,还可以通过规格书预先进行规定/设定。需要说明的是,PDCCH候选的个数可以是规定时段内的PDCCH候选的个数。需要说明的是,规定时段可以是1毫秒。规定时段也可以是1微秒。此外,规定时段也可以是一个时隙时段。此外,规定时段也可以是一个OFDM符号时段。

  需要说明的是,在对于一个控制资源集,PDCCH符号的开始位置(起始符号)多于一个的情况下,就是说,在规定的时段中存在多个对PDCCH进行盲检测(监测)的定时的情况下,可以分别对与各起始符号对应的时域设定针对该控制资源集中包括的PDCCH的搜索区域的种类、聚合等级的种类、PDCCH候选的个数。针对该控制资源集中包括的PDCCH的搜索区域的种类、聚合等级的种类、PDCCH候选的个数可以按每个控制资源集分别进行设定,也可以经由DCI和/或上层信号来提供/设定,还可以通过规格书预先进行规定/设定。

  需要说明的是,作为PDCCH候选的个数的表示方法,可以采用按每个聚合等级规定/设定从PDCCH候选的规定数削减的个数的构成。

  终端装置1可以将与盲检测关联的能力信息发送/通知给基站装置3。终端装置1可以将在一个子帧中能处理的PDCCH候选的个数作为与PDCCH有关的能力信息发送/通知给基站装置3。终端装置1可以在能对一个或多个服务小区/分量载波设定多于规定数的控制资源集的情况下将与盲检测关联的能力信息发送/通知给基站装置3。

  终端装置1可以在支持第一时隙格式和第二时隙格式的情况下将与时隙格式关联的能力信息发送/通知给基站装置3。

  终端装置1可以在能对一个或多个服务小区/分量载波的规定时段设定多于规定数的控制资源集的情况下将与盲检测关联的能力信息发送/通知给基站装置3。

  需要说明的是,在与该盲检测关联的能力信息中可以包括表示规定的时段中的盲检测的最大次数的信息。此外,在与该盲检测关联的能力信息中也可以包括表示能削减PDCCH候选的信息。此外,在与该盲检测关联的能力信息中也可以包括表示在规定的时段中能盲检测的控制资源集的最大数的信息。该控制资源集的最大数与能进行PDCCH的监控的服务小区和/或分量载波的最大数可以分别设定为单独的参数,也可以设定为共同的参数。此外,在与该盲检测关联的能力信息中也可以包括表示在规定的时段中能同时进行盲检测的控制资源集的最大数的信息。

  终端装置1可以在规定的时段中不支持进行多于规定数的控制资源集的检测(盲检测)的能力的情况下不发送/通知与该盲检测关联的能力信息。基站装置3可以在未接收到与该盲检测关联的能力信息的情况下以不超过针对盲检测的规定数的方式进行与控制资源集有关的设定,并发送PDCCH。

  在与控制资源集有关的设定中可以包括表示PDCCH的开始位置(起始符号)的参数。此外,在与控制资源集有关的设定中也可以包括表示该控制资源集的时间资源区域(构成该控制资源集的OFDM符号数、配置有控制资源集的子帧(时隙)的位置)的参数。此外,在与控制资源集有关的设定中也可以包括表示该控制资源集的频率资源区域(构成该控制资源集的资源块数)的参数。此外,在与控制资源集有关的设定中也可以包括表示从CCE向REG的映射的种类的参数。此外,在与控制资源集有关的设定中也可以包括REG捆绑大小。此外,在与控制资源集有关的设定中也可以包括表示USS的CCE聚合等级的参数。此外,在与控制资源集有关的设定中也可以包括表示监测PDCCH和/或该控制资源集的周期(子帧的周期、子帧的开始位置)的参数。可以根据PDCCH的开始位置单独设定PDCCH的盲检测的最大数。

  以下,对本实施方式的物理资源的单位进行说明。

  图5是表示本实施方式的一个方案的时隙中包括的资源元素的一个示例的图。在此,资源元素(RE)是由一个OFDM符号和一个子载波定义的资源。如图5所示,时隙包括Nsymb个OFDM符号。时隙中包括的子载波的个数可以通过时隙中包括的资源块的个数NRB和每个资源块的子载波数NRBSC之积来给出。在此,资源块是时域和频域上的资源元素组。资源块可以用作时域和/或频域上的资源分配的单位。例如,NRBSC可以是12。Nsymb可以与子帧中包括的OFDM符号的个数相同。Nsymb也可以与时隙中包括的OFDM符号的个数相同。NRB可以基于小区的带宽和第一子载波间隔来给出。此外,NRB也可以基于由基站装置3发送的上层信号(例如RRC信令)等来给出。此外,NRB也可以基于规格书的记载等来给出。资源元素通过用于子载波的索引k和用于OFDM符号的索引l来识别。

  图6是表示本实施方式的一个方案的一个REG的构成的一个示例的图。REG可以包括一个PRB的一个OFDM符号。就是说,REG可以包括在频域上连续的12个RE。构成REG的多个RE中的一部分可以是不映射下行链路控制信息的RE。REG可以构成为包括不映射下行链路控制信息的RE,也可以构成为不包括不映射下行链路控制信息的RE。不映射下行链路控制信息的RE可以是映射参考信号的RE,也可以是映射控制信道以外的信道的RE,还可以是由终端装置1假定不映射控制信道的RE。

  图7是表示本实施方式的一个方案的CCE的构成例的图。CCE可以包括6个REG。如图7的(a)所示,CCE(CCE#0)可以由连续映射的REG构成(也可以将这样的映射称为Localizedmapping)(也可以将这样的映射称为non-interleaved CCE-to-REG mapping)(也可以将这样的映射称为non-interleaved mapping)。需要说明的是,构成CCE的所有的REG也可以不一定在频域上连续。例如,在所有构成控制资源集的多个资源块在频域上不连续的情况下,即使分配给REG的编号连续,构成连续编号的各REG的各资源块在频域上也不连续。在控制资源集包括多个OFDM符号,构成一个CCE的多个REG延及多个时间区间(OFDM符号)配置的情况下,如图7的(b)所示,CCE(CCE#1)可以由连续映射的REG的组构成。如图7的(c)所示,CCE(CCE#2)也可以由非连续映射的REG构成(也可以将这样的映射称为Distributed mapping)(也可以将这样的映射称为interleaved CCE-to-REG mapping)(也可以将这样的映射称为interleaved mapping。也可以使用交织器将构成CCE的REG非连续地映射在时域/频域的资源上。在控制资源集包括多个OFDM符号,构成一个CCE的多个REG延及多个时间区间(OFDM符号)配置的情况下,如图7的(d)所示,CCE(CCE#3)可以包括混合不同的时间区间(OFDM符号)的REG来进行非连续映射的REG。如图7的(e)所示,CCE(CCE#4)也可以包括以多个REG的组为单位分布映射的REG。如图7的(f)所示,CCE(CCE#5)也可以包括以多个REG的组为单位分布映射的REG。

  CCE可以构成为包括一个或多个REG的组。REG的组也称为REG捆绑(bundle)。构成一个REG的组的REG的个数称为Bundle size(捆绑大小)。例如,REG的Bundle size可以是1、2、3、6中的任意一个。可以以REG捆绑为单位应用交织器。终端装置1可以假定应用于REG的组内的RE的预编码相同。终端装置1能假定为应用于REG的组内的RE的预编码相同来进行信道估计。另一方面,终端装置1也可以假定为应用于REG的组间的RE的预编码不相同。换言之,终端装置1也可以不假定为应用于REG的组间的RE的预编码相同。“REG的组间”也可以改称为“不同的2个REG的组之间”。终端装置1也能假定为应用于REG的组间的RE的预编码不相同来进行信道估计。在后文对REG的组的详细内容加以叙述。

  构成PDCCH候选的CCE的个数也称为聚合等级(AL:Aggregation Level)。在一个PDCCH候选包括多个CCE的聚合的情况下,一个PDCCH候选包括CCE的编号连续的多个CCE。聚合等级为ALX的PDCCH候选的集合也称为聚合等级ALX的搜索区域。就是说,聚合等级ALX的搜索区域可以构成为包括聚合等级为ALX的一个或多个PDCCH候选。此外,搜索区域也可以包括多个聚合等级的PDCCH候选。例如,CSS可以包括多个聚合等级的PDCCH候选。例如,USS可以包括多个聚合等级的PDCCH候选。可以分别规定/设定CSS中包括的PDCCH候选的聚合等级的集合和USS中包括的PDCCH候选的聚合等级的集合。

  以下,对REG的组进行说明。

  REG的组可以用于终端装置1中的信道估计。例如,终端装置1可以按每个REG的组来进行信道估计。这是基于在用于应用不同的预编码的参考信号的RE中难以实施信道估计(例如MMSE信道估计等)。在此,MMSE是Minimum Mean Square Error(最小均方误差)的简称。

  信道估计的精度至少基于分配给参考信号的功率、用于参考信号的RE的时域/频域的密度、无线信道的环境等而变动。信道估计的精度至少基于用于信道估计的时域/频域而变动。在本实施方式的各种方案中,REG的组可以用作设定用于信道估计的时域/频域的参数。

  就是说,REG的组越大,则越能获得信道估计精度的增益。另一方面,REG的组越小,则一个PDCCH候选中包括越多的REG的组。一个PDCCH候选中包括较多的REG的组适合于通过对各个REG的组分别应用预编码来获得空间的分集的发送方法(也称为预编码旋转、预编码循环等)。

  一个REG的组可以由在时域和/或频域上连续的或相近的REG构成。

  时域上的REG的组适合于信道估计精度的改善和/或参考信号的削减。例如,构成时域的REG的组的REG的个数可以是1个,可以是2个,可以是3个,也可以是其他值。此外,在时域上构成REG的组的REG的个数可以至少基于控制资源集中包括的OFDM符号的个数来给出。此外,在时域上构成REG的组的REG的个数可以与控制资源集中包括的OFDM符号的个数相同。

  频域上的REG的组有助于信道估计精度的改善。例如,构成频域上的REG的组的REG的个数可以是2个,可以是3个,可以是至少2的倍数,也可以是至少3的倍数。此外,在频域上构成REG的组的REG的个数也可以至少基于控制资源集的PRB的个数来给出。此外,在频域上构成REG的组的REG的个数也可以与控制资源集中包括的PRB的个数相同。

  图8是表示关于本实施方式的一个方案的构成PDCCH候选的REG和构成REG的组的REG的个数的一个示例的图。在图8的(a)所示的一个示例中,PDCCH候选映射至1个OFDM符号,由3个包括2个REG的REG的组(REG group)构成。就是说,在图8的(a)所示的一个示例中,1个REG的组包括2个REG。在频域上构成REG的组的REG数可以包括映射至频率方向的PRB的个数的约数。在图8的(a)所示的一个示例中,构成频域上的REG的组的REG的个数可以是1个、2个、3个或6个。

  在图8的(b)所示的一个示例中,PDCCH候选映射至2个OFDM符号,由3个包括2个REG的REG的组构成。在图8的(b)所示的一个示例中,构成频域上的REG的组的REG的个数可以是1个和3个中的任一个。

  构成频域上的REG的组的REG的个数可以至少基于映射PDCCH候选的OFDM符号的个数来给出。构成频域上的REG的组的REG的个数也可以相对于映射PDCCH候选的OFDM符号的个数单独地设定。构成频域上的REG的组的REG的个数可以至少基于构成CCE的REG的映射方法(映射类型)来给出。构成频域上的REG的组的REG的个数可以针对构成CCE的REG的映射方法单独地设定。构成CCE的REG的映射方法可以是interleaved mapping或non-interleavedmapping中的任一种。构成CCE的REG的映射方法可以是连续的映射方法(Localizedtransmission)或非连续的映射方法(Distributed transmission)中的任一种。构成频域上的REG的组的REG的个数可以至少基于映射1个CCE的OFDM符号的个数来给出。构成频域上的REG的组的REG的个数也可以针对映射1个CCE的OFDM符号的个数单独地设定。

  图9是表示本实施方式的一个方案的构成CCE的REG的映射的一个示例的图。在此,示出构成控制资源集的OFDM符号的个数为3个的情况。在图9中,CCE包括6个REG。此外,在图9中,时域上的REG的索引m从左起附加有m=0~2(0,1,2)的值。此外,在图9中,频域上的REG的索引n从下起附加有n=0~5(0,1,2,3,4,5)的值。在图9的(a)中,示出时间优先地映射构成CCE的REG的一个示例。时间优先的映射是从时域上的REG的索引低(小)的一方向高(大)的一方映射REG,在时域上的REG的索引达到最大的时间点使频域上的REG的索引增加1个的映射方法。在图9的(b)中,示出频率优先(Frequency first)地映射构成CCE的REG的一个示例。频率优先的映射是从频域上的REG的索引低(小)的一方向高(大)的一方映射REG,在频域上的REG的索引达到最大的时间点使时域上的REG的索引增加1个的映射方法。

  构成时域上的REG的组的REG的个数可以至少基于映射PDCCH候选的OFDM符号的个数来给出。构成时域上的REG的组的REG的个数也可以针对映射PDCCH候选的OFDM符号的个数单独地设定。构成时域上的REG的组的REG的个数也可以至少基于映射一个CCE的OFDM符号的个数来给出。构成时域上的REG的组的REG的个数也可以针对映射一个CCE的OFDM符号的个数单独地设定。

  时域上的REG的组也适合于参考信号的削减。在如图8的(b)所示地构成REG的组的情况下,参考信号可以包括于前方的OFDM符号和/或后方的OFDM符号。例如,在时域上,REG的组内的第一个REG(起点的REG)可以包括不映射下行链路控制信息的RE,REG的组内的第一个REG以外的REG可以不包括不映射下行链路控制信息的RE。

  以下,对本实施方式的一个方案的终端装置1的构成例进行说明。

  图10是表示本实施方式的终端装置1的构成的概略框图。如图所示,终端装置1构成为包括无线收发部10和上层处理部14。无线收发部10构成为包括天线部11、RF(RadioFrequency:射频)部12以及基带部13。上层处理部14构成为包括媒体接入控制层处理部15以及无线资源控制层处理部16。也将无线收发部10称为发送部、接收部或物理层处理部。物理层处理部包括解码部。终端装置1的接收部接收PDCCH。终端装置1的解码部对接收到的PDCCH进行解码。更详细而言,终端装置1的解码部对USS的PDCCH候选所对应的资源的接收信号进行盲解码处理。终端装置1的解码部对CSS的PDCCH候选所对应的资源的接收信号进行盲解码处理。终端装置1的接收处理部在控制资源集内监测PDCCH候选。终端装置1的接收处理部监测用于包括CC-RNTI的PDCCH的PDCCH候选。终端装置1的接收处理部在第一控制资源集和第二控制资源集内监测PDCCH候选。第一控制资源集由时隙的前半部分的OFDM符号构成。第二控制资源集由时隙的后半部分的OFDM符号构成。终端装置1的接收处理部在时隙中,在第一控制资源集内监测第一数量的PDCCH候选,在第二控制资源集内监测第二数量的PDCCH候选,直至判断为基站装置3发送信号为止。在判断为基站装置3发送信号后,终端装置1的接收处理部在时隙中,在第一控制资源集内监测第三数量的PDCCH候选。第三数量多于第一数量。第一数量与第二数量的总和可以等于第三数量。

  上层处理部14将通过用户的操作等生成的上行链路数据(传输块)输出至无线收发部10。上层处理部14进行MAC层、分组数据汇聚协议(PDCP:Packet Data ConvergenceProtocol)层、无线链路控制(RLC:Radio Link Control)层以及RRC层的处理。

  上层处理部14所具备的媒体接入控制层处理部15进行MAC层的处理。

  上层处理部14所具备的无线资源控制层处理部16进行RRC层的处理。无线资源控制层处理部16进行装置自身的各种设定信息/参数的管理。无线资源控制层处理部16基于从基站装置3接收到的上层信号来设定各种设定信息/参数。即,无线资源控制层处理部16基于从基站装置3接收到的表示各种设定信息/参数的信息来设定各种设定信息/参数。无线资源控制层处理部16基于从基站装置3接收到的RRC信令设定控制资源集。无线资源控制层处理部16基于从基站装置3接收到的RRC信令设定第一控制资源集和第二控制资源集。无线资源控制层处理部16基于从基站装置接收到的RRC信令设定构成第一控制资源集的OFDM符号。无线资源控制层处理部16将构成第一控制资源集的OFDM符号设定为时隙的前半部分的OFDM符号。无线资源控制层处理部16基于从基站装置接收到的RRC信令设定构成第二控制资源集的OFDM符号。无线资源控制层处理部16将构成第二控制资源集的OFDM符号设定为时隙的后半部分的OFDM符号。无线资源控制层处理部16设定在第一控制资源集内被监测的PDCCH候选的个数(第一数量、第三数量)。无线资源控制层处理部16设定在第二控制资源集内被监测的PDCCH候选的个数(第二数量)。第一数量为:直至在终端装置1中判断为基站装置3发送信号为止,在时隙中在第一控制资源集内被监测的PDCCH候选的个数。第二数量为:直至在终端装置1中判断为基站装置3发送信号为止,在时隙内在第二控制资源集内被监测的PDCCH候选的个数。第三数量为:在终端装置1中判断为基站装置3发送信号后,在时隙内在第三控制资源集内被监测的PDCCH候选的个数。

  无线收发部10进行调制、解调、编码、解码等物理层的处理。无线收发部10对从基站装置3接收到的信号进行分离、解调、解码,将解码后的信息输出至上层处理部14。无线收发部10通过对数据进行调制、编码来生成发送信号,发送至基站装置3。

  RF部12通过正交解调将经由天线部11接收到的信号转换(下变频:down covert)为基带信号,去除不需要的频率分量。RF部12将进行处理后的模拟信号输出至基带部。

  基带部13将从RF部12输入的模拟信号转换为数字信号。基带部13从转换后的数字信号中去除相当于CP(Cyclic Prefix:循环前缀)的部分,对去除CP后的信号进行快速傅里叶变换(FFT:Fast Fourier Transform),提取频域的信号。

  基带部13对数据进行快速傅里叶逆变换(IFFT:Inverse Fast FourierTransform),生成OFDM符号,并对生成的OFDM符号附加CP来生成基带的数字信号,并将基带的数字信号转换为模拟信号。基带部13将转换后的模拟信号输出至RF部12。

  RF部12使用低通滤波器来将多余的频率分量从由基带部13输入的模拟信号中去除,将模拟信号上变频(up convert)为载波频率,经由天线部11发送。此外,RF部12将功率放大。此外,RF部12也可以具备控制发送功率的功能。也将RF部12称为发送功率控制部。

  终端装置1接收PDCCH。无线资源控制层处理部16基于RRC信令设定控制资源集。无线资源控制层处理部16基于RRC信令设定控制资源集(第一控制资源集、第二控制资源集)。终端装置1的接收部在设定的控制资源集内监测多个PDCCH候选。终端装置1的接收部在某各时隙中设定的第一控制资源集和第二控制资源集内监测多个PDCCH候选。终端装置1的接收部在某个时隙中设定的第一控制资源集内监测多个PDCCH候选。终端装置1的解码部对监测到的PDCCH候选进行解码。无线资源控制层处理部16将第一控制资源集设定为时隙的前半部分的OFDM符号。无线资源控制层处理部16将第二控制资源集设定为时隙的后半部分的OFDM符号。终端装置1的接收部在某个时隙中,在第一控制资源集内监测第一数量的PDCCH候选,在第二控制资源集内监测第二数量的PDCCH候选。终端装置1的接收部在某个时隙中,在第一控制资源集内监测第三数量的PDCCH候选。终端装置1的接收部在时隙中,在第一控制资源集内监测第一数量的PDCCH候选,在第二控制资源集内监测第二数量的PDCCH候选,直至判断为基站装置3发送信号为止。在判断为基站装置3发送信号后,终端装置1的接收部在时隙中,在第一控制资源集内监测第三数量的PDCCH候选。第三数量多于第一数量(第三数量与第一数量不同)。第一数量与第二数量的总和等于第三数量。

  以下,对本实施方式的一个方案的基站装置3的构成例进行说明。

  图11是表示本实施方式的基站装置3的构成的概略框图。如图所示,基站装置3构成为包括无线收发部30和上层处理部34。无线收发部30构成为包括天线部31、RF部32以及基带部33。上层处理部34构成为包括媒体接入控制层处理部35和无线资源控制层处理部36。也将无线收发部30称为发送部、接收部或物理层处理部。

  上层处理部34进行MAC层、PDCP层、RLC层、RRC层的处理。

  上层处理部34所具备的媒体接入控制层处理部35进行MAC层的处理。

  上层处理部34所具备的无线资源控制层处理部36进行RRC层的处理。无线资源控制层处理部36生成或从上位节点获取配置于PDSCH的下行链路数据(传输块)、系统信息、RRC消息(RRC信令)、MAC CE等,并输出至无线收发部30。此外,无线资源控制层处理部36进行各终端装置1的各种设定信息/参数的管理。无线资源控制层处理部36可以经由上层信号对各终端装置1设定各种设定信息/参数。即,无线资源控制层处理部36发送/广播表示各种设定信息/参数的信息。

  无线资源控制层处理部36对终端装置1设定控制资源集。无线资源控制层处理部36对终端装置1设定第一控制资源集和第二控制资源集。在某时隙中,对终端装置1在第一控制资源集中构成第一数量的PDCCH候选,在相同时隙中,对终端装置1在第二控制资源集中构成第二数量的PDCCH候选。在某时隙中,对终端装置1在第一控制资源集中构成第三数量的PDCCH候选。在基站装置3中,在第一控制资源集中构成第一数量的PDCCH候选,用于在先听后说后对终端装置1最先开始发送信号的时隙。在基站装置3中,在第二控制资源集中构成第二数量的PDCCH候选,用于在先听后说后对终端装置1最先开始发送信号的时隙。在基站装置3中,在第三控制资源集中构成第三数量的PDCCH候选,用于在先听后说后对终端装置1最先开始发送信号的时隙的接下来的时隙。第三数量多于第一数量(第三数量与第一数量不同)。第一数量与第二数量的总和等于第三数量。

  无线收发部30的功能具有与无线收发部10相同的功能。此外,无线收发部30掌握在终端装置1中构成的SS(Search space:搜索区域)。无线收发部30掌握在终端装置1中构成的第一控制资源集内的搜索区域和在终端装置1中构成的第二控制资源集内的搜索区域。无线收发部30掌握在终端装置1中被监测的PDCCH候选,并掌握搜索区域。无线收发部30掌握在终端装置1中被监测的各PDCCH候选由哪个控制信道元素构成(掌握构成PDCCH候选的控制信道元素的编号)。无线收发部30包括SS掌握部,SS掌握部掌握在终端装置1中构成的SS。SS掌握部掌握构成为终端装置的搜索区域的控制资源集内的一个以上的PDCCH候选。SS掌握部掌握在终端装置1的第一控制资源集和第二控制资源集内的搜索区域中构成的PDCCH候选(PDCCH候选的个数、PDCCH候选的编号)。SS掌握部掌握由基站装置3进行的在第一控制资源集内的搜索区域中构成第一数量的PDCCH候选,用于在先听后说后对终端装置1最先开始发送信号的时隙的情况。SS掌握部掌握由基站装置3进行的在第二控制资源集内的搜索区域中构成第二数量的PDCCH候选,用于在先听后说后对终端装置1最先开始发送信号的时隙的情况。SS掌握部掌握由基站装置3进行的在第三控制资源集内的搜索区域中构成第三数量的PDCCH候选,用于在先听后说后对终端装置1最先开始发送信号的时隙的接下来的时隙的情况。无线收发部30的发送部使用第一控制资源集或第二控制资源集内的PDCCH候选对终端装置1发送PDCCH。无线收发部30的发送部使用第一控制资源集或第二控制资源集内的搜索区域的PDCCH候选对终端装置1发送PDCCH。

  终端装置1所具备的标注有附图标记10至附图标记16的各部也可以构成为电路。基站装置3所具备的标注有附图标记30至附图标记36的各部也可以构成为电路。

  以下,对本实施方式的初始连接的过程的一个示例进行说明。

  基站装置3具备由基站装置3控制的可通信范围(或通信区域)。可通信范围能分割为一个或多个小区(或服务小区、子小区、波束等),按每个小区来管理与终端装置1的通信。另一方面,终端装置1从多个小区中选择至少一个小区,尝试与基站装置3建立连接。在此,终端装置1与基站装置3的至少一个小区的建立了连接的第一状态也称为RRC连接(RRCConnection)。此外,终端装置1未与基站装置3的任一个小区建立连接的第二状态也称为RRC空闲。此外,终端装置1与基站装置3的至少一个小区建立了连接,但在终端装置1与基站装置3之间一部分的功能被限制的第三状态也称为RRC中断(RRC suspended)。RRC中断也称为RRC去激活(RRC inactive)。

  RRC空闲的终端装置1可以尝试与基站装置3的至少一个小区建立连接。在此,终端装置1尝试连接的小区也称为目标小区。图12是表示本实施方式的一个方案的第一初始连接过程(4-step contention based RACH procedure)的一个示例的图。第一初始连接过程构成为至少包括步骤5101~5104的一部分。

  步骤5101是终端装置1经由物理信道向目标小区请求用于初始连接的响应的步骤。或者,步骤5101是终端装置1经由物理信道向目标小区进行最初的发送的步骤。在此,该物理信道例如可以是PRACH。该物理信道可以是专用于请求用于初始连接的响应的信道。在步骤5101中,由终端装置1经由该物理信道发送的消息也称为随机接入消息1。随机接入消息1的信号可以基于由终端装置1的上层给出的随机接入前导索引u而生成。

  终端装置1在实施步骤5101前先进行下行链路的时间/频率同步。在第一状态下,终端装置1使用同步信号来进行下行链路的时间/频率同步。

  同步信号可以包括目标小区的ID(小区ID)来进行发送。同步信号也可以包括至少基于小区ID而生成的序列来进行发送。同步信号包括小区ID也可以是基于小区ID来给出同步信号的序列。同步信号可以应用波束(或预编码)来进行发送。

  波束表示天线增益根据方向而不同的现象。波束可以至少基于天线的方向性来给出。此外,波束也可以至少基于载波信号的相位变换来给出。此外,波束也可以通过应用预编码来给出。

  终端装置1接收由目标小区发送的PBCH。PBCH可以包括重要信息块(MIB:MasterInformation Block(主信息块)、EIB:Essential Information Block)来进行发送,所述重要信息块是用于供终端装置1与目标小区连接的重要的系统信息。重要信息块是系统信息。重要信息块可以包括与无线帧的编号有关的信息。重要信息块可以包括与由多个无线帧构成的超帧内的位置有关信息(例如,表示超帧内的系统帧编号(SFN:System Frame Number)中的至少一部分的信息)。此外,PBCH可以包括同步信号的索引。PBCH也可以包括与PDCCH的接收关联的信息。重要信息块可以在传输信道中映射至BCH。重要信息块可以在逻辑信道中映射至BCCH。

  与PDCCH的接收关联的信息可以包括表示控制资源集的信息。表示控制资源集的信息可以包括与映射控制资源集的PRB的个数、位置有关的信息。表示控制资源集的信息也可以包括表示控制资源集的映射的信息。表示控制资源集的信息也可以包括与映射控制资源集的OFDM符号的个数关联的信息。表示控制资源集的信息也可以包括表示映射控制资源集的时隙的周期(periodicity)的信息。表示控制资源集的信息也可以包括表示配置控制资源集的子帧或时隙的时域的位置的信息。终端装置1能至少基于表示PBCH中包括的控制资源集的信息来尝试接收PDCCH。

  与PDCCH的接收关联的信息可以包括与指示PDCCH的目的地的ID关联的信息。指示PDCCH的目的地的ID可以是用于附加于PDCCH的CRC位的加扰的ID。指示PDCCH的目的地的ID也称为RNTI(Radio Network Temporary Identifier:无线网络临时标识符)。也可以包括与用于附加于PDCCH的CRC位的加扰的ID关联的信息。终端装置1能至少基于与PBCH中包括的该ID关联的信息来尝试接收PDCCH。

  RNTI可以包括:SI-RNTI(System Information-RNTI:系统信息-RNTI)、P-RNTI(Paging-RNTI:寻呼-RNTI)、C-RNTI(Common-RNTI:公共-RNTI)、Temporary C-RNTI(临时C-RNTI)、RA-RNTI(Random Access-RNTI:随机接入RNTI)、CC-RNTI(Common Control-RNTI:公共控制-RNTI)。SI-RNTI至少用于包括系统信息来进行发送的PDSCH的调度。P-RNTI至少用于包括寻呼信息和/或系统信息的变更通知等信息来进行发送的PDSCH的调度。C-RNTI至少用于对已RRC连接的终端装置1调度用户数据。临时C-RNTI至少用于随机接入消息4的调度。临时C-RNTI至少用于调度包括映射至逻辑信道中的CCCH的数据的PDSCH。RA-RNTI至少用于随机接入消息2的调度。CC-RNTI至少用于收发Unlicensed access的控制信息。

  收发包括用于系统信息(RMSI:Remeining Minimum System Information、OSI:Other System Information(其他系统信息))的收发的PDSCH的资源分配信息的PDSCH的公共控制资源集可以与同步信号建立关联地进行配置。可以在与配置同步信号的时域相同或相近的子帧中配置公共控制资源集。

  与PDCCH的接收关联的信息可以包括与控制资源集中包括的搜索区域的聚合等级有关的信息。终端装置1能至少基于与PBCH中包括的控制资源集中包括的搜索区域的聚合等级有关的信息来确定应该尝试接收的PDCCH候选的聚合等级,确定搜索区域。

  与PDCCH的接收关联的信息可以包括与REG的组关联的信息(REG捆绑大小)。与PDCCH的接收关联的信息也可以包括表示构成频域上的REG的组的REG的个数的信息。与PDCCH的接收关联的信息也可以包括表示构成时域上的REG的组的REG的个数的信息。

  与控制资源集对应的参考信号可以与控制资源集中包括的多个PDCCH候选对应。与控制资源集对应的参考信号可以用于解调控制资源集中包括的多个PDCCH。

  基站装置3能发送包括与PDCCH的接收关联的信息的PBCH,向终端装置1指示监控公共控制资源集。终端装置1至少基于检测与PBCH中包括的PDCCH的接收关联的信息来实施公共控制资源集的监控。公共控制资源集至少用于第一系统信息(RMSI、OSI)的调度。第一系统信息可以包括重要的系统信息以供终端装置1与目标小区连接。第一系统信息也可以包括与下行链路的各种设定有关的信息。第一系统信息也可以包括与PRACH的各种设定有关的信息。第一系统信息也可以包括与上行链路的各种设定有关的信息。第一系统信息也可以包括在随机接入消息3发送中设定的信号波形的信息(OFDM或DFT-s-OFDM)。第一系统信息也可以至少包括MIB中包括的信息以外的系统信息的一部分。第一系统信息可以在传输信道中映射至BCH。第一系统信息可以在逻辑信道中映射至BCCH。第一系统信息也可以至少包括SIB1(System Information Block type1:系统信息块类型1)。第一系统信息也可以至少包括SIB2(System Information Block type1:系统信息块类型2)。公共控制资源集可以用于随机接入消息2的调度。需要说明的是,SIB1可以包括与进行RRC连接所需的测量有关的信息。此外,SIB2可以包括与在小区内的多个终端装置1间通用和/或共享的信道有关的信息。

  终端装置1可以至少基于与PDCCH的接收关联的信息来进行PDCCH的监控。终端装置1也可以至少基于与REG的组关联的信息来进行PDCCH的监控。终端装置1也可以至少基于与PDCCH的接收关联的信息来假定应用于PDCCH的监控的设定。

  基站装置3能发送MIB和/或第一系统信息,向终端装置1指示监控公共控制资源集。第一系统信息可以包括与PDCCH的接收关联的信息。终端装置1可以至少基于与MIB和/或第一系统信息中包括的PDCCH的接收关联的信息来实施公共控制资源集的监控。公共控制资源集可以用于调度包括寻呼信息和/或用于系统信息的变更通知的信息的PDSCH。

  步骤5102是基站装置3对终端装置1进行对随机接入消息1的响应的步骤。该响应也称为随机接入消息2。随机接入消息2可以经由PDSCH来发送。包括随机接入消息2的PDSCH通过PDCCH来调度。该PDCCH中包括的CRC位可以由RA-RNTI来进行加扰。随机接入消息2可以包括特殊的上行链路授权来进行发送。该特殊的上行链路授权也称为随机接入响应授权。该特殊的上行链路授权也可以包括于包括随机接入消息2的PDSCH。随机接入响应授权至少可以包括临时C-RNTI。

  基站装置3能发送MIB、第一系统信息和/或第二系统信息,向终端装置1指示监控公共控制资源集。第二系统信息可以包括与PDCCH的接收关联的信息。终端装置1至少基于MIB、第一系统信息和/或与第二系统信息中包括的PDCCH的接收关联的信息来实施公共控制资源集的监控。附加于该PDCCH的CRC位可以由临时C-RNTI来进行加扰。公共控制资源集可以用于随机接入消息2的调度。

  公共控制资源集还可以至少基于由终端装置1发送的随机接入消息1中包括的物理根索引u和/或用于该随机接入消息1的发送的资源(PRACH的资源)来给出。此外,该资源可以表示时间和/或频率的资源。该资源可以根据资源块的索引和/或时隙(子帧)的索引来给出。该公共控制资源集的监控可以由该随机接入消息1触发。

  步骤5103是终端装置1向目标小区发送RRC连接的请求的步骤。该RRC连接的请求也称为随机接入消息3。随机接入消息3可以经由通过随机接入响应授权调度的PUSCH来进行发送。随机接入消息3可以包括用于终端装置1的识别的ID。该ID可以是在上层进行管理的ID。该ID也可以是S-TMSI(SAE Temporary Mobile Subscriber Identity:SAE临时移动用户标识符)。该ID可以在逻辑信道中映射至CCCH。

  步骤5104是基站装置3向终端装置1发送竞争解决消息(Contention resolutionmessage)的步骤。竞争解决消息也称为随机接入消息4。终端装置1在发送随机接入消息3后进行调度包括随机接入消息4的PDSCH的PDCCH的监控。随机接入消息4也可以包括竞争回避用ID。在此,竞争回避用ID用于解决多个终端装置1使用同一无线资源来发送信号的竞争。竞争回避用ID也称为UE contention resolution identity。

  在步骤5104中,已发送包括用于终端装置1的识别的ID(例如S-TMSI)的随机接入消息3的该终端装置1对包括竞争解决消息的随机接入消息4进行监测。在该随机接入消息4中包括的竞争回避用ID与用于该终端装置1的识别的该ID相等的情况下,该终端装置1可以视为成功完成了竞争解决,并在C-RNTI字段中设定临时C-RNTI的值。在C-RNTI字段中设定了临时C-RNTI的值的终端装置1被视为完成了RRC连接。

  调度随机接入消息4的PDCCH的监控用的控制资源集可以是公共控制资源集。基站装置3能将与PDCCH的接收关联的信息包括于随机接入消息2进行发送,向终端装置1指示监控公共控制资源集。终端装置1至少基于与随机接入消息2中包括的PDCCH的接收关联的信息来实施PDCCH的监控。

  已RRC连接的终端装置1能在逻辑信道中接收映射至DCCH的专用RRC信令。基站装置3能发送包括与PDCCH的接收关联的信息的专用RRC信令来向终端装置1指示监控专用控制资源集。终端装置1至少基于与专用RRC信令中包括的PDCCH的接收关联的信息来实施PDCCH的监控。此外,基站装置3能发送包括与PDCCH的接收关联的信息的专用RRC信令来向终端装置1指示公共控制资源集的监控。终端装置1在公共控制资源集中实施包括CC-RNTI的PDCCH的监控。

  基站装置3能发送包括与PDCCH的接收关联的信息的随机接入消息4,向终端装置1指示监控专用控制资源集。在随机接入消息4中包括与PDCCH的接收关联的信息的情况下,终端装置1可以至少基于与该PDCCH的接收关联的信息来实施专用控制资源集的监控。

  公共控制资源集可以由多个类型构成,而不仅是一种类型。根据不同用途,多个公共控制资源集可以分别独立地构成。例如,可以独立地构成用于收发包括CC-RNTI的PDCCH的公共控制资源集和用于收发包括SI-RNTI的PDCCH的公共控制资源集。

  图13是表示本实施方式的一个方案的在终端装置1中设定的第一控制资源集和第二控制资源集的一个示例的图。在图13中,一个时隙中构成有14个OFDM符号(l=0、l=1、l=2、l=3、l=4、l=5、l=6、l=7、l=8、l=9、l=10、l=11、l=12、l=13)。在图13中,第一个(l=0)至第七个(l=6)OFDM符号为时隙的前半部分的OFDM符号,第八个(l=7)至第十四个(l=13)OFDM符号为时隙的前半部分的OFDM符号。在图13中,第一控制资源集由时隙的第一个(l=0)OFDM符号构成,第二控制资源集由时隙的第八个(l=7)的OFDM符号构成。

  图14是表示本实施方式的一个方案的在终端装置1中设定的第一控制资源集和第二控制资源集的一个示例的图。在图14中,一个时隙中构成有14个OFDM符号(l=0、l=1、l=2、l=3、l=4、l=5、l=6、l=7、l=8、l=9、l=10、l=11、l=12、l=13)。在图14中,第一个(l=0)至第七个(l=6)OFDM符号为时隙的前半部分的OFDM符号,第八个(l=7)至第十四个(l=13)OFDM符号为时隙的前半部分的OFDM符号。在图14中,第一控制资源集由时隙的第二个(l=1)OFDM符号构成,第二控制资源集由时隙的第十一个(l=10)OFDM符号构成。第一控制资源集也可以由时隙的前半部分的第一个OFDM符号以外的OFDM符号构成。第二控制资源集也可以由时隙的后半部分的第一个OFDM符号以外的OFDM符号构成。

  图15是表示本实施方式的一个方案的在终端装置1中设定的第一控制资源集和第二控制资源集的一个示例的图。在图13中,一个时隙中构成有14个OFDM符号(l=0、l=1、l=2、l=3、l=4、l=5、l=6、l=7、l=8、l=9、l=10、l=11、l=12、l=13)。在图13中,第一个(l=0)至第七个(l=6)OFDM符号为时隙的前半部分的OFDM符号,第八个(l=7)至第十四个(l=13)OFDM符号为时隙的前半部分的OFDM符号。在图15中,第一控制资源集由时隙的第一个(l=0)、第二个(l=1)以及第三个(l=2)OFDM符号构成,第二控制资源集由时隙的第九个(l=8)与第十个(l=9)OFDM符号构成。第一控制资源集可以由一个或多个OFDM符号构成。第二控制资源集也可以由一个或多个OFDM符号构成。

  在图13、图14、图15中,将时隙内的多个OFDM符号分成两半,将在时域中一半之前的OFDM符号设为时隙的前半部分的OFDM符号,将在时域中一半之后的OFDM符号设为时隙的后半部分的OFDM符号,但也可以不以时隙的一半作为分界线。例如,可以将第一个(l=0)至第九个(l=8)(一半之后的OFDM符号)OFDM符号设为前半部分的OFDM符号,将第十个(l=9)至第十四个(l=13)OFDM符号设为后半部分的OFDM符号。

  图16是表示本实施方式的一个方案的由终端装置1监测的PDCCH候选的一个示例的图。在图16中,时隙由14个OFDM符号构成,第一控制资源集由第一个至第二个OFDM符号构成,第二控制资源集由第八个至第九个OFDM符号构成。至时隙1的第七个OFDM符号区间为止为LBT区间,基站装置3不发送信号。基站装置3在LBT之后,从时隙1的第八个OFDM符号起基站装置3开始信号,至时隙5的第七个OFDM符号之间(4ms),基站装置3占用信道(信道占用区间)(Channel Occupancy Time)。

  在作为LBT区间的时隙0中,终端装置1在第一控制资源集的搜索区域中监测第一数量的PDCCH候选,在第二控制资源集的搜索区域中监测第二数量的PDCCH候选。在一部分LBT区间的时隙1中,终端装置1在第一控制资源集的搜索区域监测第一数量的PDCCH候选,在第二控制资源集的搜索区域中监测第二数量的PDCCH候选。基站装置3使用时隙1的第二控制资源集的PDCCH候选对终端装置1发送PDCCH。终端装置1在时隙1的第二控制资源集的搜索区域中检测PDCCH。在终端装置1中,在终端装置1未判断基站装置3发送信号(进行判断前的)的状态下,至时隙1为止进行PDCCH的监控。

  在判断为基站装置3发送信号之后的时隙2中,终端装置1在第一控制资源集的搜索区域中监测第三数量的PDCCH候选。在时隙2中,第二控制资源集的搜索区域的PDCCH候选的个数为零。在时隙2中,终端装置1在第二控制资源集中不设定PDCCH的搜索区域。同样地,终端装置1在时隙3中,在第一控制资源集的搜索区域中监测第三数量的PDCCH候选,在第二控制资源集中不监测PDCCH候选。同样地,终端装置1在时隙4中,在第一控制资源集的搜索区域中监测第三数量的PDCCH候选,在第二控制资源集中不监测PDCCH候选。同样地,终端装置1在时隙5中,在第一控制资源集的搜索区域中监测第三数量的PDCCH候选,在第二控制资源集中不监测PDCCH候选。

  在时隙5之后的时隙中,重新开始LBT区间,终端装置1在第一控制资源集的搜索区域中监测第一数量的PDCCH候选,在第二控制资源集的搜索区域中监测第二数量的PDCCH候选直至判断为基站装置3发送信号为止。

  在图16中,第三数量多于第一数量(第三数量与第一数量不同)。第一数量与第二数量的总和可以等于第三数量。在图16的说明中,在判断为基站装置3发送信号后,对终端装置1在第二控制资源集中不监测PDCCH候选的情况进行了说明,但也可以设为在第二控制资源集的搜索区域中监测第四数量的PDCCH候选。该情况下,第三数量多于第一数量,第四数量少于第二数量。

  在图16中,对信道连续被占用的区间(信道占用区间)(Channel Occupancy Time)为4ms的情况进行了说明,但信道占用区间也可以为不同的值。信道占用区间可以是国家预先确定的值,也可以是按频带预先确定的值。基站装置3可以将信道占用区间通知给终端装置1。终端装置1能识别信道占用区间的长度,掌握信道占用区间结束的定时。

  在图16的说明中,对终端装置1通过检测PDCCH来判断基站装置3发送信号的情况进行了说明,但也可以并用不同的信号。单独使用Wake up signal(唤醒信号),终端装置1如果检测到Wake up signal,则可以判断为基站装置3发送信号。Wake up signal可以是在公共控制资源集中收发的PDCCH,可以是与同步信号相同的信号构成,也可以是与参考信号相同的信号构成。

  图17是表示本实施方式的一个方案的由终端装置1监测的PDCCH候选的一个示例的图。在图17中,时隙由14个OFDM符号构成,第一控制资源集由第一个至第二个OFDM符号构成,第二控制资源集由第八个至第九个OFDM符号构成。至时隙0的第14个OFDM符号区间为止为LBT区间,基站装置3不发送信号。基站装置3在LBT之后,从时隙1的第一个OFDM符号起基站装置3开始信号,至时隙4的第14个OFDM符号之间(4ms),基站装置3占用信道(信道占用区间)。

  在作为LBT区间的时隙0中,终端装置1在第一控制资源集的搜索区域中监测第一数量的PDCCH候选,在第二控制资源集的搜索区域中监测第二数量的PDCCH候选。未检测到来自基站装置3的信号的终端装置1在时隙1中,在第一控制资源集的搜索区域监测第一数量的PDCCH候选,在第二控制资源集的搜索区域监测第二数量的PDCCH候选。基站装置3使用时隙1的第一控制资源集的PDCCH候选对终端装置1发送PDCCH。终端装置1在时隙1的第一控制资源集的搜索区域中检测PDCCH。在终端装置1中,在终端装置1未判断基站装置3发送信号(进行判断前的)的状态下,至时隙1为止进行PDCCH的监控。

  在判断为基站装置3发送信号之后的时隙2中,终端装置1在第一控制资源集的搜索区域中监测第三数量的PDCCH候选。在时隙2中,第二控制资源集的搜索区域的PDCCH候选的个数为零。在时隙2中,终端装置1在第二控制资源集中不设定PDCCH的搜索区域。同样地,终端装置1在时隙3中,在第一控制资源集的搜索区域中监测第三数量的PDCCH候选,在第二控制资源集中不监测PDCCH候选。同样地,终端装置1在时隙4中,在第一控制资源集的搜索区域中监测第三数量的PDCCH候选,在第二控制资源集中不监测PDCCH候选。

  在时隙4之后的时隙(时隙5等)中,重新开始LBT区间,终端装置1在第一控制资源集的搜索区域中监测第一数量的PDCCH候选,在第二控制资源集的搜索区域中监测第二数量的PDCCH候选,直至判断为基站装置3发送信号为止。

  如上所述,在本发明的一实施方式中,终端装置1在时隙中从基站装置3接收PDCCH,基于RRC信令设定第一控制资源集和第二控制资源集,在第一控制资源集和第二控制资源集内监测PDCCH候选,具备对PDCCH候选进行解码的解码部,第一控制资源集由时隙的前半部分的OFDM符号构成,第二控制资源集由时隙的后半部分的OFDM符号构成,在时隙中,在第一控制资源集内监测第一数量的PDCCH候选,在第二控制资源集内监测第二数量的PDCCH候选,直至判断为基站装置3发送信号为止,在判断为基站装置3发送信号后,在时隙中,在第一控制资源集内监测第三数量的PDCCH候选。第三数量多于第一数量。第一数量与第二数量的总和等于第三数量。

  如上所述,在本发明的一实施方式中,基站装置3在时隙中发送PDCCH,对终端装置1设定第一控制资源集和第二控制资源集,在时隙中使用第一控制资源集或第二控制资源集内的PDCCH候选来发送PDCCH,在第一控制资源集中构成第一数量的PDCCH候选,用于在先听后说后对终端装置1最先开始发送信号的时隙,在第二控制资源集中构成第二数量的PDCCH候选,用于先听后说后对终端装置1最先开始发送信号的时隙,在第一控制资源集中构成第三数量的PDCCH候选,用于在先听后说后对终端装置1最先开始发送信号的时隙的接下来的时隙。第三数量多于第一数量。第一数量与第二数量的总和等于第三数量。

  如上所述,本发明的一个方案能有效地利用资源,能实现高效的通信。在LBT之后基站装置3能发送信号的定时与时隙的边界不一致的情况下,根据该定时,基站装置3能使用由时隙的前半部分的OFDM符号构成的第一控制资源集或由时隙的后半部分的OFDM符号构成的第二控制资源集中的任意一方控制资源集的PDCCH候选来对终端装置1发送PDCCH,并分配PDSCH。就是说,基站装置3可以使用接近该定时(在LBT之后能发送信号的定时)的控制资源集的PDCCH候选来对终端装置1发送PDCCH,因此,调度的待机时间变短,能防止未许可频带的资源(信道、频率)的利用效率降低。终端装置1可以使用许多资源来接收数据,谋求改善传输速度。另一方面,LBT之后能由时隙的前半部分的OFDM符号调度PDSCH,因此,通过减少由时隙的后半部分的OFDM符号构成的第二控制资源集的搜索区域的PDCCH候选的个数,增加由时隙的前半部分的OFDM符号构成的第一控制资源集的PDCCH候选的个数,能在不增大终端装置1的时隙中的盲解码(PDCCH的解码处理)的负荷的情况下增大分配PDCCH的调度灵活性。当搜索区域的PDCCH候选的个数较少时,在终端装置1之间,构成PDCCH候选的资源(控制信道元素)发生冲突这一阻塞现象发生的概率变高,当搜索区域的PDCCH候选的个数变多时,PDCCH候选的阻塞发生概率得以抑制,向终端装置1分配PDCCH能够变得灵活。

  以下,对本实施方式的一个方案的各种装置的方案进行说明。

  (1)为了实现上述目的,本发明的一个方案采用了以下方案。即,本发明的第一方案的终端装置是一种在时隙中从基站装置接收PDCCH的终端装置,其特征在于,具备:无线资源控制层处理部,基于RRC信令设定第一控制资源集和第二控制资源集;接收部,在所述第一控制资源集和所述第二控制资源集内监测PDCCH候选;以及解码部,对所述PDCCH候选进行解码,所述第一控制资源集由所述时隙的前半部分的OFDM符号构成,所述第二控制资源集由所述时隙的后半部分的OFDM符号构成,在所述时隙中,在所述第一控制资源集内监测第一数量的所述PDCCH候选,在所述第二控制资源集内监测第二数量的所述PDCCH候选,直至判断为所述基站装置发送信号为止,在判断为所述基站装置发送信号后,在所述时隙中,在所述第一控制资源集内监测第三数量的所述PDCCH候选。

  (2)此外,本发明的第一方案的终端装置的特征还在于,所述第三数量多于所述第一数量。

  (3)此外,本发明的第一方案的终端装置的特征还在于,所述第一数量与所述第二数量的总和等于所述第三数量。

  (4)此外,本发明的第二方案的通信方法是一种用于在时隙中从基站装置接收PDCCH的终端装置的通信方法,其特征在于,具备如下步骤:基于RRC信令设定第一控制资源集和第二控制资源集;在所述第一控制资源集和所述第二控制资源集内监测PDCCH候选;以及对所述PDCCH候选进行解码,所述第一控制资源集由所述时隙的前半部分的OFDM符号构成,所述第二控制资源集由所述时隙的后半部分的OFDM符号构成,在所述时隙中,在所述第一控制资源集内监测第一数量的所述PDCCH候选,在所述第二控制资源集内监测第二数量的所述PDCCH候选,直至判断为所述基站装置发送信号为止,在判断为所述基站装置发送信号后,在所述时隙中,在所述第一控制资源集内监测第三数量的所述PDCCH候选。

  (5)此外,本发明的第二方案的通信方法的特征还在于,所述第三数量多于所述第一数量。

  (6)此外,本发明的第二方案的通信方法的特征还在于,所述第一数量与所述第二数量的总和等于所述第三数量。

  (7)此外,本发明的第三方案的基站装置是一种在时隙中发送PDCCH的基站装置,其特征在于,具备:无线资源控制层处理部,对终端装置设定第一控制资源集和第二控制资源集;以及发送部,在所述时隙中使用所述第一控制资源集或所述第二控制资源集内的PDCCH候选来发送所述PDCCH,在所述第一控制资源集中构成第一数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙,在所述第二控制资源集中构成第二数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙,在所述第一控制资源集中构成第三数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙的接下来的时隙。

  (8)此外,本发明的第三方案的基站装置的特征还在于,所述第三数量多于所述第一数量。

  (9)此外,本发明的第三方案的基站装置的特征还在于,所述第一数量与所述第二数量的总和等于所述第三数量。

  (10)此外,本发明的第四方案的通信方法是一种用于在时隙中发送PDCCH的基站装置的通信方法,其特征在于,包括如下步骤:对终端装置设定第一控制资源集和第二控制资源集;以及在所述时隙中,使用所述第一控制资源集或所述第二控制资源集内的PDCCH候选来发送所述PDCCH,在所述第一控制资源集中构成第一数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙,在所述第二控制资源集中构成第二数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙,在所述第一控制资源集中构成第三数量的所述PDCCH候选,用于在先听后说后对所述终端装置最先开始发送信号的时隙的接下来的时隙。

  (11)此外,本发明的第四方案的通信方法的特征还在于,所述第三数量多于所述第一数量。

  (12)此外,本发明的第四方案的通信方法的特征还在于,所述第一数量与所述第二数量的总和等于所述第三数量。

  在本发明的一个方案所涉及的基站装置3和终端装置1中工作的程序可以是对CPU(Central Processing Unit:中央处理器)等进行控制从而实现本发明的一个方案所涉及的上述实施方式的功能的程序(使计算机发挥作用的程序)。然后,由这些装置处理的信息在进行其处理时暂时存储于RAM(Random Access Memory:随机存取存储器),之后,储存于Flash ROM(Read Only Memory:只读存储器)等各种ROM、HDD(Hard Disk Drive:硬盘驱动器)中,根据需要通过CPU来进行读出、修正、写入。

  需要说明的是,也可以通过计算机来实现上述实施方式的终端装置1、基站装置3的一部分。在该情况下,可以通过将用于实现该控制功能的程序记录于计算机可读记录介质,将记录于该记录介质的程序读入计算机系统并执行来实现。

  需要说明的是,此处所提到的“计算机系统”是指内置于终端装置1或基站装置3的计算机系统,采用包括OS、外围设备等硬件的计算机系统。此外,“计算机可读记录介质”是指软盘、磁光盘、ROM、CD-ROM等可移动介质、内置于计算机系统的硬盘等存储装置。

  而且,“计算机可读记录介质”也可以包括:像经由互联网等网络或电话线路等通信线路来发送程序的情况下的通信线那样短时间内、动态地保存程序的记录介质;以及像作为该情况下的服务器、客户端的计算机系统内部的易失性存储器那样保存程序固定时间的记录介质。此外,上述程序可以是用于实现上述功能的一部分的程序,也可以是能通过与已记录在计算机系统中的程序进行组合来实现上述功能的程序。

  此外,上述实施方式中的基站装置3也能实现为由多个装置构成的集合体(装置组)。构成装置组的各装置可以具备上述实施方式的基站装置3的各功能或各功能块的一部分或全部。作为装置组,具有基站装置3的全部各功能或各功能块即可。此外,上述实施方式的终端装置1也能与作为集合体的基站装置进行通信。

  此外,上述实施方式中的基站装置3可以是EUTRAN(Evolved UniversalTerrestrial Radio Access Network:演进通用陆地无线接入网络)。此外,上述实施方式中的基站装置3也可以具有针对eNodeB的上位节点的功能的一部分或全部。

  此外,既可以将上述实施方式的终端装置1、基站装置3的一部分或全部实现为典型地作为集成电路的LSI,也可以实现为芯片组。终端装置1、基站装置3的各功能块既可以独立芯片化,也可以集成一部分或全部进行芯片化。此外,集成电路化的方法不限于LSI,也可以利用专用电路或通用处理器来实现。此外,在随着半导体技术的进步而出现了代替LSI的集成电路化的技术的情况下,也可以使用基于该技术的集成电路。

  此外,在上述实施方式中,记载了作为通信装置的一个示例的终端装置,但是本申请的发明并不限定于此,能被应用于设置在室内外的固定式或非可动式电子设备,例如AV设备、厨房设备、扫除/洗涤设备、空调设备、办公设备、自动售卖机以及其他生活设备等终端装置或通信装置。

  以上,参照附图对本发明的实施方式进行了详细说明,但具体构成并不限于本实施方式,也包括不脱离本发明的主旨的范围的设计变更等。此外,本发明能在技术方案所示的范围内进行各种变更,将分别公开在不同的实施方式中的技术方案适当组合而得到的实施方式也包括在本发明的技术范围内。此外,还包括将作为上述各实施方式中记载的要素的起到同样效果的要素彼此替换而得到的构成。

《终端装置、基站装置以及通信方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)