欢迎光临小豌豆知识网!
当前位置:首页 > 物理技术 > 调节控制> 一种基于视觉识别的架空高压导线追踪检测系统及方法独创技术12633字

一种基于视觉识别的架空高压导线追踪检测系统及方法

2023-02-07 23:02:30

一种基于视觉识别的架空高压导线追踪检测系统及方法

  技术领域

  本发明涉及电力巡检技术领域,具体的涉及一种基于视觉识别的架空高压导线追踪检测系统及方法。

  背景技术

  随着我国基建投入的增长,电力设施的建设迅速发展,需要大量的专业人员进行巡检工作,时间和成本过高。现有的改进方案无人机巡检方案采用GPS进行导航,依赖人工定位,虽然比传统方案在一定程度上降低了人力成本,但依然需要不少的人工操作并未实现全线自动巡检,现有技术人员采用地面实时监视和控制无人机的巡检方式具有以下弊端,1、现有技术需要操作人员实时的关注屏幕,人为因素较大,精确度不高;2、现有技术需要人来辨识导线,但若自然天气恶劣,则单凭肉眼很难去分辨导线,使得地面操控人员不能准确的规划巡航路线。

  随着目标检测技术与目标追踪技术的发展,对视觉系统的智能和鲁棒性的要求越来越高,计算机视觉可解决的任务更加复杂和细化,应用领域更加广泛。基于视觉识别的导线追踪检测系统,可应用在无人机巡检,用于追踪检测目标。

  目前,没有一种针对导线追踪检测的系统和方法,利用视觉识别的检测手段简单可行,成本低,可作为无人机自动巡检的方案。常见目标检测任务的方法可分为传统方法与深度学习方法。传统方法可分为特征法与模型法,特征法包括人工设计的描述子如Hog等,或者颜色特征、梯度特征,模型法使用数据模型拟合,如霍夫变换等,单一的方法抗干扰能力差,在环境多变的无人机自动巡检等场景中效果不好。深度学习方法利用大规模卷积神经网络提取特征,将目标检测看作实例分割或语义分割问题,但目前已有方法在该场景并不适用,导线有很强的固有特征并只有一类,当作实例分割或语义分割问题作出的方案大材小用,而且目前的单机算力很难支持这种大规模的运算,难以部署在无人机自动巡检等应用中,采用服务器处理方法也难以做到实时性,而且神经网络输入为固定的小尺寸图像,检测的精度不足,而且人工标注成本高,模型好坏受标注数据影响大。

  发明内容

  本发明的目的是解决现有无人机巡检需要人工参与规划巡检路线的问题,提出了一种基于视觉识别的架空高压导线追踪检测系统,该方案结合多特征结合、特征加模型协同和导线角度追踪方法,对底层特征进行综合利用,并充分利用先验的模型知识,从而达到全局最优识别,并减少识别的时间,适用于应用在实时的无人机自动巡检系统。

  为实现上述技术目的,本发明提供的一种技术方案是,一种基于视觉识别的架空高压导线追踪检测系统,包括有无人机,无人机内置有图像采集模块、识别模块、追踪模块以及控制模块;

  控制模块,用于控制无人机的飞行轨迹,分别与采集模块、识别模块、追踪模块电连接;

  图像采集模块同于采集无人机飞行轨迹上的环境图像数据;

  识别模块用于识别环境图像数据中的目标导线图像数据;

  追踪模块用于指导控制模块控制无人机沿着导线飞行。

  一种架空高压导线追踪检测方法,包括如下步骤:

  S1、操控无人机起飞,飞至检测区域;

  S2、采用图像采集模块,获取检测区域的环境信息,得到高清的检测区域视觉图像,并对所述视觉图像进行预处理;

  S3、得到环境图像之后,使用识别模块,从所述环境图像中自动识别待检测的目标导线;

  S4、自动识别出待检测的目标导线后,采用追踪模块,根据已识别出的目标导线进行自主追踪;

  S5、在自主追踪的同时,利用控制模块,基于模糊控制算法控制电机,用于根据目标追踪的结果,解算飞行器的飞行角度。

  所述视觉图像进行预处理包括灰度化操作、高斯滤波操作以及通道分割操作。

  所述的识别模块包括有阈值分割模块、边缘检测模块、形态学变换模块、感兴趣区域匹配模块、直线拟合模块、轮廓特征提取模块以及聚类与分类器模块;阈值分割模块用于去除非目标区域;边缘检测模块,用于检测导线的边缘;形态学变换模块,用于结合阈值分割与边缘检测的结果,并对结合的图像进行开运算;感兴趣区域匹配模块,用于匹配目标大致区域;直线拟合模块,用于拟合导线的近似直线;轮廓特征提取模块,用于提取与拟合直线相关轮廓的特征;聚类与分类器模块,用于对相关轮廓特征进行聚类,训练分类器进行分类。

  所述阈值分割包括颜色二值化分割和亮度二值化分割;

  根据公式:

  

  计算颜色亮度二值图,其中,f(x)表示二值化图输出,r表示原图每一个像素点在红色通道上的分量,g表示原图每一个像素点在绿色通道上的分量,b表示原图每一个像素点在蓝色通道上的分量,gray=r*0.299+g*0.587+b*0.114,th1表示颜色范围阈值,th2表示灰度最小阈值。

  所述边缘检测步骤如下:

  根据公式:

  

  得到梯度二值图。

  所述直线拟合为结合阈值分割与边缘检测得到二值图像,并对二值图像进行霍夫直线拟合,拟合的直线表示为(A,B),其中A表示角度集合,B表示截距的集合。

  所述轮廓特征提取包括提取拟合直线对应的轮廓的特征,进行聚类,训练svm分类器,其中对所述视觉图像进行轮廓检测操作以及特征筛选操作,得到待测目标的掩码,并输出所述待测目标在所述视觉图像中拟合直线的精确角度。

  所述追踪模块追踪目标导线包括选取最优的直线集合,采用下列公式:

  

  其中,表示的第j个元素,表示中的第j个元素,m表示集合的大小,表示(Anow,Bnow)的一个子集,为上一帧聚类输出的一簇;表示(Alast,Blast)的一个子集,为上一帧聚类输出的一簇;avg(A)函数的公式为αi是A的元素,n是集合A的大小,min函数表示取集合中最小值的元素。

  解算飞行器的飞行角度,采用公式为αi是A的元素,n是集合A的大小,其中A为对应集合i

  本发明的有益效果:1、本发明通过无人机上安置装置有控制模块、追踪模块和识别模块,可以综合应用无人机自主识别目标导线和追踪以及基于目标追踪的结果,解算飞行器的飞行角度,利用KCF模糊控制算法控制电机,提高无人机追踪目标导线的准确度;2、突破天然环境限制,通过无人机上的图像采集模块和图像识别模块实时采集和识别环境图像数据中的目标导线数据,可以显著提高识别效率,避免了因为天气原因导致的识别故障问题。

  附图说明

  图1为本发明的一种架空高压导线追踪检测方法的流程图。

  图2为本发明的一种架空高压导线追踪检测方法的识别模块工作流程图。

  具体实施方式

  为使本发明的目的、技术方案以及优点更加清楚明白,下面结合附图和实施例对本发明作进一步详细说明,应当理解的是,此处所描述的具体实施方式仅是本发明的一种最佳实施例,仅用以解释本发明,并不限定本发明的保护范围,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

  实施例:如图1所示,一种基于视觉识别的架空高压导线追踪检测系统及方法,该方案结合多特征结合、特征加模型协同和导线角度追踪方法,对底层特征进行综合利用,并充分利用先验的模型知识,从而达到全局最优识别,并减少识别的时间,适用于应用在实时的无人机自动巡检系统。

  为实现上述技术目的,本发明提供的一种技术方案是,一种基于视觉识别的架空高压导线追踪检测系统,包括无人机,所述无人机内置有图像采集模块、识别模块、追踪模块以及控制模块;

  所述控制模块,用于控制无人机的飞行轨迹,分别与采集模块、识别模块、追踪模块电连接;

  所述图像采集模块同于采集无人机飞行轨迹上的环境图像数据;

  所述识别模块用于识别环境图像数据中的目标导线图像数据;

  所述追踪模块用于指导控制模块控制无人机沿着导线飞行。

  一种架空高压导线追踪检测方法,包括如下步骤:

  S1、操控无人机起飞,飞至检测区域;

  S2、采用图像采集模块,获取检测区域的环境信息,得到高清的检测区域视觉图像,并对所述视觉图像进行预处理;视觉图像进行预处理包括灰度化操作、高斯滤波操作以及通道分割操作;

  S3、得到环境图像之后,使用识别模块,从所述环境图像中自动识别待检测的目标导线;

  S4、自动识别出待检测的目标导线后,采用追踪模块,根据已识别出的目标导线进行自主追踪;

  S5、在自主追踪的同时,利用控制模块,基于模糊控制算法控制电机,用于根据目标追踪的结果,解算飞行器的飞行角度。

  识别模块包括有阈值分割模块、边缘检测模块、形态学变换模块、感兴趣区域匹配模块、直线拟合模块、轮廓特征提取模块以及聚类与分类器模块;阈值分割模块用于去除非目标区域;边缘检测模块,用于检测导线的边缘;形态学变换模块,用于结合阈值分割与边缘检测的结果,并对结合的图像进行开运算;感兴趣区域匹配模块,用于匹配目标大致区域;直线拟合模块,用于拟合导线的近似直线;轮廓特征提取模块,用于提取与拟合直线相关轮廓的特征;聚类与分类器模块,用于对相关轮廓特征进行聚类,训练分类器进行分类。

  阈值分割包括颜色二值化分割和亮度二值化分割;

  根据公式:

  

  计算颜色亮度二值图,其中,f(x)表示二值化图输出,r表示原图每一个像素点在红色通道上的分量,g表示原图每一个像素点在绿色通道上的分量,b表示原图每一个像素点在蓝色通道上的分量,gray=r*0.299+g*0.587+b*0.114,th1表示颜色范围阈值,th2表示灰度最小阈值。

  边缘检测步骤如下:

  根据公式:

  

  得到梯度二值图。

  直线拟合为结合阈值分割与边缘检测得到二值图像,并对二值图像进行霍夫直线拟合,拟合的直线表示为(A,B),其中A表示角度集合,B表示截距的集合。

  轮廓特征提取包括提取拟合直线对应的轮廓的特征,进行聚类,训练svm分类器,其中对所述视觉图像进行轮廓检测操作以及特征筛选操作,得到待测目标的掩码,并输出所述待测目标在所述视觉图像中拟合直线的精确角度。

  追踪模块追踪目标导线包括选取最优的直线集合,采用下列公式:

  

  其中,表示的第j个元素,表示中的第j个元素,m表示集合的大小,表示(Anow,Bnow)的一个子集,为上一帧聚类输出的一簇;表示(Alast,Blast)的一个子集,为上一帧聚类输出的一簇;avg(A)函数的公式为αi是A的元素,n是集合A的大小,min函数表示取集合中最小值的元素。

  解算飞行器的飞行角度,采用公式为αi是A的元素,n是集合A的大小,其中A为对应集合i

  以上所述之具体实施方式为本发明一种基于视觉识别的架空高压导线追踪检测系统及方法的较佳实施方式,并非以此限定本发明的具体实施范围,本发明的范围包括并不限于本具体实施方式,凡依照本发明之形状、结构所作的等效变化均在本发明的保护范围内。

《一种基于视觉识别的架空高压导线追踪检测系统及方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)