欢迎光临小豌豆知识网!
当前位置:首页 > 物理技术 > 测量测试> 充电负载检测电路独创技术22643字

充电负载检测电路

2021-02-05 07:03:58

充电负载检测电路

  技术领域

  本发明有关一种充电负载检测电路,尤指一种利用低电流的脉波电压检测负载种类及负载状态的充电负载检测电路。

  背景技术

  现今社会中,越来越多的电子产品内部的电池,用来维持电子产品运作所需的电量。因此当电池没电时,必须利用充电器的充电技术,来对电池充电。但是,由于电池所应用的领域广大,且各领域所使用的电池的管理系统功能种类不尽相同,因此充电器除了必须要能辨认电池的状态而给予正确的充电的模式外,也要能够对应其它连接设备,例如:充电站或其它的供电需求。

  以目前充电器产业领域中,使用于电池的充电器因为需要使用内部控制器额外提供一根以上的接脚,来检测并显示电池是否耦接充电器与电池的种类。无形中使得充电器在空载状况下,控制器必须持续地消耗能量来进行电池的检测,而使得充电器功耗损失增大,因此无法满足新版美/欧洲能源法规或客户规格的低功耗要求。

  所以,如何设计出一种充电负载检测电路,来检测并显示电池是否耦接充电器与电池的种类,使得充电器内部的控制器无需额外提供接脚来进行电池的检测,乃为本案创作人所欲行研究的一大课题。

  发明内容

  为了解决上述问题,本发明提供一种充电负载检测电路,以克服现有技术的问题。因此,本发明充电负载检测电路,包括:充电电路,提供包括输入端与输出端的充电路径,且输入端耦接充电器。频率产生单元,通过充电路径耦接输出端。及控制单元,耦接充电电路与频率产生单元。其中,控制单元控制频率产生单元产生固定的第一频率与第一振幅的一脉波电压,且频率产生单元提供脉波电压至输出端;控制单元通过检测脉波电压的第一频率与第一振幅是否改变得知是否具有负载耦接输出端,且根据负载是否耦接输出端而控制接通(短路)或断路充电路径。

  为了能更进一步了解本发明为达成预定目的所采取的技术、手段及功效,请参阅以下有关本发明的详细说明与附图,相信本发明之目的、特征与特点,当可由此得一深入且具体的了解,然而所附图示仅提供参考与说明用,并非用来对本发明加以限制。

  附图说明

  图1为本发明充电负载检测系统的方块图;

  图2A为本发明充电负载检测电路第一实施例的电路图;

  图2B为本发明充电负载检测电路第二实施例的电路图;

  图3A为本发明充电负载检测电路耦接具有休眠模式的电池的输出电压波形图;

  图3B为本发明充电负载检测电路耦接通用电池的输出电压波形图;

  图3C为本发明充电负载检测电路耦接满充电池的输出电压波形图;

  图3D为本发明充电负载检测电路移除满充电池的输出电压波形图;

  图4A为本发明充电负载检测电路耦接充电站的输出电压波形图;及

  图4B为本发明充电负载检测电路移除充电站的输出电压波形图。

  【附图标记列表】

  100…充电负载检测系统

  1…充电器

  2、2’…充电负载检测电路

  20…充电电路

  202…输入端

  204…输出端

  206…充电路径

  206-1…第一开关

  206-A…第一驱动单元

  D1…面结型二极管

  206-2…第二开关

  206-B…第二驱动单元

  208…输出检测电路

  22…频率产生单元

  220…第三开关

  222…第三驱动单元

  24…控制单元

  3…负载

  Vp…脉波电压

  Vin…输入电压

  Vo…输出电压

  Io…充电电流

  T1~T4…区间

  t1~t4…时间

  具体实施方式

  现针对本发明的技术内容及详细说明,配合图示说明如下。

  请参阅图1,其为本发明充电负载检测系统的方块图。充电负载检测系统100包括充电器1与充电负载检测电路2。充电器1耦接充电负载检测电路2,且充电负载检测电路2检测后端是否耦接负载3。充电负载检测电路2包括充电电路20、频率产生单元22及控制单元24,充电电路20提供包括输入端202与输出端204的充电路径206,且输入端202耦接充电器1。频率产生单元22通过充电路径206耦接输出端204,且控制单元24耦接充电电路20与频率产生单元22。

  具体而言,控制单元24控制频率产生单元22产生固定的第一频率(例如但不限于,100Hz)与第一振幅(例如但不限于,16伏特)的脉波电压Vp,且频率产生单元22将脉波电压Vp提供至输出端204。其中,输出端204所提供的充电电流Io的电流值小于1毫安培。使得充电器1内部控制器(图未示)不用额外增加一接脚检测负载的充电状态。藉此,利用充电负载检测电路2提供低电流的脉波电压Vp,既可得知负载3的耦接与否,以及负载3的种类。控制单元24通过检测脉波电压Vp的第一频率与第一振幅是否改变得知是否有负载3耦接至输出端204,且根据负载3是否耦接输出端204而控制接通或断路(断开)充电路径206。当脉波电压Vp的第一频率与第一振幅未改变时,代表未有负载3耦接于输出端204。当脉波电压Vp的第一频率与第一振幅改变时,代表具有负载3耦接于输出端204。此时,控制单元24根据输出端204的电压波形判断负载3的种类,进而根据负载3的种类进一步地控制充电负载检测电路2的充电模式。

  请参阅图2A,其为本发明充电负载检测电路的电路图,再配合参阅图1。充电路径206包括第一开关206-1与第二开关206-2,第一开关206-1耦接输入端202与控制单元24,且第一开关206-1串接于充电路径206上。第二开关206-2耦接第一开关206-1、控制单元24及输出端204,且第二开关206-2串接于充电路径206。控制单元24通过第一驱动单元206-A耦接第一开关206-1,且通过第二驱动单元206-B耦接第二开关206-2。具体而言,当控制单元24欲控制导通第一开关206-1时,控制单元24控制第一驱动单元206-A将第一开关206-1的控制端不耦接至接地点,使得第一开关206-1被导通。反之,则第一开关206-1不导通。值得一提的是,第二驱动单元206-B亦是如此。进一步而言,第二开关206-2控制充电路径206的接通与断路。当控制单元24控制第二开关206-2不导通时,充电路径206断路,使得充电器1不耦接负载3。当控制单元24控制第二开关206-2导通时,充电路径206接通,使得充电器1耦接负载3。

  频率产生单元22包括第三开关220,第三开关220耦接控制单元24,且第三开关220并联第二开关206-2。控制单元24通过第三驱动单元222耦接第三开关220,且通过第三驱动单元222耦接第三开关220。具体而言,当控制单元24欲控制导通第三开关220时,控制单元24控制第三驱动单元222将第三开关220的控制端不耦接至接地点,使得第三开关220被导通。反之,则第三开关220不导通。具体而言,控制单元24通过切换导通或不导通第三开关220,以产生脉波电压Vp。当控制单元24切换导通第三开关220时,输入端202的输入电压Vin通过第一开关206-1的面结型二极管D1与第三开关220的路径提供至输出端204。当控制单元24切换不导通第三开关220时,输入端202的输入电压Vin无法通过第一开关206-1的面结型二极管D1与第三开关220的路径提供至输出端204。此时,通过第三开关220的导通或不导通,使得输出端204产生固定的第一频率与第一振幅的低电流脉波电压Vp。进一步而言,当控制单元24控制充电路径206接通时,代表输出端204耦接负载3,此时,控制单元24仍控制第三开关220切换导通,以持续侦测负载3是否被移除。

  充电电路20还包括输出检测电路208,输出检测电路208耦接输出端204与接地点之间,以检测输出端204的输出电压Vo的电压变化。控制单元24根据输出检测电路208得知输出电压Vo的电压变化,以进行第一开关206-1、第二开关206-2及第三开关220的导通或不导通的控制。

  请参阅图2B,其为本发明充电负载检测电路第二实施例的电路图,再配合参阅图1~图2A。本实施例的充电负载检测电路2’与图2A的充电负载检测电路2差异在于,第三开关220的并联第一开关206-1与第二开关206-2。意即第三开关220的一端耦接第一开关206-1的一端,第三开关220的另一端耦接第二开关206-2的一端,且第三开关220的控制端耦接第一开关206-1的一端,使该输入端202的输入电压Vin跨接第一开关206-1和第二开关206-2。当控制单元24切换导通第三开关220时,输入端202的输入电压Vin通过第三开关220的路径提供至输出端204。当控制单元24切换不导通第三开关220时,输入端202的输入电压Vin无法通过第三开关220的路径提供至输出端204。此时,通过第三开关220的导通或不导通,使得输出端204产生固定的第一频率与第一振幅的低电流脉波电压Vp。值得一提的是,除了第三开关220的连接方式与图2A不同外,其余的元件耦接方式与控制方式均与图2A相同。

  请参阅图3A,其为本发明充电负载检测电路耦接具有休眠模式的电池的输出电压波形图,再配合参阅图1~图2B。于图3A的区间T1中,由于负载3尚未耦接充电负载检测电路2,因此输出电压Vo为固定的第一频率与第一振幅的脉波电压Vp。于时间t1时,具有休眠模式的电池(意即负载3)耦接充电负载检测电路2,因此输出电压Vo的脉波电压Vp改变。由于具有休眠模式的电池需要触发电压(例如但不限于5伏特)来唤醒电池,因此于区间T2中,脉波电压Vp提供至具有休眠模式的电池,且逐渐地建立触发电压(具有休眠模式的电池通常是利用电容性元件来建立触发电压),使得输出电压Vo的电压值逐渐上升,而产生呈电容性充电曲线增加的电压波形。区间T2即为控制单元24判断负载3是否耦接充电负载检测电路2,以及判断负载3的种类的第一判断时段(例如但不限于,400毫秒)。

  于时间t2时,控制单元24判断负载3为具有休眠模式的电池,控制单元24通知充电器1,使充电器1对负载3执行预充电模式(pre-charge mode)。此时,控制单元24控制导通第一开关206-1与第二开关206-2,使充电器1提供输出电压Vo与充电电流Io(例如但不限于,电压值29伏特、电流值1安培)至负载3。在区间T3时,电池的电压值由低压值(例如但不限于,19伏特)逐渐地提高至唤醒值(例如但不限于,23伏特)。当电池的电压值大于等于唤醒值时(时间t3),电池被唤醒,使得在区间T3之后,充电器1以恒定电流充电模式(Constant-Current mode,CC mode)对电池充电(意即,充电电流Io逐渐上升至定值)。

  请参阅图3B,其为本发明充电负载检测电路耦接通用电池的输出电压波形图,再配合参阅图1~图3A。于图3B的区间T1中,由于负载3尚未耦接充电负载检测电路2,因此输出电压Vo为固定的第一频率与第一振幅的脉波电压Vp。于时间t1时,通用电池(意即负载3)耦接充电负载检测电路2,因此输出电压Vo的脉波电压Vp改变。通用电池即为不具有休眠模式的电池,因此于时间t1中,输出电压Vo的电压由脉波电压Vp改变为电池的电压值(上升至固定值,但未达满充值)。控制单元24通过区间T2的第一判断时段,得到电池的电压值大致上(包括损耗)呈固定值的电压波形,且于时间t2判断负载3为通用电池。控制单元24通知充电器1,使充电器1对负载3执行定电流充电模式,此时,控制单元24控制导通第一开关206-1与第二开关206-2,使充电器1以定电流充电模式(CC mode)对电池充电(意即,充电电流Io逐渐上升至定值)。

  请参阅图3C,其为本发明充电负载检测电路耦接满充电池的输出电压波形图,再配合参阅图1~图3B。于图3C的区间T1中,由于负载3尚未耦接充电负载检测电路2,因此输出电压Vo为固定的第一频率与第一振幅的脉波电压Vp。于时间t1时,满充电池(意即负载3)耦接充电负载检测电路2,因此输出电压Vo的脉波电压Vp改变。满充电池可为具有或不具有休眠模式的电池,当于时间t1时,由于电池的满充,输出电压Vo的电压由脉波电压Vp改变为电池的电压值(上升至满充值)。控制单元24通过区间T2的第一判断时段,得到电池的电压值大致上(包括损耗)呈满充值的电压波形,且于时间t2判断负载3为满充电池。控制单元24通知充电器1,使充电器1对负载3执行低电流充电模式(意即,充电电流Io的电流值小于等于临限电流值(阈值电流值))。此时,控制单元24控制导通第一开关206-1与第二开关206-2,使充电器1以低电流充电模式对电池充电。

  进一步而言,在区间T3时,充电器1持续以低电流充电模式对负载3充电(例如但不限于,充电电流Io小于等于0.25安培)。由于第一开关206-1与第二开关206-2仍然持续导通,因此当满充电池移除时,充电器1仍然会提供输出电压Vo至输出端204。为了可确认满充电池是否移除,控制单元24通过控制第一开关206-1与第二开关206-2进入打嗝不导通模式(hiccup mode,打嗝模式),以判断负载3使否移除。在区间T3-1时,控制单元24控制第一开关206-1与第二开关206-2导通,且在区间T3-2时,控制单元24控制第一开关206-1与第二开关206-2不导通,以持续确认满充电池是否仍然耦接充电负载检测电路2。由于满充电池仍耦接负载,输出电压Vo的电压值即为满充电池的电压值,因此输出电压Vo的电压值并未产生变化,此时,控制单元24判断满充电池仍耦接充电负载检测电路2。然后,当第一开关206-1与第二开关206-2由不导通转变为导通,充电电流Io回到低电流充电模式的电流值(如区间T3-3所示)。

  请参阅图3D,其为本发明充电负载检测电路移除满充电池的输出电压波形图,再配合参阅图1~图3C。在打嗝不导通模式中(如区间T1所示),当第一开关206-1与第二开关206-2由不导通转变为导通,但输出电压Vo的电压由电池的电压值(当前电压值)降至0伏特时(如时间t1所示),控制单元24得知满充电池可能已移除。此时,控制单元24由于必须确认负载3是否移除,因此控制单元24通过区间T2的第二判断时段(例如但不限于,100毫秒),得到输出端204的电压值持续小于等于临限电压值(阈值电压值)。当时间t2时,控制单元24判断满充电池被移除,此时,控制单元24控制第一开关206-1与第二开关206-2不导通,且控制第三开关220切换导通,使得区间T3以后,频率产生单元22提供脉波电压Vp至输出端204。

  值得一提的是,于本发明的一实施例中,当未满充的电池(具有或不具有休眠模式的电池)移除时,正在对电池充电的充电电流Io会迅速地降至0。控制单元24通过区间T2的第二判断时段(例如但不限于,100毫秒),得到充电电流Io迅速地降至0的电流波形。当时间t2时,控制单元24判断未满充的电池被移除,此时,控制单元24控制第一开关206-1与第二开关206-2不导通,且控制第三开关220切换导通,使得区间T3以后,频率产生单元22提供脉波电压Vp至输出端204。

  请参阅图4A,其为本发明充电负载检测电路耦接充电站的输出电压波形图,再配合参阅图1~图3D。于图4A的区间T1中,由于负载3尚未耦接充电负载检测电路2,因此输出电压Vo为固定的第一频率与第一振幅的脉波电压Vp。于时间t1时,充电站(意即负载3)耦接充电负载检测电路2,因此输出电压Vo的脉波电压Vp改变。由于充电站的输入端大多具有电容性或电阻性的元件,因此于区间T2中,输出电压Vo产生低压波动的电压波形。控制单元24通过区间T2的第一判断时段,得到低压波动的电压波形,且于时间t2判断负载3为充电站。

  于时间t2时,控制单元24判断负载3为充电站,控制单元24通知充电器1,使充电器1对负载3执行充电站模式(POD mode),此时,控制单元24控制导通第二开关206-2,以及切换导通或不导通第一开关206-1。在区间T3时,充电器1提供输出电压Vo至充电站,此时,由于第一开关206-1在切换导通时,充电器1所提供输入电压Vin能够通过第一开关206-1至充电站,使得输出电压Vo的电压值为高电平电压值(例如但不限于,电压值29伏特)。由于第一开关206-1在切换不导通时,充电器1所提供输入电压Vin仅能通过第一开关206-1的面结型二极管D1至充电站,使得输出电压Vo的电压值为低电平电压值(例如但不限于,电压值16伏特)。通过第一开关206-1的切换导通或不导通,使得输出电压Vo呈固定的第二频率与第二振幅的电压波形。藉此,通过输出电压Vo呈固定的第二频率与第二振幅的电压波形,使得控制单元24可通过电压波形的第二振幅的改变得知电池接入充电站。值得一提的是,由于此时未有电池的接入,因此充电站工作在轻载,且充电电流Io较低(例如但不限于,1~2毫安培)。

  具体而言,由于充电站有最低运行电力,当输出端204提供的输出电压Vo的电压值低于最低运行电力时,充电站将会停止运作,因此,输出端204所提供的输出电压Vo的电压值必须高于最低运行电力(例如如上所述的16伏特)。但是,由于充电站并未包含有电池,因此当充电站耦接电池时,若电池的电压值超过最低运行电力时,恐会造成逆流的现象。因此,在第一开关206-1切换不导通时,面结型二极管D1的逆偏能防止电池的电压值超过最低运行电力,而造成逆流的现象。

  再参阅图4A,在时间t3时,电池接入充电站,此时,低电平电压值会被拉至电池目前的电压值,进而改变了电压波形的第二振幅。控制单元24通过区间T4的第三判断时段(例如但不限于,200毫秒),得到改变第二振幅的电压波形,且于时间t4判断电池已接入充电站,此时,控制单元24控制导通第一开关206-1,使得充电器1开始提供充电电流Io对电池充电。

  请参阅图4B,其为本发明充电负载检测电路移除充电站的输出电压波形图,再配合参阅图1~图4A。在区间T1中,输出电压Vo呈固定的第二频率与第二振幅的电压波形,代表充电站仍耦接充电负载检测电路2。当时间t1时,充电站被移除,但是由于输出电压Vo的电压值尚未改变,因此控制单元24并未检测到充电站已被移除。在区间T2中,由于充电站被移除,因此输出电压Vo在高电平电压值所储存的能量不能有效地被消耗,造成控制单元24控制不导通第一开关206-1时,电压波形下降沿的下降沿时间较长,且斜率较为平缓。因此,可利用至少2种判断方式判断充电站是否被移除。

  其中的一种判断方式为,在时间t2时,控制单元24检测到电压波形的下降沿电压在临限时段(阈值时段)未低于临限电压(意即,临限时段即为第二判断时段,且例如但不限于100毫秒)。其中,临限电压(阈值电压)可设定在低电平电压的电压值(16伏特),电压波形的下降沿电压在第二判断时段未由高电平电压值降至低电平电压值(16伏特)时,代表充电站已被移除。此时,控制单元24控制第一开关206-1与第二开关206-2不导通,且控制第三开关220切换导通,使得区间T3以后,频率产生单元22提供脉波电压Vp至输出端204。另一种判断方式为,在时间t2时,控制单元24检测到电压波形下降沿下降至低电平电压值的下降沿时段大于临限时段(意即,临限时段即为第二判断时段,且例如但不限于100毫秒)。意即,由高电平电压值降至低电平电压值的时段即为下降沿时段。此时,控制单元24控制第一开关206-1与第二开关206-2不导通,且控制第三开关220切换导通,使得区间T3以后,频率产生单元22提供脉波电压Vp至输出端204。

  值得一提的是,当电池耦接在充电器,但充电器由充电负载检测电路2移除时,正在对电池充电的充电电流Io会迅速地降至0。控制单元24通过区间T2的第二判断时段(例如但不限于,100毫秒),得到充电电流Io迅速地降至0的电流波形。当时间t2时,控制单元24判断未满充的电池被移除,此时,控制单元24控制第一开关206-1与第二开关206-2不导通,且控制第三开关220切换导通,使得区间T3以后,频率产生单元22提供脉波电压Vp至输出端204。

  值得一提的是,于本发明的一实施例中,图3A~图4B所述的判断时段的秒数,可根据电路的实际需求而调整。此外,于本发明的一实施例中,脉波电压的第一频率与第一振幅也可根据电路的实际需求而调整。

  然而,以上所述,仅为本发明较佳具体实施例的详细说明与图示,而本发明的特征并不局限于此,并非用以限制本发明,本发明的所有范围应以随附的权利要求为准,凡合于本发明权利要求之精神与其类似变化的实施例,均应包括于本发明的范畴中,任何本领域技术人员在本发明的领域内,可轻易思及的变化或修饰均可涵盖在随附的本申请的权利要求书中。

《充电负载检测电路.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)