欢迎光临小豌豆知识网!
当前位置:首页 > 物理技术 > 测量测试> 测定管状物体横截面的椭圆度的方法及其使用的参考设备独创技术25151字

测定管状物体横截面的椭圆度的方法及其使用的参考设备

2021-04-02 12:51:59

测定管状物体横截面的椭圆度的方法及其使用的参考设备

  技术领域

  本发明涉及测定管状物体的横截面的椭圆度的方法,以及在该方法中使用的参考设备。管状物体特别但非排他地是用于输送气体燃料的管道。

  背景技术

  管道或风管是通常用于输送诸如气态燃料或饮用水之类的流体的管子或管状物体。管道可以由多种材料制成,塑料管道因其轻巧,耐化学性,非腐蚀性和易于连接而被广泛使用。

  在大多数情况下,管道具有圆形的横截面,但是很难制造或维护完美的圆形度(roundness)或圆度(circularity)。这在制造管道和相关配件的接头和连接件时造成困难,该问题随着管道直径的增加而加剧。

  椭圆度(ovality)(或椭圆度(ellipticity))是圆度或偏离圆度的程度的测量。近似地,不完美的圆形横截面被假定为椭圆形或椭圆形。传统上,将卷尺拉到管道的外部,或者用卡尺找出最长轴的或主轴的长度A和最短轴的或次轴的长度B,并以如下其中一条的计算公式来计算椭圆度:[2(A-B)]/(A+B),(B/A)以及(A-B)。

  对于具有较大(内)直径(例如在200mm至500mm范围内)的管道,参数A和B的测量通常以粗略的方式进行,即使用卷尺来获取最大和最小直径,其主要取决于个人判断。

  合理地准确而又廉价的工具不是不存在就是有限的,更不用说那些能够立即执行计算和传达椭圆度测量结果的设备了。

  本发明试图通过提供一种新的或以其他方式改进的测定管状物体的横截面的椭圆度的方法来消除或至少减轻这些问题或缺点,以及用于这种方法的参考设备。

  发明内容

  根据本发明的第一方面,提供了一种测定管状物体横截面的椭圆度的方法,包括以下步骤:

  A.提供一种参考设备,所述参考设备包括具有参考轴的主体并具有在所述参考轴方向上的前部和设置在所述前部处的参考手段,所述参考手段在垂直于参考轴的平面上提供预定特征的基准;

  B.靠近所述管状物体的管状端部,所述管状端部具有中心轴线,并且显露出垂直于中心轴的所述管状物体的横截面;

  C.将所述参考设备放置在所述管状物体的管状端部中,参考手段朝外,并且所述参考轴平行于管状端部的中心轴;

  D.通常在沿管状端部的中心轴的方向上捕获包含参考手段的管状端部的图像;

  E.基于图像中所显示的参考手段相对于预定特征的基准的变形,处理图像以校正捕获图像的角度,从而得到校正图像,所述校正图像包含所述管状物体的横截面在其中心轴方向上的正交投影;

  F.分析所述校正图像以识别校正图像中显示的管状端部的形状,从而在所述校正图像中确定所述管状物体的横截面;

  G.测定校正图像中所述管状物体的横截面的最长轴和最短轴;以及

  H.使用所述最长轴和最短轴计算所述管状物体的横截面的椭圆度。

  优选地,步骤C包括:将所述参考设备放置在管状端部的圆柱形内表面上。

  更优选地,步骤C还包括:当所述参考设备放置在圆柱形内表面上时,其自身会自动对准,使参考轴平行于管状端部的中心轴延伸。

  优选的是,步骤E中所述的图像处理包括对图像执行透视校正。

  优选的是,步骤F中所述的分析校正图像包括对校正图像中显示的管状端部执行边缘识别,从而识别管状端部的形状。

  进一步优选的是,该方法在步骤F之后包括步骤F1:测定与所述管状端部形状匹配的最合适的椭圆曲线。

  在一个优选的实施例中,该方法在步骤E和步骤F之间包括步骤F0:在校正图像中显示的管状端部的壁厚内选择至少两个具有明显对比色相的点,测量这些点的色相,并测定整个壁厚的色相的最佳值,以用于在步骤F中的校正图像分析。

  更优选地,所述至少两个点具有明显的最高亮度和最低亮度。

  在一个优选的实施例中,该方法在步骤B和步骤D之间包括步骤D1:在管状端部附近放置或形成一个紧密围绕所述管状端部的环,从而区分管状端部的外部形状,以便于在步骤F中的校正图像分析。

  更优选地,所述环具有单一的颜色,该颜色与所述管状端部的材料的颜色形成对比。

  优选的是,所述预定特征包括与几何布置和颜色中至少一项有关的特征。

  进一步优选的是,所述预定特征包括与尺寸有关的特征。

  还进一步优选的是,该方法包括基于所述预定特征中的尺寸特征测定所述管状物体的横截面的最长轴和最短轴的长度。

  在一个优选的实施例中,该方法涉及移动设备(优选地是智能手机)的使用,所述设备安装了应用程序以执行步骤D到步骤H。

  根据本发明的第二方面,提供了一种在测定所述管状物体的横截面的椭圆度的方法中在管状物体的管状端部中使用的参考设备,其涉及通常在沿所述管状端部的中心轴线的方向上捕获包含所述参考手段的所述管状端部的图像,。所述参考设备包括:具有参考轴的主体,所述参考轴平行于所述管状端部的中心轴,所述主体在参考轴的方向上具有前部;以及设置在所述前部处的参考手段,所述参考手段在垂直于参考轴的平面上提供预定特征的基准。通过使用参考设备,所述捕获图像可以基于其中显示的参考手段与预定特征基准之间的偏差来进行透视校正,从而得到校正图像,所述校正图像包含所述管状物体的横截面在其中心轴方向上的正交投影。

  优选地,所述主体具有至少一个平行于参考轴的笔直外部,所述笔直外部用于与所述管状端部的圆柱形内表面接触,以使所述主体与平行于所述管状端部的中心轴的参考轴对准。

  更优选地,所述主体在其相对侧上具有两个所述笔直外部。

  更优选地,所述主体具有用于放置在所述管状端部的圆柱形内表面上的基部,所述基部包括所述至少一个或两个笔直外部。

  进一步更优选地,所述至少一个或每个笔直外部包括边缘。

  进一步更优选地,所述主体包括在其相对侧上延伸穿过所述前部和所述基部的左部分和右部分。

  更进一步优选地,所述主体还包括横跨所述左部分和右部分的手柄。

  在一个优选的实施例中,所述前部具有垂直于所述参考轴的平面,在所述平面上设置有所述参考手段。

  在一个优选的实施例中,所述参考手段包括提供预定特征基准的图案。

  更优选地,所述图案包括非线性几何布置中的至少三个点。

  进一步更优选地,每个点以十字表示。

  更进一步优选地,每个十字由四个象限组成,每对相邻的象限具有不同的颜色。

  优选的是,所述图案包括以正方形布置的四个点。

  进一步优选的是,所述图案包括具有四个角的正方形,所述四个点位于所述四个角处。

  更进一步优选的是,所述图案还包括首先提到的较大的正方形的各个角处的四个较小的正方形,每个较小的正方形的具有与较大的正方形的相应角的最近角邻接,所述相应角和所述最近角一起形成定义相应点的十字。

  还更进一步优选的是,较大的正方形填充有第一颜色,而较小的正方形填充有不同于第一颜色的第二颜色。

  在一个优选的实施例中,图案包括棋盘格图案。

  附图说明

  现在将仅通过举例的方式并参考附图来更具体地描述本发明,其中:

  图1是根据本发明的在测定管状物体横截面的椭圆度的方法实施例中使用的参考设备的实施例的透视图;

  图2是图1的管道和参考设备的示意性端视图,以放大比例示出;

  图3是在智能手机的屏幕上捕获的图1的管道和参考设备的端视图的图像;

  图3A是图3的图像的一部分的放大图;

  图4是图1的参考设备的透视图;

  图5是图2的参考设备的放大图,以实际比例示出了在其上的参考图案;以及

  图6是相当于图5的放大图,其示出了可以在体现本发明的参考装置上使用的不同的参考图案。

  具体实施方式

  参考附图的图1至图5,示出了体现本发明的用于一种方法的参考设备100,也体现本发明的参考设备100用于测定管状物体的横截面的椭圆度,所述管状物体例如特别但非排他地是用于输送气态燃料的气体管道(或风管)200。优选地在将气体管道200置于水平位置的情况下进行椭圆度检查。所关注的椭圆度是在管道200的管状开口端201处的椭圆度,管道200将在该开口端处与另一根管道或管道配件接合。在使用中,参考设备100被放置在管状管道端部201中。

  本发明的方法涉及通常在沿中心轴线X的方向上捕获包含参考设置100的管道端部201的图像,其中参考设备100具有相对于管道端部201的横截面的参考表面100F,用于随后的图像处理。

  参考设备100具有主体110,该主体包括:参考轴Y,其平行于管状端部201的中心轴X;以及在参考轴Y的方向上的前部111。参考设备100包括设置在前部111处的参考手段120,用于在垂直于参考轴Y的平面上提供或呈现预定特征的基准。参照预定特征的基准,可以基于图像中所显示的参考手段120与预定特征的基准之间的偏差,对捕获的上述图像进行透视校正的图像处理。

  处理后的图像是校正的(或调整的)图像,其包括管道200的横截面,特别是其管道端部201在其中心轴X方向上的正交投影。正交投影中的横截面在管道端部201的真实正交横截面平面上,并与其中心轴X成直角,从而允许基于校正图像来精确测量管道端部201的直径。正交性是使用照相技术进行测量的先决条件。

  关于具体构造,参考设备100具有大致矩形的楔形形状,其中主体110包括与正方形的前部111邻接的矩形基部112,以及三角形的左部分113和右部分114,所述左部分和右部分延伸穿过前部111和基部112的相对侧。这四个部分111至114分别是平板。主体110具有杆状手柄115,该杆状手柄115横跨左部分113和右部分114延伸。

  左部分113和右部分114分别与基部112的相对侧接合,以形成一对以线性且相互平行的方式延伸的左右底角或底边缘100L和100R,它们分别与参考轴Y平行。底边缘100L和100R分别代表主体110的平行于参考轴Y延伸的笔直外部,以及在主体110的相对侧上的两个所述笔直外部。

  前部111具有平坦的外表面/前表面100F,该平坦的外表面/前表面垂直于基部112并且特别是垂直于参考轴Y延伸,参考手段120设置在该参考轴Y上。

  在使用中,参考设备100被放置在管道200的管状端部201内以停靠在管道200的圆柱形内表面200S上,并且前表面100F朝外。参考设备100以其底边缘100L和100R与管状端部201的圆柱形内表面200S接触而停靠,从而使主体110自对准,使其参考轴Y平行于管状端部201的中心轴X。参考设备100相对于管道的管状端部201的操作位置现在被设定,在该位置中,参考设备100的前表面100F以及因此在其上的参考手段120垂直于管道端部的中心轴X延伸。

  通过将参考设备100设计成具有包括至少一个或两个笔直外部(例如,底边缘100L和100R)的底座(例如,基部112),以用于将其放置在管道200的管状端部201的圆柱形内表面200S上,通过自对准,可以容易地实现参考设备100的前述操作位置。

  参照参考手段120,其包括图案,以下称其为参考图案120,参考图案120提供预定特征的基准,并且优选地位于参考设备100的前表面100F的中央。参考图案120包括非线性几何布置中的至少三个点Z,尤其是以正方形布置的四个点Z的组。

  在如本文所述的优选实施例中,参考图案120包括正方形121,正方形121具有四个角,四个点Z位于该四个角处。相反地,四个点Z一起限定了正方形121。正方形121具有四个相等的边,每个边具有已知值的长度L。

  参考图案120优选地进一步包括在首先提到的正方形121的各个角处的四个较小正方形124,所述的正方形121是较大的中心正方形,每个较小正方形124具有与中心正方形121的各个角邻接的最近角,所述各个角和所述最近角一起形成定义相应点Z的十字标记。每个点Z由一个十字标记表示,该标记由一对相互垂直的线绘制,将周围区域分成四个象限。

  该参考图案120优选地通过用稍大的外部正方形122对称地围绕中心正方形121而构成,所述中心正方形121和所述外部正方形122一起形成四对相邻的角,并且在每对的相邻角之间限定并定位一个相应的小正方形124。中心正方形121的角处的相邻点Z或角正方形124之间的距离是长度L,其是作为预定特征的基准中的特征的尺寸。

  中心正方形121填充有第一颜色,例如红色-品红色。四个小正方形124以浅色背景色(例如白色或浅黄色)一起填充有第二种颜色(例如蓝色),该第二种颜色不同于中心正方形121的颜色。可以使用不同色相值的相同颜色代替。

  使用不同的颜色或色相,使得形成或围绕定义每个点Z的十字标记的四个象限处于对比的颜色/色相方案中,如在每对相邻象限之间。在所描述的实施例中,在红色-品红色/蓝色和白色(或浅黄色)之间实现了对比度,并用于突出显示或区分参考图案120的点Z与出现在捕获图像中的一般背景。参考图案120可以通过例如使用贴纸印刷或以其他方式承载在参考设备100的前表面100F上。

  通常,参考图案120提供或合并预定特征的基准,该预定特征基本上是中心正方形121,并且嵌入的信息包括已知大小即长度L的完美正方形。通过根据上述对比颜色/色相方案设计相关的十字标记,中央正方形121的角由清楚地辨别的四个点Z精确指出,以便于照片确定。

  总之,预定特征的基准包括与几何布置和颜色中的至少一种有关的特征,并且包括与尺寸有关的特征。

  在图6中示出了可以在参考设备100上使用的不同的参考图案120’。参考图案120’类似于上述较早的参考图案120,其中相等的部分由带有撇号后缀的相同的附图标记号表示。这参考图案120’由优选为黑白且有规律的棋盘格图案(方格图案)提供或包括该黑白且有规律的棋盘格图案,其中四个角处的最外面的方格124’由中央正方形121’的边(其延伸边)和外部正方形122’的边之间的截距来限定。

  该棋盘格图案包括彼此相同的且具有相同对比色/色调(例如黑白)方案的十字交叉点的正方形阵列。在中心正方形121’的四个角处的最外面的十字交叉点被用作如前所述的四个点Z’,以用于照片识别,及后通过与预定特征的基准进行比较来进行透视校正。

  现在参考测定管道200在其有关端部之一,即管状端部201处的横截面的椭圆度的本发明的方法。该方法涉及参考设备100的使用,因此必须使参考设备100可用或将其拿到手作为初始步骤(步骤A)。参考设备100,作为其基本部件,应包括具有参考轴Y和在参考轴Y方向上的前部111的主体110,并且具有在前部111的参考手段120,以在垂直于参考轴Y的平面上提供预定特征的基准。

  下一步是人员,例如技术人员进行椭圆度测量,所述人员必须靠近管道200的管状端部201并显露出垂直于其中心轴X的管道端部201的横截面(步骤B)。对于使用中的管道,这可能涉及切除有缺陷或损坏的部分,优选在管道端部201处于大致水平位置的位置处进行切除。这适用于新管道200,其所被关注的端部201应水平放置。

  如上所述,参考设备100在使用中被放置在管状管道端部201中,参考图案120朝外并且参考轴Y平行于管道端部201的中心轴X(步骤C)。特别地,参考设备100将使其两个笔直底边缘100L和100R与管道端部201的圆柱形内表面200S接触,该表面200S在管道端部的中心轴X的方向上线性地延伸。

  在重力对其重量/质量的作用下,当参考设备100放置停靠在圆柱形内表面200S上时会自行对齐或定向,以沉降到内表面200S上最低的位置,从而自动使其自身轴向对齐,使其参考轴Y平行于中心轴X。

  参考设备100围绕其参考轴Y的角位置并不是重要条件,因为所需条件是参考轴Y平行于管端的中心轴X,这在物理定律下自然且可自动实现。

  为此,在稍微不同的实施例中,设想到参考设备100可以具有水平的圆柱主体,其中心轴用作参考轴Y,该参考轴Y水平地延伸以提供最低的部分作为平行于参考轴Y延伸的所述笔直外部。当放置在管道端部201中时,这种圆柱形参考设备100将通过有限的滚动使其笔直的最下部分与圆柱形内表面200S接触,从而在重力作用下自动将其参考轴Y与管道端部的中心轴X自对准。

  回到所描述的实施例,在任何一种情况下,在参考设备100上的参考图案120应放置在管道端部201的开口处或附近,例如在与管道端部201的端面共面的位置。这种放置将为下一步带来更好的结果,也就是如上所述,通常在沿管道端部201的中心轴X的方向上捕获具包含参考手段/参考图案120的管道端部201的图像(步骤D)。

  在前述捕获管道端部201的图像之前(步骤D),技术人员可以放置或形成环210,例如,通过将相对较厚的色带/胶带紧紧围绕管状管道端部201来包裹。环210用于区分管状端部201的外部形状或外围,以便于在下面所描述的(步骤F)校正图像分析。

  环210优选地具有单一的颜色,与管道端部201的材料的颜色形成对比,以提供独特的直接围绕的背景,从而使得管道端部的外周在视觉上或在照片上从环210突出,以便于图像/边缘识别。

  图像的捕获可以通过使用移动设备来方便地进行,该移动设备例如是但不限于智能手机。现时的智能手机通常具有800万或更多的像素。对于测量直径最大为400mm的管道,可以达到每个像素约0.2mm的精度并且该精度已经足够了。另外,智能手机支持使用Java编程语言进行软件开发,并且可以与专门为执行该方法而设计的应用程序(即在移动设备中使用的应用程序或程序)一起安装并运行该应用程序,并且还可以实时上传测量值和/或椭圆度数据到服务器。

  该应用程序包括某些基本图像处理功能,这些功能在当今通常使用的大多数照片编辑软件中是众所周知的,并且是必备条件。为了根据本发明的用途,所包括的基本图像处理功能包括:(a)图像处理以改变所捕获的图像的角度;以及(b)图像分析以识别边缘并因此识别形状。

  在触发智能手机的照相机以捕获图像之前,应先打开应用程序并在智能手机中运行该应用程序,并调用照相机功能,以便在应用程序的控制下捕获图像。照相机应指向管道端部201的中心并沿其中心轴X的方向指向。该应用程序可以指导技术人员定位照相机,以使得出现在屏幕上的管道端部201(其中具有参考设备100)的预览图像被放置在大致上中心的位置并且具有最佳(足够大)的尺寸。理想情况下,应该在中心轴X的方向上拍摄图像。

  捕获图像时和在捕获图像之后(步骤D),智能手机将继续用于执行本发明的方法,包括四个基本步骤(步骤E,F,G和H),这些步骤分别单独或部分组合,如下所述。

  值得注意的是,由于图像是由手持智能手机的技术人员拍摄的,因此不太可能精确地沿中心轴X的方向拍摄,或者换句话说,不是以正确的角度,即垂直于参考图案120的平面拍摄的。这导致参考图案120中的中心正方形121的正方形状达到一定程度的变形(尽管变形很小)。

  初始时,技术人员应按下智能手机屏幕上的中心正方形121,以确认图像的使用。这触发该应用程序以对屏幕上的图像进行处理,基于图像中所显示的参考图案120相对于预定特征(即,理想的正方形)的基准的变形或偏离,来校正捕获图像的角度(步骤E)。图像侦察角度技术可以用于图像的处理,诸如通常称为透视校正的处理。这将导致智能手机中存有校正(或调整)的图像。校正图像包括管道端部201的横截面在其中心轴X方向上的正交投影,其中完美正方形形状正确地代表了中心正方形121,作为预定特征基准的关键参考特征。

  然后,该应用程序对校正图像进行分析,以识别校正图像中所显示的管道端部201的形状,从而在校正图像中确定出管道200在其管状端部201处的横截面(步骤F)。校正图像的分析可以例如对校正图像中所显示的管道端部201执行边缘识别,从而识别管道端部201的形状。

  在前述对校正图像进行分析之前(步骤F),应用程序可能会要求技术人员在校正图像中所显示的管道端部201的圆柱形壁厚内选择明显的对比色相的至少两个点P和Q(优选地具有明显最高和最低亮度的至少两个点)(步骤F0)。然后,该应用程序将在这些点P和Q上测量色相,色相可能在实际中主要由于暖色,浅色,深和/或亮色调之间的环境照明条件会有所不同。该应用程序随后将测定整个壁厚的最佳色相值,以用于上述校正图像分析(即边缘识别)以获得最佳结果。按下这两个点P和Q可以提高程序识别色差和亮度变化的能力。

  通常,该应用程序同时使用色差和侦察边缘技术来确定校正图像中管道端部201的最外边缘。

  在所描述的实施例中,优选地,应用程序随后将测定与管道端部201的外周形状匹配的最合适的椭圆曲线(步骤F1)。这可以通过使用通常称为曲线拟合算法的已知算法来执行。

  该应用程序随后将测定校正图像中管道200横截面的最长轴A和最短轴B(步骤G)。优选地,这是基于所找到的最匹配管道端部201的形状的椭圆曲线来完成的,因为该曲线是具有特定的最长和最短轴的椭圆形状。该应用程序还将测量出现在屏幕上的校正图像中的两个轴A和B的长度。

  还测量的是中心正方形121在校正图像中出现的边的长度,并且该测量可以在当校正图像在屏幕上可用时随时进行。中心正方形的边的实际长度L除以其在屏幕上的测量长度会得到一个倍增因子,该倍增因子表示实际大小与校正图像中显示的大小的比例。

  然后,将倍增因子用于基于屏幕上的测量长度来计算管道端部201的横截面的最长和最短轴A和B的实际长度(即,通过相乘)。

  该应用程序最后将根据最长轴A和最短轴B的长度(例如,使用公式[2(A-B)]/(A+B),其中(A-B)和(A+B)分别是最长轴A和最短轴B的差与和)来计算管道200横截面的椭圆度(步骤H)。除了另一个公式(A-B),还有一个公式是(B/A),它是最短轴B与最长轴A的比值。

  由于测量和计算由应用程序执行,因此可以避免人为错误。使用智能手机,该应用程序还允许技术人员将测量和/或椭圆度数据实时上传到服务器。

  仅通过示例的方式给出了本发明,并且本领域技术人员可以对所描述的实施例进行各种修改和/或变更,而不背离所附权利要求书中所指定的本发明的范围。

《测定管状物体横截面的椭圆度的方法及其使用的参考设备.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)