欢迎光临小豌豆知识网!
当前位置:首页 > 物理技术 > 测量测试> 一种污染源定位方法、装置、计算机设备及存储介质独创技术28777字

一种污染源定位方法、装置、计算机设备及存储介质

2021-03-12 08:03:58

一种污染源定位方法、装置、计算机设备及存储介质

  技术领域

  本发明涉及污染源定位技术领域,具体涉及一种污染源定位方法、装置、计算机设备及存储介质。

  背景技术

  随着中国经济的飞速发展,各行业的工业化程度也越来越深,尤其涉及化工类生产的行业,其环境污染问题尤为明显。在生产过程中,当工业气体发生泄漏时,安装在现场的传感器会实时采集现场的气体浓度和气象数据等,以确定污染源的位置。目前对污染源进行定位的算法大致可以划分为两种:一、根据污染物实测浓度梯度,进行迂回搜索,依据正向浓度概率密度与逆向位置概率密度的耦合关系,确定污染源的位置;二、基于大量模拟计算模拟所有可能出现的污染物泄露场景,并存储在数据库中,当发生污染物泄露时,可以直接进行匹配查找,确定污染源位置。上述第一种算法需要特定设备(如机器人、无人机或机器鱼等),而特定的设备并不适应所有的应用场景,在一些环境复杂的应用场景中,特定设备的搜索路线会遇到重重阻碍,影响污染源定位的准确性;第二种算法无法穷举所有污染物泄露的情况,在一些没有模拟计算的污染物泄露的场景下,无法完成对污染源定位的需求。

  发明内容

  本发明所要解决的技术问题是现有确定污染源的算法受到环境因素影响较大,无法在所有污染物泄露的场景下对污染源进行准确定位。因此,提供一种污染源定位方法及装置、计算机设备及存储介质,通过最低损失迭代算法和差分进化算法得到源强最优解,并根据源强最优解计算污染源的位置信息,从而实现对污染源的准确定位。

  本发明通过下述技术方案实现:

  一种污染源定位方法,包括:

  实时获取布置在各传感器节点上的传感器发送的位置坐标和污染物实测浓度,并将所述位置坐标转换为传感器的标准坐标;

  获取P个初始个体,每一所述初始个体包括随机生成的M个污染源的标准坐标和初始源强;其中,P和M为正整数;

  基于所述传感器的标准坐标和所述污染物实测浓度,采用最低损失迭代算法对每一所述初始个体中的初始源强进行迭代处理,得到目标个体,基于所有目标个体生成初始种群;

  基于所述传感器的标准坐标和所述污染物实测浓度,通过差分进化算法对所述初始种群进行优化处理,将损失值最低的目标个体的源强作为源强最优解;

  将所述源强最优解中污染源的标准坐标作为有效坐标;

  将所述有效坐标转换为地理位置坐标,得到污染源地理位置信息。

  进一步地,所述基于所述传感器的标准坐标和所述污染物实测浓度,采用最低损失迭代算法对每一所述初始个体中的初始源强进行迭代处理,得到目标个体,包括:

  基于所述传感器的标准坐标和所述污染物实测浓度,通过最低损失迭代算法对所述初始个体进行迭代处理,当所述最低损失迭代算法进行至m次迭代时,则通过次迭代处理后的最低损失对应的源强对损失函数求解,选择使得损失函数值降低最多的解作为每个污染源的n次迭代最优解;其中,,n指迭代总次数;

  其中,所述最低损失迭代算法具体为:采用损失函数对所述初始个体中的每一污染源在次迭代处理所得到的源强以及所述污染源的污染物理论浓度进行计算,获取每一所述污染源在m次迭代的最优解,当时,则得到n次迭代最优解;

  将M个污染源的标准坐标和源强的的n次迭代最优解作为一个目标个体。

  进一步地,所述基于所述传感器的标准坐标和所述污染物实测浓度,通过差分进化算法对所述初始种群进行优化处理,将损失值最低的目标个体的源强作为源强最优解,包括:

  对所述初始种群中的每个目标个体进行突变和交叉处理,得到一组P个新目标个体;

  基于所述传感器的标准坐标和所述污染物实测浓度,采用损失函数对所述新目标个体进行计算,得到损失值,对每一个新目标个体,对比新目标个体和原目标个体的损失值,并保留损失值较小的目标个体在种群内做下一步迭代;

  当新的种群中所有所述目标个体损失值均小于设定阈值时,则从中选择损失值最小的目标个体的源强作为源强最优解。

  进一步地,所述损失函数具体为,其中,Re指损失值,指传感器的个数,指污染源的个数,指第个传感器节点的污染物理论浓度与第个污染源源强之间的比例系数,指对所有污染源提供的污染物理论浓度的求和,其中,污染物理论浓度指根据传感器所处位置的标准坐标和污染源当前迭代的源强计算出的浓度,指第个传感器节点上的传感器测量的污染物实测浓度,指第个污染源当前迭代的源强。

  进一步地,所述污染源定位方法还包括:

  获取布置在各传感器节点上的传感器发送的气象监测数据和污染物监测浓度;

  通过Pasquill分级方法对所述气象监测数据进行判断,确定大气稳定度级别,基于所述大气稳定度级别获取扩散参数;

  基于所述传感器的标准坐标和所述扩散度参数构建扩散模型,获取所述传感器节点的污染物理论浓度;

  基于所述污染物监测浓度和所述污染物理论浓度构建损失函数。

  进一步地,所述通过Pasquill分级方法对所述气象监测数据进行判断,确定大气稳定度级别,包括:

  通过P-G扩散曲线法对所述气象监测数据进行分析,获取扩散参数;

  通过Pasquill分级方法对所述扩散参数进行进行判断,确定大气稳定度级别。

  进一步地,所述实时获取布置在各传感器节点上的传感器发送的位置坐标,并将所述位置坐标转换为传感器的标准坐标,包括:

  获取布置在各传感器节点上的传感器发送的位置坐标和气象监测数据,并从所述气象监测数据中获取稳态风向角;

  基于所述稳态风向角和所述位置坐标构建旋转坐标系,获取各传感器节点上布置的传感器的标准坐标。

  一种污染源定位装置,包括:

  位置坐标转换模块,用于实时获取布置在各传感器节点上的传感器发送的位置坐标和污染物实测浓度,并将所述位置坐标转换为传感器的标准坐标;

  初始个体生成模块,用于获取P个初始个体,每一所述初始个体包括随机生成的M个污染源的标准坐标和初始源强;其中,P和M为正整数;

  初始种群生成模块,用于基于所述传感器的标准坐标和所述污染物实测浓度,采用最低损失迭代算法对每一所述初始个体中的初始源强进行迭代处理,得到目标个体,基于所有目标个体生成初始种群;

  优化处理模块,用于基于所述传感器的标准坐标和所述污染物实测浓度,通过差分进化算法对所述初始种群进行优化处理,将损失值最低的目标个体的源强作为源强最优解;

  有效坐标获取模块,用于将所述源强最优解中污染源的标准坐标作为有效坐标;

  有效坐标转换模块,用于将所述有效坐标转换为地理位置坐标,得到污染源地理位置信息。

  一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述污染源定位方法。

  一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述污染源定位方法。

  本发明提供的污染源定位方法、装置、计算机设备及存储介质,通过获取P个初始个体,每一初始个体包括随机生成的M个污染源的标准坐标和初始源强,然后根据传感器的标准坐标和污染物实测浓度,采用最低损失迭代算法对每一初始个体中的初始源强进行迭代处理,得到目标个体,基于所有目标个体生成初始种群污染源,最后通过差分进化算法对初始种群进行优化处理得到源强最优解,并将源强最优解中污染源的标准坐标作为污染源的有效坐标,将有效坐标转换为地理位置坐标,从而实现对污染源的准确定位,该污染源定位方法、装置、计算机设备及存储介质不受环境限制,可实现对各种污染物泄露环境下的污染源进行定位。

  附图说明

  此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:

  图1为本发明污染源定位方法的流程图。

  图2为图1中步骤S30的一具体流程图。

  图3为图1中步骤S40的一具体流程图。

  图4为本发明污染源定位方法的另一流程图。

  图5为图4中步骤S72的一具体流程图。

  图6为图1中步骤S11的一具体流程图。

  图7为本发明污染源定装置的结构示意图。

  图8为本发明计算机设备的一示意图。

  具体实施方式

  为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。

  实施例1

  本发明提供一种污染源定位方法,该方法可应用于不同计算机设备中,该计算机设备包括但不限于各种个人计算机、笔记本电脑、智能手机和平板电脑。

  如图1所示,本发明提供一种污染源定位方法,包括如下步骤:

  S10:实时获取布置在各传感器节点上的传感器发送的位置坐标和污染物实测浓度,并将位置坐标转换为传感器的标准坐标。

  其中,传感器发送的位置坐标为经纬度坐标(WGS-84坐标),为方便后续计算,本实施例在获取经纬度坐标后,需将纬度坐标转换为二维坐标,即传感器的标准坐标(北京54坐标)。

  为方便区分,本实施例将传感器发送的位置坐标记为,标准坐标记为

  S20:获取P个初始个体,每一初始个体包括随机生成的M个污染源的标准坐标和初始源强。其中,P和M为正整数。

  其中,初始源强指预先设置的在迭代开始之前的源强。本实施例将每一污染源的初始源强设为0。

  具体地,在得到每一污染源的标准坐标后,根据设置的每一污染源的初始源强,将每一污染源的标准坐标和初始源强作为一个个体,P个初始个体可表示为

  

  S30:基于传感器的标准坐标和污染物实测浓度,采用最低损失迭代算法对每一初始个体中的初始源强进行迭代处理,得到目标个体,基于所有目标个体生成初始种群。

  其中,目标个体指经过最低损失迭代算法对初始源强进行处理迭代处理后形成的个体。在得到目标个体后,将所有目标个体作为一个初始种群。

  S40:基于传感器的标准坐标和污染物实测浓度,通过差分进化算法对初始种群进行优化处理,将损失值最低的目标个体的源强作为源强最优解。

  具体地,在得到传感器的标准坐标和污染物实测浓度后,通过差分进化算法对初始种群突变,交叉,选择等优化处理之后,将最后一轮的最优解作为污染源在当前时刻的源强最优解。

  S50:将源强最优解中污染源的标准坐标作为有效坐标。

  其中,有效坐标指基于源强最优解中污染源的标准坐标。

  S60:将有效坐标转换为地理位置坐标,得到污染源地理位置信息。

  具体地,在得到有效坐标后,将有效坐标(即二维坐标)转换为位置坐标(即经纬度坐标),作为污染源的地理位置信息。

  进一步地,如图2所示,步骤S30中,基于传感器的标准坐标和污染物实测浓度,采用最低损失迭代算法对每一初始个体中的初始源强进行迭代处理,得到目标个体,具体包括如下步骤:

  S31:基于传感器的标准坐标和污染物实测浓度,通过最低损失迭代算法对初始个体进行迭代处理,当最低损失迭代算法进行至m次迭代时,则通过次迭代处理后的最低损失对应的源强对损失函数求解,选择使得损失函数值降低最多的解作为每个污染源的m次迭代最优解。其中,,n指迭代总次数。

  其中,最低损失迭代算法具体为:

  采用损失函数对第一种群中的每一污染源在次迭代处理所得到的源强以及污染源的污染物理论浓度进行计算,获取每一污染源在m次迭代最优解,当时,则得到n次迭代最优解。

  本实施例中的污染物理论浓度指通过扩散模型计算得到的污染物实测浓度。

  S32:将M个污染源的标准坐标和源强的n次迭代最优解作为一个目标个体。

  进一步地,如图3所示,步骤S40中,基于传感器的标准坐标和污染物实测浓度,通过差分进化算法对初始种群进行优化处理,将损失值最低的目标个体的源强作为源强最优解,具体包括如下步骤:

  S41:对初始种群中的每个目标个体进行突变和交叉处理,得到一组P个新目标个体。

  S42:基于传感器的标准坐标和污染物实测浓度,采用损失函数对新目标个体进行计算,得到损失值,对每一个新目标个体,对比新目标个体和原目标个体的损失值,并保留损失值较小的目标个体在种群内做下一步迭代。

  S43:当新的种群中所有目标个体损失值均小于设定阈值时,则从中选择损失值最小的目标个体的源强作为源强最优解。

  进一步地,当较小损失值中存在不小于设定阈值的值时,则继续通过步骤S41-步骤S43对初始种群进行优化处理,直至所有较小损失值均小于设定阈值停止优化处理,并从较小损失值中选择损失值最小的目标个体的源强作为源强最优解。

  进一步地,本实施例中的损失函数具体为,其中,Re指损失值,指传感器的个数,指污染源的个数,指第个传感器节点的污染物理论浓度与第个污染源源强之间的比例系数,指对所有污染源提供的污染物理论浓度的求和,其中,污染物理论浓度指根据传感器所处位置的标准坐标和污染源当前迭代的源强计算出的浓度,指第个传感器节点上的传感器测量的污染物实测浓度,指第个污染源当前迭代的源强。

  具体地,当污染源位置和传感器位置确定之后,根据扩散模型,传感器所在污染源的污染物实测浓度和污染源的源强比例是一个常数也就是比例系数。本实施例中的可通过步骤S33中的扩散模型计算得到。

  进一步地,如图4所示,污染源定位方法还包括:

  S71:获取布置在各传感器节点上的传感器发送的气象监测数据和污染物监测浓度。

  其中,气象监测数据指布置在各传感器节点上的传感器监测到的数据,该气象监测数据包括但不限于气温、气压、风向和温湿度。

  S72:通过Pasquill分级方法对气象监测数据进行判断,确定大气稳定度级别,基于大气稳定度级别获取扩散参数。

  具体地,根据Pasquill对气象监测数据进行判断,查取大气稳定度,然后根据大气稳定度级别获取扩散参数。

  S73:基于传感器的标准坐标和扩散度参数构建扩散模型,获取传感器节点的污染物理论浓度。

  具体地,本实施例中的扩散模型具体为基于传感器的标准坐标和扩散度参数构建的高斯模型。该扩散模型具体为,其中,指坐标为的传感器节点的污染物理论浓度与位于原点(0,0,0)的污染源发出的污染物浓度之间的比例系数,指平均风速,指y方向的扩散参数,指z方向的扩散参数,指传感器节点的标准横坐标,指传感器节点的标准纵坐标(垂直于x轴的水平方向的坐标轴),指传感器节点的标准高度坐标。

  S74:基于污染物监测浓度和污染物理论浓度构建损失函数。

  进一步地,如图5所示,步骤S72,通过Pasquill分级方法对气象监测数据进行判断,确定大气稳定度级别,具体包括如下步骤:

  S721:通过P-G扩散曲线法对气象监测数据进行分析,获取扩散参数。

  S722:通过Pasquill分级方法对扩散参数进行进行判断,确定大气稳定度级别。

  进一步地,如图6所示,步骤S10,实时获取布置在各传感器节点上的传感器发送的位置坐标,并将位置坐标转换为传感器的标准坐标,具体包括如下步骤:

  S11:获取布置在各传感器节点上的传感器发送的位置坐标和气象监测数据,并从气象监测数据中获取稳态风向角。

  S12:基于稳态风向角和位置坐标构建旋转坐标系,获取各传感器节点上布置的传感器的标准坐标。

  具体地,基于稳态风向角和位置坐标构建的旋转坐标系为:

  

  其中,指稳态风向角,指传感器发送的位置坐标,指位置坐标经旋转坐标系转换处理后得到的传感器的标准坐标。

  本发明提供的污染源定位方法,通过获取P个初始个体,每一初始个体包括随机生成的M个污染源的标准坐标和初始源强,然后根据传感器的标准坐标和污染物实测浓度,采用最低损失迭代算法对每一初始个体中的初始源强进行迭代处理,得到目标个体,基于所有目标个体生成初始种群污染源,最后通过差分进化算法对初始种群进行优化处理得到源强最优解,并将源强最优解中污染源的标准坐标作为污染源的有效坐标,将有效坐标转换为地理位置坐标,从而实现对污染源的准确定位,该污染源定位方法、装置、计算机设备及存储介质不受环境限制,可实现对各种污染物泄露环境下的污染源进行定位,该污染源定位方法、装置、计算机设备及存储介质不受环境限制,可实现对各种污染物泄露环境下的污染源进行定位。

  实施例2

  如图7所示,本实施例与实施例1的区别在于,一种污染源定位装置,包括:

  位置坐标转换模块10,用于实时获取布置在各传感器节点上的传感器发送的位置坐标和污染物实测浓度,并将位置坐标转换为传感器的标准坐标。

  初始个体生成模块20,用于获取P个初始个体,每一初始个体包括随机生成的M个污染源的标准坐标和初始源强。其中,P和M为正整数。

  初始种群生成模块30,用于基于传感器的标准坐标和污染物实测浓度,采用最低损失迭代算法对每一初始个体中的初始源强进行迭代处理,得到目标个体,基于所有目标个体生成初始种群。

  优化处理模块40,用于基于传感器的标准坐标和污染物实测浓度,通过差分进化算法对初始种群进行优化处理,将损失值最低的目标个体的源强作为源强最优解。

  有效坐标获取模块50,用于将源强最优解中污染源的标准坐标作为有效坐标。

  有效坐标转换模块60,用于将有效坐标转换为地理位置坐标,得到污染源地理位置信息。

  进一步地,初始种群生成模块30包括迭代处理单元和目标个体生成单元。

  迭代处理单元,用于基于传感器的标准坐标和污染物实测浓度,通过最低损失迭代算法对初始个体进行迭代处理,当最低损失迭代算法进行至次迭代时,则通过次迭代处理后的最低损失对应的源强对损失函数求解,选择使得损失函数值降低最多的解作为每个污染源的n次迭代最优解。其中,,n指迭代总次数。

  其中,最低损失迭代算法具体为:采用损失函数对第一种群中的每一污染源在次迭代处理所得到的源强以及污染源的污染物理论浓度进行计算,获取每一污染源在m次迭代最优解,当时,则得到n次迭代最优解。

  目标个体生成单元,用于将M个污染源的标准坐标和源强的n次迭代最优解作为一个目标个体。

  进一笔地,优化处理模块40包括突变和交叉处理单元、选择单元和源强最优解计算单元。

  突变和交叉处理单元,用于对初始种群中的每个目标个体进行突变和交叉处理,得到一组P个新目标个体。

  选择单元,用于基于传感器的标准坐标和污染物实测浓度,采用损失函数对新目标个体进行计算,得到损失值,对每一个新目标个体,对比新目标个体和原目标个体的损失值,并保留损失值较小的目标个体在种群内做下一步迭代。

  源强最优解计算单元,用于当新的种群中所有目标个体损失值均小于设定阈值时,则从中选择损失值最小的目标个体的源强作为源强最优解。

  进一步地,损失函数具体为,其中,Re指损失值,指传感器的个数,指污染源的个数,指第个传感器节点的污染物理论浓度与第个污染源源强之间的比例系数,指对所有污染源提供的污染物理论浓度的求和,其中,污染物理论浓度指根据传感器所处位置的标准坐标和污染源当前迭代的源强计算出的浓度,指第个传感器节点上的传感器测量的污染物实测浓度,指第个污染源当前迭代的源强。

  进一步地,污染源定位装置还包括传感器数据测量模块、大气稳定度级别处理模块、污染物理论浓度获取模块和损失函数构建模块。

  传感器数据测量模块,用于获取布置在各传感器节点上的传感器发送的气象监测数据和污染物监测浓度。

  大气稳定度级别处理模块,用于通过Pasquill分级方法对气象监测数据进行判断,确定大气稳定度级别,基于大气稳定度级别获取扩散参数。

  污染物理论浓度获取模块,用于基于传感器的标准坐标和扩散度参数构建扩散模型,获取传感器节点的污染物理论浓度。

  损失函数构建模块,用于基于污染物监测浓度和污染物理论浓度构建损失函数。

  进一步地,大气稳定度级别处理模块包括扩散参数获取单元和大气稳定度级别计算单元。

  扩散参数获取单元,用于通过P-G扩散曲线法对气象监测数据进行分析,获取扩散参数。

  大气稳定度级别计算单元,用于通过Pasquill分级方法对扩散参数进行进行判断,确定大气稳定度级别。

  进一步地,位置坐标转换模块10包括稳态风向角获取单元和标准坐标获取单元。

  稳态风向角获取单元,用于获取布置在各传感器节点上的传感器发送的位置坐标和气象监测数据,并从气象监测数据中获取稳态风向角。

  标准坐标获取单元,用于基于稳态风向角和位置坐标构建旋转坐标系,获取各传感器节点上布置的传感器的标准坐标。

  关于污染源定位的具体限定可以参见上文中对于污染源定位方法的限定,在此不再赘述。上述污染源定位中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。

  实施例3

  本实施例提供一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括计算机可读存储介质、内存储器。该计算机可读存储介质存储有操作系统、计算机程序和数据库。该内存储器为计算机可读存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储污染源定位方法中涉及到的数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种污染源定位方法。

  本实施例提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述实施例中污染源定位方法的步骤,例如图1所示的步骤S10至步骤S60,或者,图2-图6所示的步骤,为避免重复,这里不再赘述。或者,处理器执行计算机程序时实现上述实施例中污染源定位装置的各模块/单元的功能,例如图7所示模块10至模块60的功能。为避免重复,这里不再赘述。

  实施例4

  本实施例,提供一计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中污染源定位方法的步骤,例如图1所示的步骤S10-S60,或者,图2-图6所示的步骤,为避免重复,这里不再赘述。或者,处理器执行计算机程序时实现污染源定位装置这一实施例中的各模块/单元的功能,例如图7所示的模块10至模块60的功能。为避免重复,这里不再赘述。

  本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。

  所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。

  以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

《一种污染源定位方法、装置、计算机设备及存储介质.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)