欢迎光临小豌豆知识网!
当前位置:首页 > 生活技术 > 家具物品> 用于基于器械的插入架构的系统和方法独创技术91627字

用于基于器械的插入架构的系统和方法

2021-03-06 16:12:14

用于基于器械的插入架构的系统和方法

  相关申请的交叉引用

  本申请要求于2017年12月11日提交的美国临时专利申请号62/597,385的权益,该专利申请据此全文以引用方式并入。

  技术领域

  本文所公开的系统和方法涉及医疗器械,并且更具体地涉及在各种类型的外科手术使用的外科工具。

  背景技术

  本说明书一般涉及医疗器械,并且具体地涉及在各种类型的手术(包括腹腔镜式外科手术、内窥镜式外科手术、腔内外科手术和开放式外科手术)中使用的外科工具。

  机器人技术具有一系列应用。具体地,机器人臂帮助完成人类通常将执行的任务。例如,工厂使用机器人臂来制造汽车和消费电子产品。另外,科学设施使用机器人臂来使实验室程序诸如运输微板自动化。在医学领域中,医生已经开始使用机器人臂来帮助执行外科手术。

  在外科机器人系统中,机器人臂例如在机器人臂的端部处连接到器械装置操纵器,并且能够将器械装置操纵器移动到限定的工作空间内的任何位置中。器械装置操纵器能够可拆卸地耦接到外科工具,诸如用于内窥镜应用的可转向导管或者多种腹腔镜式器械和腔内器械中的任一种。器械装置操纵器传递来自机器人臂的运动以控制外科工具的位置,并且器械装置操纵器还可启动器械上的控件诸如拉线以使导管转向。另外,器械装置操纵器可电耦接和/或光耦接到器械以提供功率、光或控制信号,并且可从器械接收数据,诸如来自器械上的相机的视频流。

  在使用期间,外科工具连接到器械装置操纵器,使得器械远离患者。机器人臂接着将器械装置操纵器和连接其的器械朝向患者体内的外科手术部位推进。在腹腔镜式手术中,将器械移动通过患者的体壁中的端口。机器人臂能够以多个自由度(包括俯仰、横摆和插入)操纵器械。通常,机器人臂提供所有这些自由度。

  相对于插入,机器人臂通常具有线性插入轴线以提供插入自由度。当机器人臂负责器械的线性插入时,可能出现困难。具体地,机器人臂的质量(单独或与器械组合)可导致重的摆动质量并且降低在浅插入深度下的性能。此外,依赖于机器人臂进行插入减小了在机器人外科手术期间可供外科医生或助手使用的工作空间。因此,当线性地插入器械时,需要降低对机器人臂的依赖。

  发明内容

  本申请的实施方案涉及降低在线性地插入器械时对机器人臂的依赖的系统、装置和方法。具体地,本文所述的系统、装置和方法涉及具有基于器械的线性插入架构的器械。例如,可提供一个或多个器械,其中器械的轴能够沿插入轴线平移,从而降低线性插入对机器人臂的依赖。虽然在一些实施方案中,机器人臂仍然可与器械本身一起用于线性插入,但是在其它实施方案中,消除了这种运动,从而降低机器人的总体型面并且使外科机器人臂的端部处的摆动质量最小化。

  在一些实施方案中,一种医疗装置包括轴、连接到所述轴的端部执行器以及耦接到所述轴的柄部。所述柄部包括第一机械输入端和第二机械输入端。所述第一机械输入端被配置为引起所述端部执行器的致动,而所述第二机械输入端被配置为引起所述轴相对于所述柄部的平移。所述端部执行器的所述致动经由第一致动机构来执行,所述第一致动机构与引起所述轴相对于所述柄部的所述平移的第二致动机构脱离。所述第一致动机构可包括延伸穿过第一组滑轮的第一缆线,其中经由所述第一机械输入端对所述第一组滑轮中的至少一个滑轮的操纵引起所述柄部内的所述第一缆线的长度变化,从而引起所述端部执行器的致动。所述第二致动机构可包括接合卷轴的第二缆线,其中经由所述第二机械输入端对所述第二组滑轮的卷轴的操纵引起所述轴相对于所述柄部平移。所述卷轴可以是绞盘,诸如零游走绞盘。引起所述端部执行器的致动的所述柄部内的所述第一缆线的所述长度变化不受使所述轴相对于所述柄部平移的所述第二致动机构影响。在一些情况下,所述第一致动机构的所述缆线从所述轴的所述近侧部分延伸穿过所述第一组滑轮并到达所述轴的所述远侧部分。在其它情况下,所述第一致动机构包括延伸穿过第一组滑轮的一根或多根缆线,并且所述第二致动机构包括一根或多根缆线和一个插入卷轴,其中所述第一致动机构的至少一根或多根缆线端接在所述插入卷轴上。

  在一些实施方案中,一种医疗系统包括基部、耦接到所述基部的工具架以及器械。机器人臂可定位在所述基部和所述工具架之间。所述工具架包括附接接口。所述器械包括轴、端部执行器和柄部,所述柄部具有用于附接到所述工具架的往复接口。所述柄部还包括第一机械输入端和第二机械输入端。所述第一机械输入端被配置为引起所述端部执行器的致动,而所述第二机械输入端被配置为引起所述轴相对于所述柄部的平移。所述端部执行器的所述致动经由第一致动机构来执行,所述第一致动机构与引起所述轴相对于所述柄部的所述平移的第二致动机构脱离。在一些情况下,所述第一致动机构包括延伸穿过第一组滑轮的第一缆线,其中经由所述第一机械输入端对所述第一组滑轮中的至少一个滑轮的操纵引起所述柄部内的所述第一缆线的长度变化,从而引起所述端部执行器的致动,并且其中所述轴相对于所述柄部的所述平移经由所述第二致动机构来执行,所述第二致动机构包括接合卷轴的第二缆线,其中经由所述第二机械输入端对所述卷轴的操纵引起所述轴相对于所述柄部平移。

  在一些实施方案中,一种外科方法包括:提供被配置用于通过患者的切口或自然孔口递送的器械以在外科部位处执行外科手术。所述器械包括轴、耦接到所述轴的柄部以及从所述轴延伸的端部执行器。所述轴能够相对于所述柄部平移。所述端部执行器的所述致动经由第一致动机构来执行,所述第一致动机构与引起所述轴相对于所述柄部的所述平移的第二致动机构脱离。在一些情况下,所述器械包括用于致动所述端部执行器的第一致动机构和用于使所述轴相对于所述柄部平移的第二致动机构,其中所述第一致动机构包括第一组滑轮和第一缆线,并且所述第二致动机构包括卷轴和第二缆线。

  在一些实施方案中,一种外科方法包括:通过患者的切口或自然孔口递送器械以在外科部位处执行外科手术。所述器械包括轴、耦接到所述轴的柄部以及从所述轴延伸的端部执行器。所述轴能够相对于所述柄部平移。所述端部执行器的所述致动经由第一致动机构来执行,所述第一致动机构与引起所述轴相对于所述柄部的所述平移的第二致动机构脱离。在一些情况下,所述器械包括用于致动所述端部执行器的第一致动机构和用于使所述轴相对于所述柄部平移的第二致动机构,其中所述第一致动机构包括第一组滑轮和第一缆线,并且所述第二致动机构包括卷轴和第二缆线。

  附图说明

  图1A示出了根据一个实施方案的外科机器人系统。

  图1B示出了根据另选实施方案的外科机器人系统。

  图2示出了根据一个实施方案的用于外科机器人系统的命令控制台。

  图3示出了根据一个实施方案的用于外科机器人系统的器械装置操纵器的透视图。

  图4示出了根据一个实施方案的图3的器械装置操纵器的侧视图。

  图5示出了根据一个实施方案的固定到图3的器械装置操纵器的示例性外科工具的前分解透视图。

  图6示出了根据一个实施方案的固定到图3的器械装置操纵器的示例性外科工具的后分解透视图。

  图7示出了根据一个实施方案的用于外科工具与外科工具架的接合和脱离接合的致动机构的放大透视图。

  图8A和图8B示出了根据一个实施方案的使外科工具与无菌适配器接合和脱离接合的过程。

  图9A和图9B示出了根据另外的实施方案的使外科工具与无菌适配器接合和脱离接合的过程。

  图10A示出了根据一个实施方案的用于使外科工具架在器械装置操纵器内滚动的机构的透视图。

  图10B示出了根据一个实施方案的器械装置操纵器的剖视图。

  图10C和10D示出了根据一个实施方案的器械装置操纵器的内部部件及其某些电子部件的局部分解透视图。

  图10E示出了根据一个实施方案的器械装置操纵器的用于使外科工具架进行滚动分度的电子部件的放大透视图。

  图11示出了根据一个实施方案的具有基于器械的插入架构的器械的侧视图。

  图12示出了根据一个实施方案的用于致动端部执行器的第一致动机构的示意图。

  图13示出了根据一个实施方案的图11的器械的第一致动机构的放大侧视图。

  图14示出了根据一个实施方案的图11的器械的第一致动机构的放大透视图。

  图15示出了根据一个实施方案的图11的器械的滑轮和缆线在致动滑轮之前的视图。

  图16示出了根据一个实施方案的图11的器械的滑轮和缆线在致动滑轮之后的视图。

  图17示出了根据一个实施方案的包括用于轴平移的卷轴的第二致动机构的侧视图。

  图18示出了根据一个实施方案的使用单根缆线进行轴平移的另选卷轴的透视图。

  图19示出了根据一个实施方案的使用多于一根缆线进行轴平移的另选卷轴的透视图。

  图20示出了根据一个实施方案的包括图18的卷轴的柄部的前视图。

  图21示出了显示根据一个实施方案的用于致动端部执行器和轴平移的另选架构的示意图。

  图22A示出了根据一个实施方案的结合有图21的用于致动端部执行器和轴插入的另选架构的器械的放大前视图。

  图22B示出了根据一个实施方案的结合有图21的用于致动端部执行器和轴插入的另选架构的器械的顶部透视图。

  图23示出了根据一个实施方案的器械的柄部和轴的顶部透视图。

  图24A示出了根据一个实施方案的利用图12所示的插入架构的器械轴的横截面的示意图。

  图24B示出了根据一个实施方案的利用图21所示的插入架构的器械轴的横截面的示意图。

  图25示出了显示根据一个实施方案的用于在血管闭合器中驱动刀的架构的示意图。

  图26示出了显示根据一个实施方案的用于在血管闭合器中驱动刀的另选架构的示意图。

  图27示出了显示根据一个实施方案的用于在血管闭合器中驱动刀的又一个另选架构的示意图。

  图28示出了显示根据一个实施方案的用于使得刚性相机成为插入器械的架构的示意图。

  图29示出了根据一个实施方案的允许相机与插入柄部分离的第一插入架构。

  图30和图31示出了根据一个实施方案的允许相机与插入柄部分离的第二插入架构。

  图32示出了显示根据另一个实施方案的用于轴平移的另选架构的图。

  图33示出了具有多个密封件以防止来自患者的空气泄漏的器械的侧剖视图。

  图34示出了具有多个密封件的器械的前剖视图。

  附图仅出于说明目的描绘了本发明的实施方案。本领域的技术人员将从以下论述容易地认识到可在不脱离本文所述的本发明的原理的情况下采用本文所示的结构和方法的另选实施方案。

  具体实施方式

  I.外科机器人系统

  图1A示出了外科机器人系统100的实施方案。外科机器人系统100包括基部101,该基部101耦接到一个或多个机器人臂,例如机器人臂102。基部101通信地耦接到本文参考图2进一步描述的命令控制台。基部101可被定位成使得机器人臂102能够进入以对患者执行外科手术,而用户诸如医师可根据命令控制台的舒适度来控制外科机器人系统100。在一些实施方案中,基部101可耦接到外科手术台或床以用于支撑患者。例如,在一些实施方案中,耦接到机器人臂102的基部101可经由沿床延伸的一个或多个导轨耦接到床(如图1B所示)。尽管为了清楚起见在图1A中未示出,但在一些实施方案中,基部101可包括子系统,诸如控制电子器件、气动装置、电源、光源等。机器人臂102包括在接头111处耦接的多个臂段110,这为机器人臂102提供多个自由度,例如,对应于七个臂段的七个自由度。基部101可包含电源112、气动压力装置113以及控制和传感器电子器件114—包括诸如中央处理单元、数据总线、控制电路和存储器的部件—以及诸如马达的相关致动器以使机器人臂102移动。基部101中的电子器件114还可处理和传输从命令控制台传达的控制信号。

  在一些实施方案中,基部101包括轮子115以运输外科机器人系统100。外科机器人系统100的移动性帮助适应外科手术室中的空间约束并且有利于外科设备的适当定位和移动。此外,移动性允许将机器人臂102配置为使得机器人臂102不妨碍患者、医师、麻醉师或任何其它设备。在程序期间,用户可使用控制装置诸如命令控制台来控制机器人臂102。

  在一些实施方案中,机器人臂102包括使用制动器和反向平衡装置的组合来保持机器人臂102的位置的装配接头。反向平衡装置可包括气弹簧或螺旋弹簧。制动器(例如故障保险制动器)可包括机械部件和/或电子部件。此外,机器人臂102可以是重力辅助被动支撑型机器人臂。

  每个机器人臂102可使用机构变换接口(MCI)116耦接到器械装置操纵器(IDM)117。IDM 117可用作工具架。在一些实施方案中,可移除IDM 117并且替换成不同类型的IDM,例如,可将操纵内窥镜的第一类型的IDM替换成操纵腹腔镜的第二类型的IDM。MCI 116包括用于将气动压力、电功率、电信号和光信号从机器人臂102传送到IDM 117的连接器。MCI 116可以是定位螺钉或基板连接器。IDM 117使用包括直接驱动、谐波驱动、齿轮驱动、皮带和滑轮、磁驱动等的技术来操纵外科工具诸如器械118。MCI 116可基于IDM 117的类型互换,并且可针对某一类型的外科手术进行定制。机器人臂102可包括接头水平扭矩感测和在远侧端部处的腕部。

  工具或器械118可包括能够在患者的外科部位处执行手术的腹腔镜式器械、内窥镜式器械和/或腔内器械。在一些实施方案中,器械118包括能够插入患者的切口中的腹腔镜式器械。腹腔镜式器械可包括刚性轴、半刚性轴或柔性轴。当设计用于腹腔镜手术时,轴的远侧端部可连接到端部执行器,该端部执行器可包括例如腕部、抓紧器、剪刀或其它外科工具。在一些实施方案中,器械118包括内窥镜式外科工具,该内窥镜式外科工具插入患者的解剖结构中以捕获解剖结构(例如,身体组织)的图像。在一些实施方案中,内窥镜式器械包括管状且柔性的轴。内窥镜包括捕获图像的一个或多个成像装置(例如,相机或传感器)。成像装置可包括一个或多个光学部件,诸如光纤、纤维阵列或透镜。光学部件与器械118的尖端一起移动,使得器械118的尖端的移动导致由成像装置捕获的图像的变化。在一些实施方案中,器械118包括能够穿过患者的自然孔口插入的腔内器械,诸如支气管镜或尿道镜。腔内器械可包括管状且柔性的轴。当设计用于腔内外科手术时,轴的远侧端部可连接到端部执行器,该端部执行器可包括例如腕部、抓紧器、剪刀或其它外科工具。

  在一些实施方案中,外科机器人系统100的机器人臂102使用细长移动构件来操纵器械118。细长移动构件可包括拉线(也称为推拉线)、缆线、纤维或柔性轴。例如,机器人臂102致动耦接到器械118的多根拉线以使器械118的尖端偏转。拉线可包括金属材料和非金属材料两者,诸如不锈钢、Kevlar、钨、碳纤维等。在一些实施方案中,器械118可响应于由细长移动构件施加的力而表现出非线性行为。非线性行为可基于器械118的刚度和可压缩性,以及不同细长移动构件之间的松弛度或刚度的可变性。

  外科机器人系统100包括控制器120,例如计算机处理器。控制器120包括校准模块125、图像配准模块130和校准存储装置135。校准模块125可使用具有分段线性响应的模型连同诸如斜率、滞后和盲区值的参数来表征非线性行为。外科机器人系统100可通过确定参数的准确值来更准确地控制内窥镜118。在一些实施方案中,控制器120的一些或所有功能在外科机器人系统100外部执行,例如,在通信地耦接到外科机器人系统100的另一个计算机系统或服务器上执行。

  图1B示出了根据另选实施方案的外科机器人系统。类似于图1A中的外科机器人系统的实施方案,图1B中的外科机器人系统包括一个或多个机器人臂102,该一个或多个机器人臂102具有IDM 117和附接到其的外科工具或器械118。在本实施方案中,一个或多个机器人臂102附接到一个或多个可调节导轨150,该一个或多个可调节导轨150耦接到呈床形式的患者平台160。在本实施方案中,三个机器人臂102附接到患者平台160的第一侧上的可调节导轨150,而两个机器人臂102附接到患者平台160的第二侧上的可调节导轨150,从而提供具有双侧臂的系统。

  II.命令控制台

  图2示出了根据一个实施方案的用于外科机器人系统100的命令控制台200。命令控制台200包括控制台基部201、显示模块202例如监视器以及控制模块例如键盘203和操纵杆204。在一些实施方案中,命令模块200功能中的一者或多者可集成到外科机器人系统100的基部101或通信地耦接到外科机器人系统100的另一个系统中。用户205例如医师使用命令控制台200从人体工程学位置远程控制外科机器人系统100。

  控制台基部201可包括中央处理单元、存储器单元、数据总线和相关联的数据通信端口,它们负责解释和处理信号诸如相机影像并且跟踪例如来自图1A所示的器械118的传感器数据。在一些实施方案中,控制台基部201和基部101两者都执行信号处理以实现负载平衡。控制台基部201还可处理由用户205通过控制模块203和204提供的命令和指令。除了图2所示的键盘203和操纵杆204之外,控制模块还可包括其它装置,例如计算机鼠标、跟踪垫、轨迹球、控制垫、视频游戏控制器以及捕获手姿势和手指姿势的传感器(例如,运动传感器或相机)。

  用户205可使用命令控制台200在速度模式或位置控制模式中控制外科工具,诸如器械118。在速度模式中,用户205使用控制模块基于直接手动控制来直接控制器械118的远侧端部的俯仰和横摆运动。例如,可将操纵杆204上的移动映射到器械118的远侧端部中的横摆和俯仰移动。操纵杆204可向用户205提供触觉反馈。例如,操纵杆204振动以指示器械118无法在某一方向上进一步平移或旋转。命令控制台200还可提供视觉反馈(例如,弹出消息)和/或听觉反馈(例如,哔哔声)以指示器械118已达到最大平移或旋转。

  在位置控制模式中,命令控制台200使用患者的三维(3D)地图和患者的预先确定的计算机模型来控制外科工具,例如器械118。命令控制台200向外科机器人系统100的机器人臂102提供控制信号以将器械118操纵到目标位置。由于依赖于3D地图,位置控制模式需要患者的解剖结构的准确制图。

  在一些实施方案中,用户205可在不使用命令控制台200的情况下手动操纵外科机器人系统100的机器人臂102。在外科手术室中的装配期间,用户205可移动机器人臂102、器械118和其它外科设备以进入患者体内。外科机器人系统100可依赖来自用户205的力反馈和惯性控制来确定机器人臂102和设备的适当构型。

  显示模块202可包括电子监视器、虚拟现实观看装置例如护目镜或眼镜和/或显示装置的其它装置。在一些实施方案中,显示模块202与控制模块集成,例如集成为具有触摸屏的平板装置。此外,用户205可使用集成的显示模块202和控制模块来观看数据并且将命令输入到外科机器人系统100。

  显示模块202可使用立体装置例如遮阳板或护目镜来显示3D图像。3D图像提供“内视图”(即,内窥镜视图),它是示出患者的解剖结构的计算机3D模型。“内视图”提供患者内部的虚拟环境和器械118在患者体内的预期位置。用户205将“内视图”模型与由相机捕获的实际图像进行比较,以帮助在精神上定向并且确认器械118在患者体内处于正确—或大致正确—的位置。“内视图”提供关于器械118的远侧端部周围的解剖结构的信息,例如患者的小肠或结肠的形状。显示模块202可同时显示器械118的远侧端部周围的解剖结构的3D模型和计算机断层摄影(CT)扫描。此外,显示模块202可将器械118的预先确定的最佳导航路径叠加在3D模型和CT扫描上。

  在一些实施方案中,器械118的模型与3D模型一起显示以帮助指示外科手术的状态。例如,CT扫描识别可能需要进行活检的解剖结构中的病变。在操作期间,显示模块202可示出对应于器械118的当前位置的由器械118捕获的参考图像。显示模块202可根据用户设置和特定外科手术来自动显示器械118的模型的不同视图。例如,显示模块202示出在导航步骤期间在器械118接近患者的操作区域时的器械118的顶部荧光镜视图。

  III.器械装置操纵器

  图3示出了根据一个实施方案的用于外科机器人系统的器械装置操纵器(IDM)300的透视图,并且图4是根据一个实施方案的IDM 300的侧视图。IDM 300被配置为以允许外科工具围绕外科工具的轴线连续旋转或“滚动”的方式将外科工具或器械附接到机器人外科臂。IDM 300包括基部302和耦接到基部的外科工具架组件304。外科工具架组件304用作用于固持器械118的工具架。外科工具架组件304还包括外部壳体306、外科工具架308、附接接口310、通道312和多个扭矩耦接器314。在一些实施方案中,通道312包括从IDM 300的一个面延伸到IDM 300的相背面的通孔。IDM 300可与多种外科工具(图3未示出)一起使用,该多种外科工具可包括柄部和细长主体(例如,轴)并且可用于腹腔镜、内窥镜或其它类型的外科工具的端部执行器。

  基部302将IDM 300可移除地或固定地安装到外科机器人系统的外科机器人臂。在图3的实施方案中,基部302固定地附接到外科工具架组件304的外部壳体306。在另选的实施方案中,基部302可被构造为包括平台,该平台适于将外科工具架308可旋转地接收在与附接接口310相背的面上。平台可包括与通道312对准的通道以接收外科工具的细长主体,以及在一些实施方案中,与第一外科工具同轴安装的第二外科工具的另外的细长主体。

  外科工具架组件304被配置为将外科工具固定到IDM 300并且使外科工具相对于基部302旋转。提供从外科臂到基部302然后到外科工具架组件304的机械连接和电气连接,以使外科工具架308相对于外部壳体306旋转并且将功率和/或信号从外科臂操纵和/或递送到外科工具架308并且最终到外科工具。信号可包括气动压力的信号、电功率的信号、电信号和/或光信号。

  外部壳体306相对于基部302为外科工具架组件304提供支撑。外部壳体306固定地附接到基部302,使得其相对于基部302保持固定,同时允许外科工具架308相对于外部壳体306自由旋转。在图3的实施方案中,外部壳体306在形状上是圆柱形的并且完全外接外科工具架308。外部壳体306可由刚性材料(例如,金属或硬塑料)构成。在另选的实施方案中,壳体的形状可变化。

  外科工具架308经由附接接口310将外科工具固定到IDM 300。外科工具架308能够独立于外部壳体306旋转。外科工具架308围绕旋转轴线316旋转,该旋转轴线316与外科工具的细长主体同轴对准,使得外科工具与外科工具架308一起旋转。

  附接接口310是外科工具架308的附接到外科工具的面。附接接口310包括附接机构的第一部分,该第一部分与附接机构的位于外科工具上的第二部分往复地配合,这将相对于图8A和图8B更详细地讨论。在一些实施方案中,附接接口310包括多个扭矩耦接器314,该多个扭矩耦接器314从附接接口310向外突出并且与外科工具上的相应器械输入端接合。在一些实施方案中,耦接到无菌适配器的外科盖布可用于在IDM 300和外科工具之间形成无菌边界。在这些实施方案中,当外科工具固定到IDM 300时,无菌适配器可定位在附接接口310和外科工具之间,使得外科盖布将外科工具和患者与IDM 300和外科机器人系统分离。

  通道312被配置为当外科工具固定到附接接口310时接收外科工具的细长主体。在图3的实施方案中,通道312与外科工具的细长主体的纵向轴线和外科工具架308的旋转轴线316同轴对准。通道312允许外科工具的细长主体在通道312内自由旋转。这种构型允许外科工具围绕旋转轴线316在任一方向上在极小约束下或无约束地连续旋转或滚动。

  多个扭矩耦接器314被配置为当外科工具固定到外科工具架308时接合并且驱动外科工具的部件。每个扭矩耦接器314插入位于外科工具上的相应器械输入端中。多个扭矩耦接器314还可用于保持外科工具和外科工具架308之间的旋转对准。如图3所示,每个扭矩耦接器314被成形为从附接接口310向外突出的圆柱形突出部。凹口318可沿圆柱形突出部的外表面区域布置。在一些实施方案中,凹口318的布置形成花键接口。外科工具上的器械输入端被配置为具有与扭矩耦接器314互补的几何形状。例如,虽然图3未示出,但是外科工具的器械输入端在形状上可以是圆柱形的并且具有多个脊,该多个脊与每个扭矩耦接器314上的多个凹口318往复地配合并且因此在凹口318上施加扭矩。在另选的实施方案中,圆柱形突出部的顶面可包括多个凹口318,该多个凹口被配置为与相应器械输入端中的多个脊配合。在这种构型中,每个扭矩耦接器314与其相应器械输入端完全接合。

  另外,每个扭矩耦接器314可耦接到允许扭矩耦接器平移的弹簧。在图3的实施方案中,弹簧引起每个扭矩耦接器314被偏置以背离附接接口310向外弹开。弹簧被配置为在轴向方向上产生平移,即,背离附接接口310伸出并且朝向外科工具架308回缩。在一些实施方案中,每个扭矩耦接器314能够部分地回缩到外科工具架308中。在其它实施方案中,每个扭矩耦接器314能够完全回缩到外科工具架308中,使得每个扭矩耦接器的有效高度相对于附接接口310为零。在图3的实施方案中,每个扭矩耦接器314的平移由致动机构致动,这将相对于图7-图8更详细地描述。在各种实施方案中,每个扭矩耦接器314可耦接到单个弹簧、多个弹簧或每个扭矩耦接器的相应弹簧。

  此外,每个扭矩耦接器314由相应致动器驱动,该相应致动器引起扭矩耦接器在任一方向上旋转。因此,一旦与器械输入端接合,每个扭矩耦接器314就能够传输功率以收紧或松开外科工具内的拉线,从而操纵外科工具的端部执行器。在图3的实施方案中,IDM 300包括五个扭矩耦接器314,但在其它实施方案中,数量可根据外科工具的端部执行器的期望数量的自由度变化。在一些实施方案中,耦接到无菌适配器的外科盖布可用于在IDM 300和外科工具之间形成无菌边界。在这些实施方案中,当外科工具固定到IDM 300时,无菌适配器可定位在附接接口310和外科工具之间,并且无菌适配器可被配置为将功率从每个扭矩耦接器314传输到相应器械输入端。

  图3所示的IDM 300的实施方案可以各种构型与外科机器人系统一起使用。期望构型可取决于正对患者执行的外科手术的类型或在外科手术期间使用的外科工具的类型。例如,对于内窥镜式手术与腹腔镜式手术,IDM 300的期望构型可不同。

  在第一构型中,IDM 300能够可移除地或固定地附接到外科臂,使得附接接口310在外科手术期间在患者近侧。在这种构型(下文称为“前安装式构型”)中,外科工具在位于患者近侧的一侧上固定到IDM 300。与前安装式构型一起使用的外科工具被构造成使得外科工具的细长主体从与外科工具的附接接口相背的一侧延伸。当将外科工具从呈前安装式构型的IDM 300移除时,将在患者的近侧方向上移除外科工具。

  在第二构型中,IDM 300能够可移除地或固定地附接到外科臂,使得附接接口310在外科手术期间在患者远侧。在这种构型(下文称为“后安装式构型”)中,外科工具在远离患者的一侧上固定到IDM 300。与后安装式构型一起使用的外科工具被构造成使得外科工具的细长主体从外科工具的附接接口延伸。这种构型增加了患者在从IDM 300移除工具期间的安全性。当将外科工具从呈后安装式构型的IDM 300移除时,将在患者的远侧方向上移除外科工具。

  在第三构型中,IDM 300能够可移除地或固定地附接到外科臂,使得外科工具的至少一部分定位在IDM 300上方,类似于图1A所示的构型。在这种构型(下文称为“顶部”或“贯通”构型)中,外科工具的轴向下延伸穿过IDM 300。

  外科工具的某些构型可被构造成使得外科工具可以前安装式构型或后安装式构型与IDM一起使用。在这些构型中,外科工具在外科工具的两个端部上包括附接接口。对于一些外科手术,医师可根据正在执行的外科手术的类型决定IDM的构型。例如,后安装式构型对于其中腹腔镜式工具相对于其它外科工具可能特别长的腹腔镜式手术可以是有益的。当外科臂在外科手术期间四处移动时,诸如当医师将外科工具的远侧端部引导到患者的远程位置(例如,肺或血管)时,腹腔镜式工具的增加的长度引起外科臂围绕更大的弧摆动。有益地,后安装式构型通过穿过通道312接收细长主体的一部分来减小外科工具的有效工具长度,从而减小外科臂对外科工具进行定位所需的运动弧。

  图5-图6示出了根据一个实施方案的固定到图3的器械装置操纵器300的示例性外科工具500的分解透视图。外科工具500包括壳体502、细长主体504和多个器械输入端600。如前所述,细长主体504可以是腹腔镜、内窥镜或具有端部执行器的其它外科工具。如图所示,多个扭矩耦接器314从附接接口310向外突出以与外科工具的器械输入端600接合。器械输入端600的结构可见于图6中,其中器械输入端600具有与扭矩耦接器314对应的几何形状以确保固定的外科工具接合。

  在外科手术期间,外科盖布可用于保持IDM 300和外部环境(即,手术室)之间的无菌边界。在图5-图6的实施方案中,外科盖布包括无菌适配器506、第一突出部508和第二突出部510。虽然在图5-图6中未示出,但是无菌片材连接到无菌适配器和第二突出部并披盖在IDM 300周围以形成无菌边界。

  无菌适配器506被配置为当固定到IDM 300时在IDM 300和外科工具500之间形成无菌接口。在图5-图6的实施方案中,无菌适配器506具有覆盖IDM 300的附接接口310的盘状几何形状。无菌适配器506包括中心孔508,该中心孔508被配置为接收外科工具500的细长主体504。在这种构型中,当外科工具500固定到IDM 300时,无菌适配器506定位在附接接口310和外科工具500之间,从而在外科工具500和IDM 300之间形成无菌边界并且允许细长主体504穿过通道312。在某些实施方案中,无菌适配器506可能够与外科工具架308一起旋转,将旋转扭矩从多个扭矩耦接器314传输到外科工具500,在IDM 300和外科工具500之间传递电信号,或它们的某种组合。

  在图5-图6的实施方案中,无菌适配器506还包括多个耦接器512。耦接器512的第一侧被配置为与相应扭矩耦接器314接合,而耦接器512的第二侧被配置为与相应器械输入端600接合。

  类似于多个扭矩耦接器314的结构,每个耦接器512被构造为包括多个凹口的圆柱形突出部。耦接器512的每一侧具有互补的几何形状以与相应扭矩耦接器314和相应器械输入端600完全接合。在一些实施方案中,一个或多个器械输入端600称为机械输入端。每个耦接器512被配置为在顺时针或逆时针方向上与相应扭矩耦接器314一起旋转。这种构型允许每个耦接器512将旋转扭矩从IDM 300的多个扭矩耦接器314传送到外科工具500的多个器械输入端600,并且因此控制外科工具500的端部执行器。

  第一突出部508和第二突出部510被配置为穿过IDM 300的通道312并且在通道312内彼此配合。每个突出部508、510被构造为允许细长主体504穿过突出部并且因此穿过通道312。第一突出部508和第二突出部510的连接在IDM 300和外部环境(即,手术室)之间形成无菌边界。

  IV.外科工具脱离接合

  图7示出了根据一个实施方案的用于外科工具500与外科盖布的无菌适配器506的接合和脱离接合的致动机构的放大透视图。由于如相对于图3所述的IDM 300的构型,外科手术期间到患者体内的外科工具插入的轴线与外科工具移除的轴线相同。为了确保患者在外科工具移除期间的安全性,可在移除外科工具500之前使外科工具500与无菌适配器506和IDM 300脱离铰接。在图7的实施方案中,多个耦接器512被配置为在轴向方向上平移,即,背离无菌适配器506伸出并且朝向无菌适配器506回缩。多个耦接器512的平移由致动机构致动,该致动机构通过使多个耦接器512与相应器械输入端600脱离接合来确保外科工具500的脱离铰接。致动机构包括楔形件702和推动板704。

  楔形件702是在外科工具脱离接合的过程期间启动推动板704的结构部件。在图7的实施方案中,楔形件702沿外科工具500的壳体502的外周边位于壳体502内。如图所示,楔形件702被定向成使得如果外科工具500的壳体502相对于无菌适配器506顺时针旋转,则与推动板704的接触引起推动板704下压到无菌适配器506中。在另选的实施方案中,楔形件702可被配置为使得外科工具500的壳体502逆时针而不是顺时针旋转。可采用除楔形之外的几何形状,诸如拱形斜坡,只要该结构能够在旋转时压下推动板即可。

  推动板704是使多个耦接器512与外科工具500脱离接合的致动器。类似于多个扭矩耦接器314,耦接器512中的每一个耦接器可耦接到一个或多个弹簧,该一个或多个弹簧使每个耦接器512偏置以背离无菌适配器506向外弹开。多个耦接器512进一步被配置为在轴向方向上平移,即,背离无菌适配器506伸出并且回缩到无菌适配器506中。推动板704致动耦接器512的平移移动。当推动板704被楔形件702压下时,推动板704引起耦接到每个耦接器512的一个或多个弹簧压缩,从而导致耦接器512回缩到无菌适配器506中。在图7的实施方案中,推动板704被配置为引起多个耦接器512同时回缩。另选的实施方案可使耦接器512按特定序列或随机顺序回缩。在图7的实施方案中,推动板704引起多个耦接器512部分地回缩到无菌适配器506中。这种构型允许在移除外科工具500之前使外科工具500与无菌适配器506脱离铰接。这种构型还允许用户在任何期望的时间使外科工具500与无菌适配器506脱离铰接而无需移除外科工具500。另选的实施方案可使多个耦接器512完全回缩到无菌适配器506中,使得所测量的每个耦接器512的有效高度为零。在一些实施方案中,推动板704可引起多个扭矩耦接器314与多个相应耦接器512同步回缩。

  图8A和图8B示出了根据一个实施方案的使外科工具与无菌适配器接合和脱离接合的过程。图8A示出了在固定位置中的无菌适配器506和外科工具500,使得两个部件固定在一起并且多个耦接器512与外科工具500的相应的器械输入端600完全接合。为了实现如图8A所示的固定位置,使外科工具500的细长主体504(未示出)穿过无菌适配器506的中心孔508(未示出),直到外科工具500和无菌适配器506的配合表面接触为止,并且通过闭锁机构将外科工具500和无菌适配器506彼此固定。在图8A和图8B的实施方案中,闭锁机构包括横档802和闩锁804。

  横档802是在固定位置中固定闩锁804的结构部件。在图8A的实施方案中,横档802沿外科工具500的壳体502的外周边位于壳体502内。如图8A所示,横档802被定向成使得其搁置在闩锁804上的突出部下方,从而防止闩锁804并由此防止无菌适配器506由于多个耦接器512的上弹性质而远离外科工具500拉动,如相对于图7所述。

  闩锁804是在固定位置中与横档802配合的结构部件。在图8A的实施方案中,闩锁804从无菌适配器506的配合表面突出。闩锁804包括突出部,该突出部被配置为当外科工具500固定到无菌适配器506时抵靠横档802。在图8A的实施方案中,外科工具500的壳体502能够独立于外科工具500的其余部分旋转。这种构型允许壳体502相对于无菌适配器506旋转,使得横档802抵靠闩锁804固定,从而将外科工具500固定到无菌适配器502。在图8A的实施方案中,壳体502逆时针旋转以实现固定位置,但其它实施方案可被配置用于顺时针旋转。在另选的实施方案中,横档802和闩锁804可具有将无菌适配器506和外科工具500锁定在固定位置中的各种几何形状。

  图8B示出了在解除固定位置中的无菌适配器506和外科工具500,在解除固定位置中,外科工具500可从无菌适配器506移除。如前所述,外科工具500的壳体502能够独立于外科工具500的其余部分旋转。这种构型允许壳体502旋转,即使在多个耦接器512与外科工具500的器械输入端600接合时也是如此。为了从固定位置转变到解除固定位置,用户使外科工具500的壳体502相对于无菌适配器506顺时针旋转。在此旋转期间,楔形件702接触推动板704并且随着推动板704抵靠楔形件702的成角度平面滑动而逐渐压下推动板704,从而引起多个耦接器512回缩到无菌适配器506中并且与多个器械输入端600脱离接合。进一步旋转引起闩锁804接触轴向凸轮806,该轴向凸轮806的构造类似于楔形件702。当闩锁804在旋转期间接触轴向凸轮806时,轴向凸轮806引起闩锁804背离外科工具500向外挠曲,使得闩锁804从横档802移位。在图8B的实施方案中,在这个解除固定位置中,多个耦接器512回缩,并且外科工具500可从无菌适配器506移除。在其它实施方案中,轴向凸轮806可具有各种几何形状,使得旋转引起闩锁804向外挠曲。

  在另选的实施方案中,外科工具500的壳体502的旋转方向可被配置为逆时针旋转以使闩锁804与横档802解除固定。另外,另选的实施方案可包括类似的部件,但是部件的位置可在无菌适配器506和外科工具500之间切换。例如,横档802可位于无菌适配器506上,而闩锁804可位于外科工具500上。在其它实施方案中,无菌适配器506的外部部分可能够相对于多个耦接器512而不是外科工具500的壳体502旋转。另选的实施方案还可包括用于在壳体502相对于器械输入端600完全旋转时锁定外科工具502的壳体502的旋转的特征件。如果器械输入端600已经与耦接器512脱离铰接,则这种构型防止外科工具的旋转。在一些实施方案中,耦接器512的回缩和伸出可与扭矩耦接器314的相应回缩和伸出耦接,使得与扭矩耦接器314接合的耦接器512将一起平移。

  图9A和图9B示出了根据另一个实施方案的外科工具与无菌适配器的外科工具接合和脱离接合的过程。在图9A和图9B的实施方案中,无菌适配器900可包括将外科工具904固定到无菌适配器900的外带902。如图9A和9B所示,外科工具902在壳体908的外表面上包括斜坡906。斜坡906包括凹口910,该凹口910被配置为接收圆形突出部912,该圆形突出部912定位在无菌适配器900的外带902的内表面上。外带902能够独立于并且相对于无菌适配器900和外科工具904旋转。当外带902在第一方向上旋转时,圆形突出部912沿着斜坡906的表面向上滑动,直到圆形突出部912嵌套在凹口910内,从而将无菌适配器900和外科工具904固定在一起。外带902在第二方向上的旋转引起无菌适配器900和外科工具904与彼此解除固定。在某些实施方案中,这种机构可与无菌适配器900上的多个耦接器914的脱离铰接相结合,如相对于图7-图8所述。

  外科工具脱离接合的另选的实施方案可包括另外的特征,诸如阻抗模式。利用阻抗模式,外科机器人系统可控制用户是否可将外科工具从无菌适配器移除。用户可通过旋转外科工具的壳体并且将外科工具与无菌适配器解除固定来开启脱离接合机构,但外科机器人系统可不会从器械输入端释放耦接器。只有当外科机器人系统已经转变到阻抗模式时,耦接器才被释放并且用户才可移除外科工具。保持外科工具接合的优点在于:外科机器人系统可在移除外科工具之前控制外科工具的端部执行器并且对端部执行器进行定位以用于工具移除,以使对外科工具的损坏最小化。为了启动阻抗模式,推动板704可具有硬止动件,使得推动板可被压下至多一定距离。在一些实施方案中,推动板的硬止动件可以是可调节的,使得硬止动件与外科工具的壳体的最大旋转量重合。因此,一旦达到完全旋转,推动板也就遇到硬止动件。多个传感器可检测这些事件并且触发阻抗模式。

  在可能不期望阻抗模式的外科手术期间,某些情况可能需要进行紧急工具移除。在一些实施方案中,推动板的硬止动件可具有顺应性,使得硬止动件在紧急情况下可屈曲。推动板的硬止挡件可耦接到弹簧,从而允许硬止动件响应于另外的力而屈曲。在其它实施方案中,推动板的硬止动件可以是刚性的,使得通过移除将外科工具固定到无菌适配器的闩锁来进行紧急工具移除。

  V.滚动机构

  图10A示出了根据一个实施方案的用于使外科工具架308在器械装置操纵器300内滚动的机构的透视图。如图10A所示,附接接口310被移除以暴露滚动机构。这种机构允许外科工具架308围绕旋转轴线316在任一方向上连续旋转或“滚动”。滚动机构包括定子齿轮1002和转子齿轮1004。

  定子齿轮1002是被配置为与转子齿轮1004配合的固定齿轮。在图10A的实施方案中,定子齿轮1002是沿环的内圆周包括齿轮齿的环形齿轮。定子齿轮1002在附接接口310后面固定地附接到外部壳体306。定子齿轮1002具有与转子齿轮1004相同的齿距,使得定子齿轮1002的齿轮齿被配置为与转子齿轮1004的齿轮齿配合。定子齿轮1002可由刚性材料(例如,金属或硬塑料)构成。

  转子齿轮1004是被配置为引起外科工具架308旋转的旋转齿轮。如图10A所示,转子齿轮1004是沿其外圆周包括齿轮齿的圆形齿轮。转子齿轮1004定位在附接接口310后面且在定子齿轮1002的内圆周内,使得转子齿轮1004的齿轮齿与定子齿轮的齿轮齿配合。如前所述,转子齿轮1004和定子齿轮1002具有相同的齿距。在图10A的实施方案中,转子齿轮1004耦接到驱动机构(例如,马达),该驱动机构引起转子齿轮1004在顺时针或逆时针方向上旋转。驱动机构可从外科工具架组件304内的集成控制器接收信号。当驱动机构引起转子齿轮1004旋转时,转子齿轮1004沿定子齿轮1002的齿轮齿行进,从而引起外科工具架308旋转。在这种构型中,转子齿轮1004能够在任一方向上连续旋转,并且因此允许外科工具架308围绕旋转轴线316实现无限滚动。另选的实施方案可使用类似的机构来允许无限滚动,诸如环形齿轮和小齿轮的构型。

  图10B示出了根据一个实施方案的器械装置操纵器300的剖视图。如图10B所示,滚动机构与多个轴承1006耦接。轴承是减小移动部分之间的摩擦并且有利于围绕固定轴线旋转的机械部件。当外科工具架308在外部壳体306内旋转时,一个轴承可单独地支撑径向或扭转载荷。在图10B的实施方案中,IDM 300包括两个轴承1006a、1006b,它们固定地附接到外科工具架308,使得轴承1006内的多个部件(诸如滚珠或滚筒)接触外部壳体306。第一轴承1006a在第一端部处固定在附接接口310后面,并且第二轴承1006b固定在第二端部处。这种构型改善了在外科工具架308在外部壳体306内旋转时外科工具架308的第一端部和第二端部之间的刚性和支撑。另选的实施方案可包括另外的轴承,这些另外的轴承沿外科工具架的长度提供另外的支撑。

  图10B还示出了根据一个实施方案的IDM 300内的密封部件。IDM 300包括多个O形环1008和多个垫圈1010,该多个O形环1008和该多个垫圈1010被配置为密封两个表面之间的结合部,以防止流体进入该结合部。在图10B的实施方案中,IDM包括位于外部壳体的结合部之间的O形环1008a、1008b、1008c、1008d、1008e以及位于外科工具架308内的结合部之间的垫圈1010a、1010b。这种构型帮助保持IDM 300内的部件在外科手术期间的无菌性。垫圈和O形环通常由强弹性体材料(例如,橡胶)构成。

  VI.电子部件

  图10C示出了根据一个实施方案的器械装置操纵器的内部部件及其某些电子部件的局部分解透视图。外科工具架308的内部部件包括多个致动器1102、马达、齿轮头(未示出)、扭矩传感器(未示出)、扭矩传感器放大器1110、滑环1112、多个编码器板1114、多个马达功率板1116和集成控制器1118。

  多个致动器1102驱动多个扭矩耦接器314中的每一个扭矩耦接器的旋转。在图10C的实施方案中,致动器诸如1102a或1102b经由马达轴耦接到扭矩耦接器314。马达轴可以是键合轴,使得其包括多个沟槽以允许马达轴固定地配合到扭矩耦接器314。致动器1102引起马达轴在顺时针或逆时针方向上旋转,从而引起相应扭矩耦接器314在该方向上旋转。在一些实施方案中,马达轴可以是扭转刚性的但弹簧顺应性的,从而允许马达轴并且因此允许扭矩耦接器314旋转并在轴向方向上平移。这种构型可允许多个扭矩耦接器314在外科工具架308内回缩和伸出。每个致动器1102可从集成控制器1118接收指示使马达轴旋转的方向和量的电信号。在图10C的实施方案中,外科工具架308包括五个扭矩耦接器314并且因此包括五个致动器1102。

  马达驱动外科工具架308在外部壳体306内的旋转。马达可在结构上等同于致动器中的一个致动器,不同的是马达耦接到转子齿轮1004和定子齿轮1002(参见图10A)以用于使外科工具架308相对于外部壳体306旋转。马达引起转子齿轮1004在顺时针或逆时针方向上旋转,从而引起转子齿轮1004围绕定子齿轮1002的齿轮齿行进。这种构型允许外科工具架308连续滚动或旋转,而不受缆线或拉线的潜在绕起的阻碍。马达可从集成控制器1118接收指示使马达轴旋转的方向和量的电信号。

  齿轮头控制递送到外科工具500的扭矩量。例如,齿轮头可增加递送到外科工具500的器械输入端600的扭矩量。另选的实施方案可被配置为使得齿轮头减小递送到器械输入端600的扭矩量。

  扭矩传感器测量在旋转的外科工具架308上产生的扭矩量。在图10C所示的实施方案中,扭矩传感器能够测量顺时针和逆时针方向上的扭矩。扭矩测量结果可用于保持外科工具的多根拉线中的特定张力量。例如,外科机器人系统的一些实施方案可具有自动张紧特征,其中在给外科机器人系统通电或使外科工具与IDM接合时,外科工具的拉线上将被预加载张力。每根拉线上的张力量可达到阈值量,使得拉线被张紧到刚好足以绷紧。扭矩传感器放大器1110包括用于放大测量在旋转的外科工具架308上产生的扭矩量的信号的电路。在一些实施方案中,扭矩传感器安装到马达。

  滑环1112使得能够将电功率和信号从固定结构传送到旋转结构。在图10C的实施方案中,滑环1112被构造为包括中心孔的环,该中心孔被配置为与外科工具架308的通道312对准,如也在图10D中的滑环1112的另外的透视图中所示。滑环1112的第一侧包括多个同心沟槽1120,而滑环1112的第二侧包括多个电气部件,该多个电气部件用于从外科臂和基部302提供的电气连接,如相对于图3所述。滑环1112在距外部壳体306的特定距离处固定到外科工具架308的外部壳体306,以为这些电气连接分配空间。多个同心沟槽1120被配置为与附接到集成控制器的多个电刷1122配合。沟槽1120和电刷1122之间的接触使得能够将电功率和信号从外科臂和基部传送到外科工具架。

  多个编码器板1114读取并处理通过滑环从外科机器人系统接收的信号。从外科机器人系统接收的信号可包括指示外科工具的旋转量和旋转方向的信号、指示外科工具的端部执行器和/或腕部的旋转量和旋转方向的信号、操作外科工具上的光源的信号、操作外科工具上的视频或成像装置的信号、以及操作外科工具的各种功能的其它信号。编码器板1114的配置允许在外科工具架308中完全执行整个信号处理。多个马达功率板1116各自包括用于向马达提供功率的电路。

  集成控制器1118是外科工具架308内的计算装置。在图10C的实施方案中,集成控制器1118被构造为包括中心孔的环,该中心孔被配置为与外科工具架308的通道312对准。集成控制器1118在集成控制器1118的第一侧上包括多个电刷1122。电刷1122接触滑环1112并且接收从外科机器人系统通过外科臂、基部302并且最终通过滑环1112递送到集成控制器1118的信号。由于所接收的信号,集成控制器1118被配置为将各种信号发送到外科工具架308内的相应部件。在一些实施方案中,编码器板1114和集成控制器1118的功能可以与本文所述不同的方式分布,使得编码器板1114和集成控制器1118可执行相同的功能或它们的某种组合。

  图10D示出了根据一个实施方案的器械装置操纵器的内部部件及其某些电子部件的局部分解透视图。图10D的实施方案包括两个编码器板1114a和1114b、扭矩传感器放大器1110以及三个马达功率板1116a、1116b和1116c。这些部件固定到集成控制器1118并且向外突出,从而从集成控制器1118垂直延伸。这种构型为将多个致动器1102和马达定位在电路板内提供空间。

  如相对于图10C所讨论的,滑环1112固定在距外部壳体306的特定距离处。为了确保滑环1112和外部壳体306之间用于从外科臂和基部302到滑环1112的电气连接的正确空间分配,在图10D的实施方案中,滑环1112由多个对准销、多个螺旋弹簧和一个垫片支撑。滑环1112在滑环1112的中心孔的每一侧上包括孔1124,该孔1124被配置为在对准销的第二侧插入外部壳体306中的相应孔中时接受对准销的第一侧。对准销可由刚性材料(例如,金属或硬塑料)构成。多个螺旋弹簧围绕滑环1112的中心固定并且被配置为桥接滑环1112和外部壳体306之间的空间并且保持它们之间的接触。螺旋弹簧可有益地吸收对IDM 300的任何冲击。垫片是环形间隔件,其围绕滑环1112的中心孔定位以在滑环1112和外部壳体306之间添加进一步的支撑。此外,当集成控制器1118上的多个电刷1122接触多个同心沟槽1120并且抵靠该多个同心沟槽1120旋转时,这些部件向滑环1112提供稳定性。在另选的实施方案中,对准销、螺旋弹簧和垫片的数量可发生变化,直到实现滑环1112和外部壳体306之间的期望支撑。

  图10E示出了根据一个实施方案的器械装置操纵器300的用于使外科工具架308进行滚动分度的电子部件的放大透视图。滚动分度监视外科工具架308相对于外部壳体306的位置,使得外科机器人系统不断了解外科工具500的位置和取向。图10E的实施方案包括微动开关1202和凸出部1204。微动开关1202和凸出部1204固定在外科工具架308内。凸出部1204是外部壳体306上的结构,该结构被配置为在外科工具架308旋转时接触微动开关1202,由此每当与凸出部1204接触时就启动微动开关。在图10E的实施方案中,存在一个凸出部1204,其用作用于微动开关1202的单个基准点。

  VII.具有基于器械的插入架构的器械

  各种工具或器械可附接到IDM 300,包括用于腹腔镜式外科手术、内窥镜式外科手术和腔内外科手术的器械。本文所述的器械是特别新颖的,因为它们包括基于器械的插入架构,这降低了插入对机器人臂的依赖。换句话讲,器械的设计和架构可有利于器械的插入(例如,朝向外科部位)。例如,在其中器械包括细长轴和柄部的一些实施方案中,器械的架构使得细长轴能够相对于柄部沿插入轴线平移。

  本文所述的器械结合了缓解许多问题的基于器械的插入架构。未结合基于器械的插入架构的器械依赖于机器人臂及其IDM进行插入。在这种布置中,为了实现器械插入,可能需要移入和移出IDM,因此需要另外的马达功率和臂连杆大小以用于以受控方式移动另外的质量。此外,较大的体积形成大得多的扫掠体积,这可导致操作期间的碰撞。通过结合基于器械的插入架构,本文所述的器械通常具有减小的摆动质量,因为器械本身(例如,其轴)在较少依赖机器人臂的情况下沿插入轴线移动。

  本文所述的器械的一些实施方案可具有新颖的基于器械的插入架构,这些基于器械的插入架构不仅允许插入器械,而且还允许不受干扰地致动器械的端部执行器。例如,在一些实施方案中,器械包括用于致动端部执行器的第一致动机构和用于引起器械的一部分(例如,轴)沿插入轴线平移的第二致动机构。第一致动机构有利地与第二致动机构脱离,使得端部执行器的致动不受器械的插入影响,并且反之亦然。

  图11示出了根据一个实施方案的具有基于器械的插入架构的器械的侧视图。器械1200的设计和架构使得器械(例如,其轴)能够在较少依赖于机器人臂的移动进行插入的情况下沿插入轴线平移。

  器械1200包括细长轴1202、连接到轴1202的端部执行器1212和耦接到轴1202的柄部1220。细长轴1202包括管状构件,该管状构件具有近侧部分1204和远侧部分1206。细长轴1202沿其外表面包括一个或多个通道或沟槽1208。在轴1202的剖视图中最可见的沟槽1208被配置为穿过其中接收一根或多根线材或缆线1230。因此,一根或多根缆线1230沿细长轴1202的外表面延伸。在其它实施方案中,缆线1230也可延伸穿过轴1202,如图21中的示意图所示。在一些实施方案中,延伸穿过轴1202的缆线1230未暴露。在一些实施方案中,这些缆线1230中的一根或多根缆线的操纵(例如,经由IDM 300)导致端部执行器1212的致动。

  端部执行器1212包括被设计成为向外科部位提供作用的一个或多个腹腔镜式部件、内窥镜式部件或腔内部件。例如,端部执行器1212可包括腕部、抓紧器、尖齿、夹钳、剪刀或夹具。在图11所示的本实施方案中,沿轴1202的外表面上的沟槽1208延伸的缆线1230中的一根或多根缆线致动端部执行器1212。一根或多根缆线1230从轴1202的近侧部分1204穿过柄部1220并且朝向轴1202的远侧部分1206延伸,在远侧部分1206处,一根或多根缆线1230致动端部执行器1212。

  器械柄部1220(也可称为器械基部)通常可包括附接接口1222,该附接接口1222具有一个或多个机械输入端1224,例如插孔、滑轮或卷轴,该一个或多个机械输入端1224被设计成与(如图3所示的)IDM 300的附接接口310上的一个或多个扭矩耦接器314往复地配合。附接接口1222能够通过前安装、后安装和/或顶安装附接到IDM 300。当物理地连接、闩锁和/或耦接时,器械柄部1220的配合的机械输入端1224可与IDM 300的扭矩耦接器314共享旋转轴线,从而允许将扭矩从IDM 300传送到器械柄部1220。在一些实施方案中,扭矩耦接器314可包括被设计成与机械输入端上的插孔配合的花键。致动端部执行器1212的缆线1230接合柄部1220的插孔、滑轮或卷轴,使得扭矩从IDM 300到器械柄部1220的传送导致端部执行器的致动。

  器械1200的一些实施方案包括控制端部执行器1212的致动的第一致动机构。此类第一致动机构的实施方案在图12中示意性地示出。此外,器械1200包括使得轴1202能够相对于柄部1220沿插入轴线平移的第二致动机构。此类第二致动机构的实施方案在图17中示出。有利地,第一致动机构与第二致动机构脱离,使得端部执行器1212的致动不受轴1202的平移影响,并且反之亦然。可结合到工具或器械1200中的第一致动机构和第二致动机构的实施方案在下文参考图12-图20更详细地描述。

  图12示出了根据一个实施方案的用于致动端部执行器的第一致动机构的示意图。在一些实施方案中,第一致动机构提供N+1种腕部运动,其中N是由N+1根缆线提供的自由度的数量。用于致动端部执行器1212的第一致动机构包括延伸穿过至少一组滑轮1250的至少一根缆线或缆线段1230a。在本实施方案中,第一缆线或缆线段1230a延伸穿过滑轮构件1250a、1250b、1250c,而第二缆线或缆线段1230a延伸穿过滑轮构件1250d、1250e、1250f。至少一根缆线1230a在轴1202的近侧端部1205处或附近接地,然后延伸穿过至少一组滑轮1250(该至少一组滑轮1250位于柄部1220内),然后端接在端部执行器1212处。通过使每根缆线1230a在轴1202的近侧端部1205处或附近接地来使缆线总路径长度保持恒定,并且通过使滑轮(例如,滑轮构件1250b和1250e)相对于彼此移动(参见箭头)来进行相对长度改变,从而实现端部执行器1212的致动。在一些实施方案中,滑轮可经由对应机械输入端1224的线性或旋转运动来移动。此第一致动机构有利地准许器械轴1202相对于致动滑轮1250自由移动(这将通过下文所述的第二致动机构实现),从而允许包括另外的缆线以准许在端部执行器1212致动的同时插入和回缩器械轴1202。

  图13示出了根据一个实施方案的图11的器械的第一致动机构的放大侧视图。第一致动机构与图12所示的示意图相对应,并且被设计成引起端部执行器1212的致动,同时准许单独的第二致动机构使轴1202相对于柄部1220平移。如图13所示,柄部1220包括一组轴承、卷轴、滑轮或滑轮构件1250a、1250b、1250c、1250d、1250e(其中滑轮1250a、1250b、1250c对应于图12中的同一组滑轮)。缆线1230a延伸穿过滑轮1250a、1250d、1250b、1250e、1250c。机械输入端(在图13中识别为1224')的操纵引起滑轮1250d、1250b、1250e的旋转运动。滑轮1250d、1250b、1250e的旋转运动改变接收在柄部1220中的缆线1230的量,从而致动端部执行器。滑轮在缆线1230a上的旋转运动的作用在图15和图16中示出。根据旋转运动的方向,滑轮1250d、1250e可卷绕或“收起”柄部1220中的缆线1230,或者可退绕并“给出”柄部1220中的缆线1230a。无论哪种方式,缆线1230a的长度在柄部1220内改变,从而引起端部执行器1212的致动。虽然图13中的实施方案描绘了通过旋转运动修改的滑轮系统,但在其它实施方案中,滑轮系统可通过线性和/或旋转运动修改。此外,本领域的技术人员将会知道,柄部1220中的缆线1230a的量的长度变化还可改变缆线张力。

  图14示出了根据一个实施方案的图11的器械的第一致动机构的放大透视图。从该视图可看到滑轮1250a-e的不同细节,包括滑轮1250a、1250c的卷轴。

  图15和图16示出了根据一个实施方案的图11的器械的滑轮构件1250e和缆线在致动滑轮构件前后的前视图。在机械输入端1224'上施加扭矩使滑轮1250e、1250b和1250d旋转。如图15所示,在致动滑轮1250e之前,缆线1230a可沿滑轮1250e的一侧延伸。如图16所示,在致动滑轮1250e之后,缆线1230a接着由滑轮卷绕和收起,从而增加柄部1220内的缆线1230a的量以引起端部执行器的致动。

  虽然图11-图16中的实施方案公开了安装在旋转轴线上以改变相对缆线长度的一个或多个滑轮,但是在其它实施方案中,将滑轮安装在基于杆件、齿轮或轨道的系统上以调节位置是另外的选择。此外,沿工具的长度行进的球形花键旋转轴也可用于以机械远程方式传输力。

  图17示出了根据一个实施方案的包括用于轴平移的卷轴的第二致动机构的侧视图。第二致动机构被设计成使轴1202相对于柄部1220沿插入轴线平移。与致动端部执行器1212的第一致动机构类似,第二致动机构也可结合在柄部1220内。

  第二致动机构包括接合一组卷轴1270a、1270b、1270c、1270d的缆线或缆线段1230b。缆线1230b的一个端部可附接在轴1202的近侧端部1205处或附近,而缆线1230b的另一个端部可附接在轴1202的远侧端部1207处或附近。缆线1230b延伸穿过这组卷轴1270a、1270b、1270c,其中卷轴1270b是绞盘。使柄部1220的机械输入端旋转引起绞盘的旋转,从而驱动缆线1230b进出绞盘。当缆线1230b被驱动进出绞盘时,这引起轴1202相对于柄部1220平移。有利地,通过向附接在轴1202的近侧端部和远侧端部处的缆线1230b施加足够的预张力,可使用摩擦力来驱动缆线1230b进出,从而使轴1202相对于柄部1220移动而不会滑动。

  在本实施方案中,绞盘1270b包括零游走绞盘。在其它实施方案中,诸如图18和图19所示,可将可允许缆线游走的绞盘结合到柄部1220中。零游走绞盘架构帮助管理缆线1230b围绕绞盘1270b的多次缠绕而在沟槽上无螺旋角以防止缆线跨绞盘1270b游走,这可能会影响总路径长度并且改变缆线中的张力。通过将另外的滑轮1270d放置在绞盘1270b旁边的斜面上,可实现重新定向到绞盘1270b上的平行路径,从而导致缆线1230b在绞盘1270b上无游走动作。

  图18和图19呈现了图17所示的零游走绞盘的另选实施方案。在这些实施方案中,驱动轴插入的绞盘是可结合到第二致动机构的架构中的放大的绞盘1270e。在足够大的驱动绞盘1270e和足够小的插入行程的情况下,绞盘的旋转次数少。例如,在22mm驱动绞盘1270e和350mm插入行程的情况下,用于实现完全插入范围的绞盘1270e的旋转次数为5次旋转。如果缆线行进的距离与绞盘1270e的缆线游走范围相比足够大,则在插入期间的缆线上的偏离角的量和路径长度变化小到足以忽略不计。在一些实施方案中,偏离角可介于+/-2度之间。

  图18示出了根据一个实施方案的使用单根缆线进行轴平移的另选卷轴的透视图。另选卷轴包括由单根缆线1230b接合的放大的绞盘1270e。在该实施方案中,为了致动驱动轴插入,单根缆线1230b具有足够大的包角以具有足够的绞盘摩擦来进行驱动。在一些实施方案中,单根缆线1230b是连续的并且围绕绞盘1270e缠绕多次(例如,3次、4次或更多次)以具有足够大的包角来驱动绞盘和插入。

  图19示出了根据一个实施方案的使用多于一根缆线进行轴平移的另选卷轴的透视图。另选卷轴包括由单根缆线1230b的两个单独分段1230b'、1230b”接合的放大的绞盘1270e。分段1230b'、1230b”中的每一者端接在绞盘1270e上。与图18中的实施方案不同,本实施方案并不依赖于绞盘摩擦来驱动轴插入。在该实施方案中,缆线1230b螺旋连接到外部,然后在顶部和底部两者处端接到卷轴。图19所示的双端接方法的优点在于:它对于线缆张力的损失是有弹性的。由于双端接方法依赖于强制接合而不是摩擦,因此不会发生滑动。

  图20示出了根据一个实施方案的包括图18的卷轴的柄部的前视图。从该视图可看到卷轴(例如,绞盘1270e)在柄部1220内的一个可能位置。有利地,另外的卷轴和滑轮可设置在柄部1220内以致动端部执行器1212。例如,如图12所表示的用于端部执行器致动的滑轮系统可结合到图20中的柄部中。因此,柄部1220可结合用于端部执行器致动和/或驱动插入两者的多个机构。如图20所示,将缆线1230引导到绞盘1270e上的一个或多个滑轮跨柄部定位以增加缆线距离。如果缆线行进的距离与绞盘1270e的缆线游走范围相比足够大,则在插入期间的缆线上的偏离角的量和路径长度变化小到足以忽略不计。在一些实施方案中,有可能具有传统的螺旋绞盘并且使长度变化和偏离角保持为最小值。

  图21示出了显示根据一个实施方案的用于致动端部执行器和轴插入的另选架构的示意图。该架构结合了用于致动端部执行器的第一致动机构和用于轴插入的第二致动机构。与先前的实施方案类似,第一致动机构和第二致动机构脱离,使得端部执行器的致动不影响轴插入,并且反之亦然。然而,在本实施方案中,第一致动机构包括用于致动端部执行器的一根或多根缆线,该一根或多根缆线端接在插入卷轴(它也用作用于轴插入的第二致动机构的一部分)处,而不是像在图12中的实施方案中那样端接在轴的近侧部分和远侧部分上。由于该架构,在经由第二致动机构的轴插入期间,由插入卷轴卷绕的一根或多根缆线基本上由通过插入卷轴退绕的一根或多根缆线(在第一致动机构中用于致动端部执行器)的长度反向平衡。在经由第一致动机构的端部执行器致动期间,权衡脱离插入卷轴的缆线的路径长度。

  如图21所示,用于端部执行器致动和轴插入的另选架构包括具有近侧部分1304和远侧部分1306的轴1302,端部执行器位于远侧部分1306处。一个或多个卷轴1370a、1370b、1370c、1370d、1370e(它们是柄部的一部分)围绕轴1302定位。卷轴1370c包括插入卷轴。插入卷轴1370c在第一方向上的旋转引起相对于柄部在第一方向上(例如,在插入方向上)的轴平移,而插入卷轴1370c在第二方向上的旋转引起相对于柄部在第二方向上(例如,在回缩方向上)的轴平移。一根或多根缆线或缆线段1330a在一个端部上端接到端部执行器(例如,腕部)并且在另一个端部上端接到插入卷轴。在端接在轴1302的远侧部分1306处、附近或朝向远侧部分1306端接之前,一根或多根另外的缆线或缆线段1330b也在插入卷轴1370c处开始。

  在本实施方案中,提供了第一致动机构,其中经由线性或旋转移动对一个或多个卷轴(例如,卷轴1370a、1370d)的操纵引起柄部内的一根或多根缆线1330a的长度变化。在一些实施方案中,柄部内的一根或多根缆线1330a的长度变化可包括柄部内的一根或多根缆线或缆线段的路径长度的变化。在该第一致动机构中,一根或多根缆线1330a可被视为“端部执行器”缆线。引起端部执行器的致动的柄部中的一根或多根缆线1330a的任何长度变化由一根或多根缆线1330b的长度反向平衡。

  在本实施方案中,提供了第二致动机构,其中经由线性或旋转移动对插入卷轴1370c的操纵引起柄部内的一根或多根缆线1330b的长度变化。在该第二致动机构中,一根或多根缆线1330b可被视为“插入”缆线。引起轴插入或回缩的柄部中的一根或多根缆线1330b的任何长度变化由一根或多根缆线1330a的长度反向平衡。在插入和回缩下,张力得以保持,因为在收起一根或多根插入缆线1330b时,一根或多根端部执行器缆线1330a的相等量被放出。一根或多根端部执行器缆线1330a的相对路径长度保持不变,因此端部执行器在插入下不移动。

  图22A示出了根据一个实施方案的结合有图21的用于致动端部执行器和轴插入的另选架构的器械的放大前视图。图22B示出了结合有图21的用于致动端部执行器和轴插入的另选架构的器械的顶部透视图。器械1300结合有图21所示的第一致动机构和第二致动机构,并且包括柄部1320,该柄部1320包括一个或多个机械输入端1324,每个机械输入端对应于一个或多个卷轴1370a-1370e,其中卷轴中的至少一个卷轴(1370c)包括插入卷轴。各自对应于单独的机械输入端1324的一根或多根缆线或缆线段1330a'、1330a”、1330a”’和1330a””端接在驱动卷轴1370c处。这些缆线1330a'、1330a”、1330a”’和1330a””中的每一者可类似于一根或多根缆线1330a(在图21中的示意图中示出)与一个或多个卷轴接合。在第一致动机构中,这些缆线可用作端部执行器缆线,使得对其对应机械输入端1324的操纵引起柄部内的缆线的长度变化。在一些实施方案中,柄部内的一根或多根缆线的长度变化可包括柄部内的一根或多根缆线或缆线段的路径长度的变化。在一些实施方案中,改变柄部内的缆线的路径长度。在一些情况下,致动端部执行器的柄部1320内的一根或多根缆线1330a'、1330a”、1330a”’和1330a””的长度变化由类似于图21中的类似参考缆线1330b的缆线1330b的长度反向平衡。在其它情况下,在纯粹的端部执行器致动下,柄部中的缆线1330b的长度不改变。在第二致动机构中,缆线1330b可用作插入缆线,使得对其对应机械输入端1324的操纵引起缆线1330b围绕插入卷轴1370c卷绕。引起轴插入的围绕插入卷轴1370c卷绕的缆线1330b的量由退绕的一根或多根缆线1330a'、1330a”、1330a”’和1330a””的长度反向平衡。

  图23示出了根据一个实施方案的器械的柄部和轴的顶部透视图。轴1202可相对于柄部1220平移。从该视图可看到在旋转时致动端部执行器的一个或多个机械输入端1224。此外,可看到在旋转时允许轴1202相对于柄部1220沿插入轴线平移的一个或多个机械输入端1324。附接接口1222包括一个或多个机械输入端1224、1324,例如插孔、滑轮或卷轴,该一个或多个机械输入端1224、1324被设计成与(如图3所示的)IDM 300的附接接口310上的一个或多个扭矩耦接器314往复地配合。

  图24A示出了利用图12所示的插入架构的器械轴的横截面的示意图,而图24B示出了利用图21所示的另选插入架构的器械轴的横截面的示意图。虽然不可见,但是图24A和24B中的横截面中的每一者包括从中延伸穿过的开口或内腔。如图24A所示,图12的插入架构产生延伸穿过沿轴1202的外表面延伸的沟槽或通道1208的一根或多根缆线1230。相比之下,如图24B所示,图21的插入架构产生延伸穿过沿轴1202的外表面延伸的较少沟槽或通道1308(此处为单个通道)的一根或多根缆线1330b。这是因为在图21的另选架构中,缆线更倾向于在轴1302的主体内延伸。例如,在轴1302的外部上不存在端部执行器缆线。在较少缆线在轴1302的外部上延伸的情况下,图21中的架构可产生具有在外表面上延伸的较少沟槽或通道的总体更光滑的轴表面。

  VIII.用于特定器械的插入架构的实施方案

  上述架构(例如,在图12和图21中示出)可用于致动端部执行器并且适应器械插入。此外,这些架构可结合到特定类型的器械中以有助于外科手术。

  一种此类器械是血管闭合器。利用血管闭合器,可驱动刀或切割器穿过以切割组织。在一些实施方案中,刀的运动是旋转的。在其它实施方案中,刀的运动是平移的。图25-图27示出了可结合到血管闭合器器械中以驱动刀穿过血管闭合器的不同架构。这些附图中所示的架构类似于图12所示的架构和相关机构,但在其它实施方案中,架构可类似于图21所示的架构和相关机构。

  图25-图27示出了显示用于在血管闭合器中驱动刀的不同架构的示意图。架构在缆线之间形成路径长度的差别,并且将该差别的路径长度变化转变成刀的线性运动。在图25和图26的实施方案中,两根缆线1430a、1430b被置于反向张力下,而在图27的实施方案中,单根缆线1430和弹簧1490用于反向张力。在其中两根缆线被置于反向张力下的实施方案中,通过在同一输入轴线上但在相反方向上具有两个差别(例如,一根是解绕缆线,而另一根是缠绕缆线)来实现刀的线性运动。双对置缆线方法还利用重新定向滑轮来封闭张力环,并且这可安装在轴的近侧端部处或附近或者安装在轴的远侧端部处或附近(分别在图25和图26中示出)。一旦具有被拉入和拉出的缆线,就可将刀耦接到缆线的部段以形成刀的进出运动。

  图25示出了显示用于在血管闭合器1480中驱动刀1482的架构的示意图。该架构包括第一缆线1430a和第二缆线1430b,其中第一缆线1430a和第二缆线1430b在反向张力下。该架构还包括由第一缆线1430a接合的一个或多个卷轴或滑轮构件1470a、1470b、1470c,以及由第二缆线1430b接合的一个或多个卷轴或滑轮构件1470d、1470e、1470f,以及封闭张力环的重新定向卷轴或滑轮1470g。重新定向滑轮1470g定位在轴的近侧部分处或附近。在第一缆线1430a和第二缆线1430b彼此在反向张力下的情况下,可经由连接器诸如细长构件1484将刀1482耦接到缆线(例如,第一缆线1430a)的部段,从而形成刀1482相对于血管闭合器1480的进出运动。在一些实施方案中,细长构件1484包括推杆。在其它实施方案中,细长构件1484承受驱动压缩力而不屈曲。

  图26示出了显示用于在血管闭合器中驱动刀的另选架构的示意图。该架构类似于图25所示的架构;然而,在本实施方案中,重新定向滑轮定位在轴的远侧部分处或附近。

  图27示出了显示用于在血管闭合器中驱动刀的又一个另选架构的示意图。与图25和图26中的先前实施方案不同,本实施方案中的架构利用与弹簧1490在反向张力下的单根缆线1430。该架构还包括由第一缆线1430a接合的一个或多个卷轴或滑轮构件1470a、1470b、1470c。在缆线1430与弹簧1490在反向张力下的情况下,刀1482可耦接到缆线1430的部段,从而形成刀1482相对于血管闭合器1480的进出运动。

  可用作插入器械的另一个装置是相机。相机可用于内窥镜式外科手术。该架构可根据相机是刚性相机还是铰接相机而变化,对于该铰接相机,将必须提供用于铰接的致动。

  图28示出了显示用于使刚性相机成为插入器械的架构的示意图。相机1500包括通过轴1502连接到相机柄部1530的远侧图像有效载荷,该相机柄部1530具有接口按钮和从接口按钮伸出的缆线。缆线1530被接收在形成于轴1502的外部上的通道或沟槽中,而插入柄部1520围绕轴1502定位。这实际上向内窥镜添加了第二柄部,从而实现插入能力。缆线1530延伸穿过一个或多个卷轴1570a、1570b、1570c。在本实施方案中,卷轴1570b可以是绞盘。在一些实施方案中,绞盘可包括零游走绞盘(如图17所示),而在其它实施方案中,绞盘可允许缆线游走(如图18和图19所示)。经由绞盘机构,相机能够沿插入轴线平移。在一些实施方案中,核心有效载荷保持与刚性窥镜相同的密封架构,因此可预期用相同的方法来消毒。对于刚性窥镜,这意味着它可进行高压消毒。从消毒视角看,另外的插入柄部1520也可看起来像器械,并且也可进行高压消毒。

  虽然图28示出了用于使刚性相机成为插入器械的架构,但是铰接相机存在另外的复杂性,因为将向相机添加机构以实现铰接。对于铰接相机,可提供一根或多根缆线(例如,致动缆线或腕部缆线)以适应铰接移动。相机也可容纳在密封区域中,使得如果要使一根或多根缆线在外部上延伸,则也可为不包括一根或多根缆线的相机形成密封隔室。在该架构的情况下,一些颗粒和碎片可能进入密封区域内的小空间中。在一些实施方案中,为了防止污染,一种解决方案可以是在密封相机区域内添加两个铰接马达,而不是依赖于IDM进行铰接运动。这通过从管的外部取出缆线并且将它们放入密封内部而大大简化了相机部件的清洁和密封。在密封相机内添加两个铰接马达的另一个有益效果在于:一将相机插接到视觉盒子中,就可控制相机的铰接。这实现像在安装或移除期间保持相机笔直并且在脱离机器人使用期间能够使相机从相机柄部铰接以环顾四周的特征。然后,从消毒视角看,这使得铰接相机看起来很像刚性相机,使得有可能进行高压消毒。

  如果相机不能进行高压消毒,则可能需要使密封相机核心和插入部段分离以用于清洁和插入。这是因为期望对插入柄部进行高压消毒以实现可靠的消毒。图29示出了允许相机与插入柄部分离、从而允许更好地消毒的第一插入架构,而图30和图31示出了允许相机与插入柄部分离、从而允许更好地消毒的第二插入架构。

  图29示出了允许相机与插入柄部分离的第一插入架构。该架构具有可高压消毒的插入柄部1620,该插入柄部1620闩锁到IDM上并且可与相机核心1600分离。相机核心1600包括延伸穿过柄部1620的轴1602。柄部1620包括延伸穿过卷轴1670a、1670b、1670c、1670d的一根或多根线材1630a、1630b。在本实施方案中,卷轴1670b包括绞盘。在一些实施方案中,卷轴1670b包括导螺杆。在一些实施方案中,绞盘是零游走绞盘(如图17所示),而在其它实施方案中,绞盘允许缆线游走。插入柄部1620可经由连接器1640可移除地附接到相机核心1600。在一些实施方案中,连接器1640包括托架。在其它实施方案中,连接器1640包括相机所闩锁到的竖直板。当插入柄部1620可移除地附接到相机核心1600时,它们各自能够分离以用于清洁。

  图30和图31示出了允许相机与插入柄部分离的第二架构。在本实施方案中,提供了外套管1780,该外套管1780具有附接到其的插入缆线1730,并且可穿过外套管1780装载相机1700以用于手术。图30示出了与外套管1780拆离和分离的相机1700,而图31示出了装载到外套管1780中的相机1700。为了将相机1700装载到外套管中,相机1700的远侧末端1706和轴1702穿过外套管1780。外套管1780连接到柄部1720,该柄部1720容纳呈绞盘形式的卷轴1770。该架构具有以下益处:如果需要,则保持相机1700与插入柄部1720分离,使得可容易地清洁两个部件。此外,相机1700在使用中保持薄型,因为它将配合到外套管1780中。当插入柄部1720可移除地附接到相机核心1700时,它们各自能够分离以用于清洁。

  图32示出了显示根据另一个实施方案的用于轴平移的另选架构的图。在本实施方案,器械包括具有近侧部分1904和远侧部分1906的轴1902。轴1902的插入可由齿条齿1912和小齿轮1914驱动,其中小齿轮1914的旋转导致齿条齿1912和耦接到齿条齿1912的轴1902的平移。在一些实施方案中,齿条齿1912定位在器械轴1902上,而小齿轮1914定位在器械柄部的壳体内。马达驱动器可用于使轴1902相对于柄部平移。在一些实施方案中,除了摆线针齿条齿廓之外,还可使用正齿轮。在一些实施方案中,齿条齿1912和小齿轮1914可单独用来引起轴1902的插入或平移。在其它实施方案中,齿条齿1912和小齿轮1914可伴随并补充上述插入机构中的任一种。齿条齿1912和小齿轮1914可与任何上述类型的器械一起用来提供器械轴相对于柄部的线性插入。

  IX.外科工具密封

  当执行外科手术诸如腹腔镜式手术时,外科医生使用吹入法。这意味着插入患者体内的插管抵靠外科工具轴密封以保持患者身体内部的正压。密封件可耦接到外科工具轴以防止空气从患者的身体泄漏。这些密封件通常被设计成适应具有圆形横截面的工具。可能难以将相同的密封件应用到具有非圆形形状且在轴的外表面上具有凹形特征的工具,因为由这些表面形成的通道可允许在工具密封件处释放空气压力。例如,具有基于器械的插入架构的器械可具有带沟槽1208的横截面(如图24A所示),在沟槽1208处,空气可从患者泄漏。

  为了解决该挑战,可提供包括多个密封件的系统以防止患者体内的空气泄漏。具体地,可提供与具有圆形外部形状的插管密封件一起工作的新颖密封件,这对于具有圆形横截面的器械是惯常的。新颖密封件可穿过圆形插管密封件,从而提供一致的旋转密封。新颖密封件将有利地使任何旋转运动和线性运动离散以形成在那里形成密封的两个边界。通过具有中间工具密封件来实现离散化。

  图33示出了具有多个密封件以防止来自患者的空气泄漏的器械的侧剖视图。图34示出了具有多个密封件的器械的前剖视图。器械1200插入插管50中,并且类似于图11所示的具有基于器械的插入架构的器械。器械可包括可相对于柄部1220平移的轴1202。轴1202可具有沿其外表面延伸的一个或多个通道或沟槽1208,从而形成可允许空气从患者泄漏的通道。

  为了防止空气泄漏,多密封件系统有利地耦接到器械。在一些实施方案中,多密封件系统包括第一密封件1810和第二密封件1820,它们可结合工作以降低空气泄漏的风险。在一些实施方案中,第一密封件1810和第二密封件1820是同轴的。如图32所示,第二密封件1820可被接收在第一密封件1810的内部中。第一密封件1810可具有带圆形外周边和圆形内周边的横截面,而第二密封件1820可具有带圆形外周边和内周边的横截面,该内周边具有内部突出部、突片或凸块1822,如图34所示。具有带内部突出部的第二密封件1820的优点在于:内部突出部可填充可沿器械轴1202的外部延伸的空隙,诸如沟槽1208,从而降低在外科手术期间空气从患者泄漏的风险。

  多密封件有利地使旋转运动和线性运动离散以形成在那里形成密封的两个边界。第二密封件1820因其内部突出部1822而可沿器械轴1202的外部沟槽滑动,从而形成用于器械轴运动的滑动线性密封件。本领域的技术人员将会知道,虽然第二密封件1820被示出为具有倒圆并且围绕内周边基本上对称地间隔开的多个内部突出部,但是第二密封件1820的内部部分也可采取其它形状,只要模制工艺使第二密封件1820的内部与器械轴1202的外表面基本上匹配即可。当被接收在器械1200的沟槽1208中时,第二密封件1820的内凸块1822中的每一者形成旋转密封点1824。这些旋转密封点允许器械1200和第二密封件1820旋转地锁定并且在器械轴1202旋转时一起旋转。虽然本实施方案示出了具有双密封件的多密封件,但是在其它实施方案中,三个、四个或更多个密封件可一起工作以降低外科手术期间空气从患者泄漏的风险。

  X.另选注意事项

  在阅读本公开时,本领域的技术人员将通过本文所公开的原理来理解另外的另选结构和功能设计。因此,虽然已经例示并描述了特定实施方案和应用,但是应当理解,所公开的实施方案不限于本文所公开的精确构造和部件。对于本领域的技术人员将显而易见的是,可在不脱离所附权利要求中限定的实质和范围的情况下对本文所公开的方法和设备的布置、操作和细节进行各种修改、改变和变型。

  如本文所用,对“一个实施方案”或“实施方案”的任何引用是指结合实施方案描述的特定元件、特征、结构或特性包括在至少一个实施方案中。在说明书中各处出现的短语“在一个实施方案中”并不一定全部是指相同的实施方案。

  一些实施方案可使用表达“耦接”和“连接”连同其衍生词来描述。例如,一些实施方案可使用术语“耦接”来描述,以指示两个或更多个元件直接物理接触或电接触。然而,术语“耦接”还可意味着两个或更多个元件彼此不是直接接触,而是彼此配合或相互作用。除非另有明确说明,否则实施方案不限于此上下文。

  如本文所用,术语“包括”(comprises、comprising、includes、including)、“具有”(has、having)或其任何其它变型均旨在涵盖非排他性的包括。例如,包括一系列元件的过程、方法、制品或设备不一定仅限于那些元件,而是可包括此类过程、方法、制品或设备未明确列出或固有的其它元件。此外,除非明确地指明相反,否则“或”是指包括性的或而不是指排他性的或。例如,条件A或B由以下任一项满足:A为真(或存在)而B为假(或不存在),A为假(或不存在)而B为真(或存在),以及A和B均为真(或存在)。

  此外,采用对“一个”或“一种”的使用来描述本文的实施方案的元件和部件。这样做仅出于方便的目的并且给出本发明的一般含义。该描述应理解为包括一个或至少一个,并且除非明显地另有所指,单数也包括复数。

《用于基于器械的插入架构的系统和方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)