欢迎光临小豌豆知识网!
当前位置:首页 > 机械技术 > 热交换> 热交换部件、热交换器和带净化机构的热交换器独创技术54419字

热交换部件、热交换器和带净化机构的热交换器

2021-04-23 19:19:16

热交换部件、热交换器和带净化机构的热交换器

  技术领域

  本发明涉及热交换部件、热交换器和带净化机构的热交换器。详细而言,本发明涉及将第一流体(高温侧)的热向第二流体(低温侧)传递的热交换部件、以及具有该热交换部件的热交换器和带净化机构的热交换器。

  背景技术

  近年来,不断要求汽车的油耗效率改善。特别是,为了防止发动机启动时等发动机处于冷态时的油耗效率恶化,期待将冷却水、发动机油、ATF(自动变速箱油;Automatictransmission fluid)等提前加温而减少摩擦(friction)损失的系统。而且,期待加热催化剂以使尾气净化用催化剂尽快活化的系统。

  在这样的系统中,例如,研究了使用热交换器。热交换器是包含通过使第一流体在内部流通、并且使第二流体在外部流通而进行第一流体与第二流体的热交换的热交换部件的装置。在这样的热交换器中,例如,能够通过从高温的第一流体(例如,尾气)向低温的第二流体(例如,冷却水)进行热交换而将热有效利用。

  作为从汽车尾气这样的高温气体回收热的热交换器,已知有具有用耐热金属制作的热交换部件的热交换器,但耐热金属存在如下问题:不仅价格高,而且加工困难,密度高且较重,导热差等。因此,近年来,一直在开发将具有柱状蜂窝结构体的热交换部件收容在框架(壳体)内、使第一流体在蜂窝结构体的隔室内流通并使第二流体在壳体内于热交换部件的外周面上流通的热交换器。

  作为具有蜂窝结构体的热交换部件,提出了具有柱状蜂窝结构体的热交换体(专利文献1),所述柱状蜂窝结构体具备:在与第一流体的流路方向(隔室的延伸方向)垂直的截面中,从中心部朝向外周部在辐射方向延伸的第一隔壁和在周向延伸的第二隔壁。

  另外,提出了具有中空型(圆环型)的柱状蜂窝结构体的热交换部件(专利文献2),所述中空型(圆环型)的柱状蜂窝结构体具备作为尾气的旁通路径发挥功能的中空区域。

  专利文献

  专利文献1:日本专利第6075381号公报

  专利文献2:国际公开第2017/069265号

  发明内容

  用于热交换部件的柱状蜂窝结构体的外周壁由于暴露于来自外部的冲击、因第一流体和第二流体之间的温度差所致的热应力等,因此存在外周壁容易因这些外力而破坏的问题。此外,中空型的柱状蜂窝结构体存在如下问题:不仅外周壁容易因外力所致的压缩或膨胀而破坏,内周壁也容易发生破坏。

  然而,专利文献1和2的具有柱状蜂窝结构体的热交换部件并未对这些由外力引起的问题进行充分研究。

  本发明是为了解决上述问题而进行的,目的在于提供对来自外部的冲击、热应力等的耐性优异的热交换部件、热交换器和带净化机构的热交换器。

  本发明人等为了解决上述问题而进行深入研究,结果发现通过在具有区划成型隔室的隔壁、内周壁和外周壁的中空型的柱状蜂窝结构体中使内周壁和外周壁的厚度大于隔壁的厚度,对外力的耐性提高,从而完成了本发明。

  即,本发明是一种热交换部件,具备:具有隔壁、内周壁和外周壁的中空型的柱状蜂窝结构体、以及被覆上述柱状蜂窝结构体的上述外周壁的被覆部件,用于进行上述第一流体与在上述被覆部件的外侧流通的第二流体之间的热交换,所述隔壁区划成型从第一底面贯通到第二底面而形成第一流体的流路的隔室,

  在与上述第一流体的流路方向垂直的上述柱状蜂窝结构体的截面中,上述隔室呈辐射状设置,

  上述内周壁和上述外周壁的厚度大于上述隔壁的厚度。

  另外,本发明是一种具有上述热交换部件的热交换器。

  另外,本发明是一种热交换器,具备:

  上述热交换部件、

  内筒,上述内筒设置于上述中空型的柱状蜂窝结构体的中空区域,并且具有用于将上述第一流体导入到上述中空型的蜂窝结构体的隔室中的贯通孔、

  框架,在上述框架与上述被覆部件之间形成第二流体的流路、以及

  开关阀,上述开关阀用于在进行上述第一流体与上述第二流体之间的热交换时将上述内筒的内侧的上述第一流体的流动截断。

  另外,本发明是一种带净化机构的热交换器,具备:

  上述热交换器、以及

  净化机构,上述净化机构设置于上述热交换器的上游侧和/或下游侧的上述第一流体的流路,

  利用上述热交换器的上述框架使上述净化机构与上述热交换器一体化。

  此外,本发明是一种带净化机构的热交换器,具备:

  2个以上的热交换器、以及

  净化机构,上述净化机构设置于上述热交换器之间的上述第一流体的流路,

  利用上述热交换器的上述框架使上述净化机构与上述热交换器一体化,并且,上述2个以上的热交换器中的至少1个为上述热交换器。

  根据本发明,能够提供对来自外部的冲击、热应力等的耐性优异的热交换部件、热交换器和带净化机构的热交换器。

  附图说明

  图1是本发明的实施方式1的热交换部件中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  图2是本发明的实施方式1的热交换部件中的、与中空型的柱状蜂窝结构体的第一流体的流路方向垂直的方向的截面图(图1中的a-a’线的截面图)。

  图3是用于在与中空型的柱状蜂窝结构体的第一流体的流路方向垂直的方向的截面中对隔室的形状进行说明的局部放大图。

  图4是本发明的实施方式2的热交换器的立体图。

  图5是本发明的实施方式2的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  图6是放大表示热交换部件和框架的内筒的部分的立体图。

  图7是本发明的实施方式3的热交换器在非热交换时的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图、以及从开关阀侧观察与中空型的柱状蜂窝结构体的第一流体的流路方向垂直的方向的面而得的图。

  图8是本发明的实施方式3的热交换器在热交换时的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图、以及从开关阀侧观察与中空型的柱状蜂窝结构体的第一流体的流路方向垂直的方向的面而得的图。

  图9是本发明的实施方式4的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的第二流体的流路的放大截面图。

  图10是用于对形成于第二流体的流路的湍流产生部进行说明的图。

  图11是用于对本发明的实施方式5的热交换器的制造方法进行说明的截面图。

  图12是本发明的实施方式6的带净化机构的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  图13是本发明的实施方式6的另一带净化机构的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  图14是本发明的实施方式6的另一带净化机构的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  图15是本发明的实施方式7的带净化机构的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  图16是本发明的实施方式8的带净化机构的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  图17是本发明的实施方式9的带净化机构的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  图18是本发明的实施方式9的另一带净化机构的热交换器中的、与中空型和中实型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  具体实施方式

  以下,参照附图对本发明的实施方式进行具体说明。本发明不限定于以下的实施方式,应该理解为在不脱离本发明的主旨的范围内,基于本领域技术人员的常识,对以下的实施方式适当加入变更、改进等而得的实施方式也在本发明的范围内。

  实施方式1.

  <热交换部件>

  在图1中,对于本发明的实施方式1的热交换部件,示出了与中空型的柱状蜂窝结构体的第一流体的流路方向(隔室的延伸方向)平行的方向的截面图。另外,图2是图1中的a-a’线的截面图,对于本发明的实施方式1的热交换部件,示出了与中空型的柱状蜂窝结构体的第一流体的流路方向垂直的方向的截面图。

  热交换部件1具备:具有隔壁5、内周壁6和外周壁7的中空型的柱状蜂窝结构体8、以及被覆中空型的柱状蜂窝结构体8的外周壁7的被覆部件9,所述隔壁5区划成型从第一底面2贯通到第二底面3而形成第一流体的流路的隔室4。在热交换部件1中,在隔室4内流通的第一流体与在被覆部件9的外侧流通的第二流体之间的热交换介由中空型的柱状蜂窝结构体8的外周壁7和被覆部件9进行。应予说明,在图1中,第一流体可以向纸面的左右中的任一方向流动。作为第一流体,没有特别限定,可以使用各种液体或气体。例如,在搭载于汽车的热交换器中使用热交换部件1时,第一流体优选为尾气。

  此处,本说明书中“中空型的柱状蜂窝结构体8”是指在与第一流体的流路方向垂直的中空型的柱状蜂窝结构体8的截面(图2的截面)的中心部具有中空区域10的柱状蜂窝结构体。

  作为中空型的柱状蜂窝结构体8的形状(外形),没有特别限定,例如可以为圆柱、椭圆柱、四棱柱或其它多棱柱等。因此,图2的截面中的中空型的柱状蜂窝结构体8的外形可以为圆形、椭圆形、四边形或其它多边形等。

  另外,中空型的柱状蜂窝结构体8的中空区域10的形状也没有特别限定,例如可以为圆柱、椭圆柱、四棱柱或其它多棱柱等。因此,图2的截面中的中空区域10的形状可以为圆形、椭圆形、四边形或其它多边形等。

  应予说明,中空型的柱状蜂窝结构体8的形状和中空区域10的形状可以相同,也可以不同,但从对来自外部的冲击、热应力等的耐性的观点考虑,优选为相同的。

  隔室4在与第一流体的流路方向垂直的方向的截面(图2的截面)呈辐射状设置。通过成为这样的构成,能够将在隔室4流通的第一流体的热高效地传递到中空型的柱状蜂窝结构体8的外部。

  作为隔室4的形状,没有特别限定,在与第一流体的流路方向垂直的方向的截面中可以为圆形、椭圆形、三角形、四边形、六边形或其它多边形等。具体而言,除了图2中示出的形状以外,也可以为图3中示出的各种形状。

  内周壁6和外周壁7的厚度大于隔壁5的厚度。通过成为这样的构成,能够提高容易因来自外部的冲击、基于第一流体与第二流体之间的温度差的热应力等而发生破坏(例如,裂纹、破裂等)的内周壁6和外周壁7的强度。

  应予说明,内周壁6和外周壁7的厚度没有特别限定,可以根据用途等而适当地调整。例如,在将热交换部件1用于一般的热交换用途时,内周壁6和外周壁7的厚度优选为超过0.3mm且为10mm以下,更优选为0.5mm~5mm,进一步优选为1mm~3mm。另外,将热交换部件1用于蓄热用途时,还优选使外周壁7的厚度为10mm以上来增大外周壁7的热容量。

  隔壁5优选具有:在与第一流体的流路方向垂直的方向的截面中,在周向延伸的第二隔壁5b和与第二隔壁5b交叉的第一隔壁5a。通过成为这样的构成,能够确保中空型的柱状蜂窝结构体8的强度,而且能够使在隔室4流通的第一流体的热高效地传递到中空型的柱状蜂窝结构体8的外部。

  另外,第一隔壁5a优选于辐射方向延伸。通过成为这样的构成,使向辐射方向的导热性提高,因此能够使在隔室4流通的第一流体的热高效地传递到中空型的柱状蜂窝结构体8的外部。

  在与第一流体的流路方向垂直的方向的截面中,区划形成1个隔室4的第一隔壁5a优选长于区划形成1个隔室4的第二隔壁5b。第一隔壁5a有助于辐射方向的导热系数,因此,通过成为这样的构成,能够使在隔室4流通的第一流体的热高效地传递到中空型的柱状蜂窝结构体8的外部。

  第一隔壁5a的厚度优选大于第二隔壁5b的厚度。由于隔壁5的厚度与导热系数相关,因此通过成为这样的构成,能够使第一隔壁5a的导热系数大于第二隔壁5b的导热系数。其结果,能够使在隔室4流通的第一流体的热高效地传递到中空型的柱状蜂窝结构体8的外部。

  应予说明,隔壁5(第一隔壁5a和第二隔壁5b)的厚度没有特别限定,可以根据用途等而适当地调整。隔壁5的厚度优选为0.1~1mm,进一步优选为0.2~0.6mm。通过使隔壁5的厚度为0.1mm以上,能够使中空型的柱状蜂窝结构体8的机械强度充分。另外,通过使隔壁5的厚度为1mm以下,能够防止因开口面积降低而使压力损失变大、或者因与第一流体的接触面积降低而使热回收效率降低的问题。

  第一隔壁5a在辐射方向延伸时,越到内周壁6侧,相邻的第一隔壁5a的间距越窄,因此有时难以形成隔室4。而且,在内周壁6侧未形成隔室4时或形成于内周壁6侧的隔室4的截面积过小时,热交换部件1的压力损失会变大。从防止这样的问题的观点考虑,在与第一流体的流路方向垂直的中空型的柱状蜂窝结构体8的截面中,优选中空型的柱状蜂窝结构体8的内周壁6侧的第一隔壁5a的个数少于中空型的柱状蜂窝结构体8的外周壁7侧的第一隔壁5a的个数。通过成为这样的构成,能够在内周壁6侧也稳定地形成隔室4。因此,能够抑制由难以在内周壁6侧形成隔室4而引起的热交换部件1的压力损失的增大。

  此处,中空型的柱状蜂窝结构体8的内周壁6侧的第一隔壁5a的个数是指在图2所示的截面中距离中空型的柱状蜂窝结构体8的中空区域10最近的(即距离外周壁7最远的)、具有在周向排列的多个隔室4的区域(以下,称为“周向区域”)中的形成多个隔室4的第一隔壁5a的总数。另外,中空型的柱状蜂窝结构体8的外周壁7侧的第一隔壁5a的个数是指在图2所示的截面中距离中空型的柱状蜂窝结构体8的中空区域10最远的(即,距离外周壁7最近的)周向区域中的形成多个隔室4的第一隔壁5a的总数。

  另外,在与第一流体的流路方向垂直的中空型的柱状蜂窝结构体8的截面中,内周壁6侧的第一隔壁5a的个数优选随着从外周壁7侧朝向内周壁6侧而减少。由于相邻的第一隔壁5a的间距越到内周壁6侧越变窄,因此变得难以形成隔室4,但通过成为这样的构成,能够确保相邻的第一隔壁5a的间距,因此能够稳定地形成隔室4。因此,能够抑制热交换部件1的压力损失的增大。

  应予说明,作为第一隔壁5a的个数的减少频率,没有特别限定,可以是连续的,也可以是断续的。

  隔壁5的密度优选为0.5~5g/cm3。通过使隔壁5的密度为0.5g/cm3以上,能够使隔壁5为足够的强度。另外,通过使隔壁5的密度为5g/cm3以下,能够使中空型的柱状蜂窝结构体8轻量化。通过成为上述的范围的密度,能够使中空型的柱状蜂窝结构体8变得坚固,还得到使导热系数提高的效果。应予说明,隔壁5的密度是利用阿基米德法而测定的值。

  隔壁5、内周壁6和外周壁7以陶瓷为主成分。“以陶瓷为主成分”是指陶瓷在隔壁5、内周壁6和外周壁7的总质量中所占的质量比率为50质量%以上。

  隔壁5、内周壁6和外周壁7的气孔率优选为10%以下,进一步优选为5%以下,特别优选为3%以下。另外,隔壁5、内周壁6和外周壁7的气孔率也可以为0%。通过使隔壁5、内周壁6和外周壁7的气孔率为10%以下,能够提高导热系数。

  隔壁5、内周壁6和外周壁7优选含有导热性高的SiC(碳化硅)作为主成分。“含有SiC(碳化硅)作为主成分”是指SiC(碳化硅)在隔壁5、内周壁6和外周壁7的总质量中所占的质量比率为50质量%以上。

  进一步具体而言,作为中空型的柱状蜂窝结构体8的材料,可以采用含浸有Si的SiC、含浸有(Si+Al)的SiC、金属复合SiC、重结晶SiC、Si3N4和SiC等。其中,由于能够便宜地制造且为高导热性,因而优选采用含浸有Si的SiC、含浸有(Si+Al)的SiC。

  与第一流体的流路方向垂直的中空型的柱状蜂窝结构体8的截面中的隔室密度(即,每单位面积的隔室4的个数)没有特别限定,可以根据用途等而适当地调整,优选为4~320个隔室/cm2的范围。通过使隔室密度为4个隔室/cm2以上,能够充分确保隔壁5的强度,进而能够充分确保中空型的柱状蜂窝结构体8本身的强度和有效GSA(几何表面积)。另外,通过使隔室密度为320个隔室/cm2以下,能够防止第一流体流动时的压力损失的增大。

  中空型的柱状蜂窝结构体8的等静压强度优选超过100MPa,更优选150MPa以上,进一步优选200MPa以上。中空型的柱状蜂窝结构体8的等静压强度超过100MPa时,中空型的柱状蜂窝结构体8的耐久性优异。中空型的柱状蜂窝结构体8的等静压强度可以根据社团法人汽车技术会发行的汽车标准、即JASO标准M505-87中规定的等静压破坏强度的测定方法进行测定。

  与第一流体的流路方向垂直的方向的截面中的外周壁7的直径(外径)优选为20~200mm,更优选为30~100mm。通过成为这样的直径,能够提高热回收效率。在外周壁7不为圆形的情况下,将内切于外周壁7的截面形状的最大内切圆的直径作为外周壁7的直径。

  另外,与第一流体的流路方向垂直的方向的截面中的内周壁6的直径优选为1~50mm,更优选为2~30mm。在内周壁6的截面形状不为圆形的情况下,将内切于外周壁7的截面形状的最大内切圆的直径作为外周壁7的直径。

  中空型的柱状蜂窝结构体8的导热系数在25℃下优选为50W/(m·K)以上,进一步优选为100~300W/(m·K),特别优选为120~300W/(m·K)。通过使中空型的柱状蜂窝结构体8的导热系数为这样的范围,能够使导热性变得良好,使中空型的柱状蜂窝结构体8内的热高效地传递到外部。应予说明,导热系数的值是利用激光闪光法(JIS R1611-1997)而测定的值。

  在使作为第一流体的尾气流过中空型的柱状蜂窝结构体8的隔室4时,优选使中空型的柱状蜂窝结构体8的隔壁5担载催化剂。使隔壁5担载催化剂时,能够使尾气中的CO、NOx、HC等通过催化反应而变为无害的物质,同时也能够将催化反应时产生的反应热用于热交换。作为催化剂,优选含有至少一种选自由贵金属(铂、铑、钯、钌、铟、银和金)、铝、镍、锆、钛、铈、钴、锰、锌、铜、锡、铁、铌、镁、镧、钐、铋和钡构成的组中的元素的催化剂。上述元素可以以金属单质、金属氧化物或除此以外的金属化合物的形式含有。

  作为催化剂(催化剂金属+担载体)的担载量,优选为10~400g/L。另外,如果为含有贵金属的催化剂,则担载量优选为0.1~5g/L。使催化剂(催化剂金属+担载体)的担载量为10g/L以上时,容易呈现出催化作用。另一方面,为400g/L以下时,能够在抑制压力损失的同时抑制制造成本上升。担载体是指担载催化剂金属的载体。作为担载体,优选含有选自由氧化铝、氧化铈和氧化锆构成的组中的至少一种的担载体。

  被覆部件9能够被覆中空型的柱状蜂窝结构体8的外周壁7即可,没有特别限定。例如,可以使用嵌合于中空型的柱状蜂窝结构体8的外周壁7并将中空型的柱状蜂窝结构体8的外周壁7围绕被覆的筒状部件。

  此处,本说明书中,“嵌合”是指中空型的柱状蜂窝结构体8与被覆部件9以相互嵌合的状态固定。因此,在中空型的柱状蜂窝结构体8与被覆部件9的嵌合中,包括基于间隙嵌合、过盈嵌合、热压嵌合等嵌合的固定方法,除此以外,还包括利用钎焊、焊接、扩散接合等将中空型的柱状蜂窝结构体8与被覆部件9彼此固定的情况等。

  被覆部件9可以具有与中空型的柱状蜂窝结构体8的外周壁7对应的内表面形状。通过被覆部件9的内周面与中空型的柱状蜂窝结构体8的外周壁7直接接触,能够使导热性变得良好,使中空型的柱状蜂窝结构体8内的热高效地传递到被覆部件9。

  从提高热回收效率的观点考虑,由被覆部件9围绕被覆的中空型的柱状蜂窝结构体8的外周壁7的部分的面积相对于中空型的柱状蜂窝结构体8的外周壁7的总面积的比例优选较高。具体而言,该面积比例优选为80%以上,更优选为90%以上,更进一步优选为100%(即,中空型的柱状蜂窝结构体8的外周壁7全部由被覆部件9围绕被覆)。

  应予说明,此处所说的“外周壁7”是指与中空型的柱状蜂窝结构体8的第一流体的流路方向平行的面,不包括与中空型的柱状蜂窝结构体8的第一流体的流路方向垂直的面(第一底面2和第二底面3)。

  从制造性的观点考虑,被覆部件9优选为金属制。另外,被覆部件9为金属制时,容易进行与后述的金属制的框架(壳体)23的焊接,就这一点而言,也优异。作为被覆部件9的材料,例如,可以使用不锈钢、钛合金、铜合金、铝合金、黄铜等。其中,出于耐久可靠性高、便宜的理由,优选不锈钢。

  出于耐久可靠性的理由,被覆部件9的厚度优选0.1mm以上,更优选0.3mm以上,更进一步优选0.5mm以上。出于降低热阻而提高导热性的理由,被覆部件9的厚度优选10mm以下,更优选5mm以下,更进一步优选3mm以下。

  <热交换器>

  本发明的实施方式1的热交换器具有上述的热交换部件1。在该热交换器中,热交换部件1以外的部件没有特别限定,可以使用公知的部件。

  <热交换部件和热交换器的制造方法>

  作为本发明的实施方式1的热交换部件和热交换器的制造方法,没有特别限定,可以依据公知的方法进行。例如,可以按照以下说明的制造方法进行。

  首先,将含有陶瓷粉末的坯土挤出成所希望的形状,制作蜂窝成型体。此时,能够通过选择适当形态的口模和夹具来控制隔室4的形状和密度、隔壁5的个数、长度和厚度、内周壁6和外周壁7的形状和厚度等。另外,作为蜂窝成型体的材料,可以使用前述的陶瓷。例如,在制造以含浸有Si的SiC复合材料为主成分的蜂窝成型体时,可以通过在规定量的SiC粉末中加入粘合剂、以及、水和/或有机溶剂,将得到的混合物混炼,制成坯土,进行成型而得到所希望形状的蜂窝成型体。然后,将得到的蜂窝成型体干燥,在减压的不活泼气体或真空中将金属Si含浸到蜂窝成型体中并进行烧成,由此能够得到具有由隔壁5区划形成的隔室4的中空型的柱状蜂窝结构体8。

  接下来,将中空型的柱状蜂窝结构体8插入于被覆部件9,由此用被覆部件9围绕被覆中空型的柱状蜂窝结构体8的外周面。在该状态下,进行热压嵌合,由此使被覆部件9的内周面嵌合于中空型的柱状蜂窝结构体8的外周面。应予说明,中空型的柱状蜂窝结构体8与被覆部件9的嵌合可以如上所述通过热压嵌合来进行,除此以外,也可以利用基于间隙嵌合、过盈嵌合这样的嵌合的固定方法、以及钎焊、焊接、扩散接合等进行。由此,热交换部件1制作完成。

  接下来,可以通过将该热交换部件1与其它部件组合、进行接合等处理而得到热交换器20。

  实施方式2.

  在图4中示出了本发明的实施方式2的热交换器的立体图。另外,在图5中示出了与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  如图5所示,热交换器20具备:上述的热交换部件1、设置于中空型的柱状蜂窝结构体8的中空区域10的内筒27、在与被覆部件9之间形成第二流体的流路24的框架23、以及设置于内筒27的开关阀26。

  内筒27具有用于将第一流体导入到中空型的蜂窝结构体8的隔室4的贯通孔25,第一流体的流动被贯通孔25分支成2部分(中空型的柱状蜂窝结构体8的隔室4和中空区域10)。

  框架23进一步具有第二流体的入口21和第二流体的出口22,围绕被覆着被覆部件9。从提高热交换效率的观点考虑,框架23优选围绕被覆整个热交换部件1。

  开关阀26能够利用其开关机构来控制在中空型的柱状蜂窝结构体8的中空区域10流动的第一流体的量。特别是,开关阀26在第一流体与第二流体之间的热交换时将内筒27的内侧的第一流体的流动截断,从而介由贯通孔25将第一流体选择性地导入到中空型的蜂窝结构体8的隔室4,因此能够高效地进行第一流体与第二流体之间的热交换。

  此处,将设置于内筒27的贯通孔25的例子示于图6。图6是将热交换部件1(其中,省略被覆部件9)和内筒27的部分放大表示的立体图。如图6中的(a)~(f)所示,贯通孔25可以形成于内筒27的整个周部,也可以形成于内筒27的部分位置(例如,仅上部、中央部或下部)。另外,贯通孔25的形状也可以为圆形、椭圆形、四边形等各种形状。

  在该热交换器20中,第二流体从第二流体的入口21流入到框架23内。接着,第二流体在通过第二流体的流路24的期间介由热交换部件1的被覆部件9与在中空型的柱状蜂窝结构体8的隔室4流动的第一流体进行热交换后,从第二流体的出口22流出。应予说明,热交换部件1的被覆部件9的外周面可以由用于调整传热效率的部件被覆。

  另一方面,第一流体流入到内筒27的内部。此时,如果开关阀26关闭,则中空区域10内的内筒27的通气阻力上升,第一流体介由贯通孔25选择性地流入到隔室4。另一方面,如果开关阀26打开,则中空区域10内的内筒27的通气阻力降低,因而第一流体选择性地流入到中空区域10内的内筒27。因此,能够通过控制开关阀26的开关来调整流入到隔室4的第一流体的量。应予说明,由于在中空区域10内的内筒27流动的第一流体对与第二流体的热交换几乎没有贡献,因此该第一流体的路径作为希望抑制第一流体的热回收时等的旁通路径发挥功能。即,在希望抑制第一流体的热回收时,只要将开关阀26打开即可。

  框架23的材质没有特别限定,从导热性和制造性的观点考虑,优选为金属制。作为金属,例如可以使用不锈钢、钛合金、铜合金、铝合金、黄铜等。其中,出于便宜且耐久可靠性高的理由,优选不锈钢。

  框架23的厚度没有特别限定,出于耐久可靠性的理由,优选0.1mm以上,更优选0.5mm以上,更进一步优选1mm以上。从成本、体积、重量等观点考虑,框架23的厚度优选10mm以下,更优选5mm以下,更进一步优选3mm以下。

  框架23可以为一体成型品,优选为由2个以上的部件形成的接合部件。框架23为由2个以上的部件形成的接合部件时,能够提高框架23的设计自由度。

  开关阀26的形状和结构没有特别限定,可以根据设置开关阀26的中空型的柱状蜂窝结构体8的中空区域10而选择适当的形状和结构。

  作为第二流体,没有特别限制,热交换器20搭载于汽车时,第二流体优选为水或防冻液(由JIS K2234:2006规定的LLC)。关于第一流体和第二流体的温度,优选为第一流体的温度>第二流体的温度。其理由如下:热交换部件1的被覆部件9在低温下不膨胀,而中空型的柱状蜂窝结构体8在较高温下膨胀,由此成为两者的嵌合难以松弛的条件。特别是,中空型的柱状蜂窝结构体8与被覆部件9的嵌合为热压嵌合时,能够将嵌合松弛、中空型的柱状蜂窝结构体8脱落的风险降到最低限。

  在热交换器20中,第二流体的入口21和第二流体的出口22设置于同一侧,但对第二流体的入口21和第二流体的出口22的位置没有特别限制,可以考虑热交换器20的设置场所、配管位置、热交换效率而进行适当的变更。

  另外,在图5中示出了相对于中空型的柱状蜂窝结构体8的轴向(隔室4的延伸方向)第一流体和第二流体在同一方向平行流动的情况,但可以通过调换第二流体的入口21和第二流体的出口22而使第一流体和第二流体相对于中空型的柱状蜂窝结构体8的轴向而对向流动。通过成为这样的构成,能够随着第二流体靠近下游而与更高温度的第一流体进行热交换,因此能够使热交换效率提高。

  具有如上所述的特征的热交换部件1可以通过与框架23和内筒27组合、进行接合等处理来制造热交换器20。

  实施方式3.

  本发明的实施方式3的热交换器在开关阀26构成为在非热交换时将上述中空型的蜂窝结构体8的隔室4侧的第一流体的流动截断方面与本发明的实施方式2的热交换器不同。以下,与本发明的实施方式2的热交换器相同的部分省略说明,仅对不同点进行说明。

  本发明的实施方式2的热交换器通过在希望抑制第一流体的热回收的情况下,打开开关阀26而使第一流体相比中空型的蜂窝结构体8的隔室4侧更容易流到内筒27侧。然而,即便在打开开关阀26的情况下,第一流体也会少量流到中空型的蜂窝结构体8的隔室4侧,因此有时无法充分抑制热回收。

  因此,在本发明的实施方式3的热交换器中,开关阀构成为:非热交换时在中空型的蜂窝结构体8的隔室4侧截断第一流体的流动。

  在图7的(a)和图8的(a)中示出了本发明的实施方式3的热交换器的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。另外,在图7的(b)和图8的(b)中示出了从开关阀侧观察与中空型的柱状蜂窝结构体的第一流体的流路方向垂直的方向的面而得的图。图7的(a)和(b)表示非热交换时的状态,图8的(a)和(b)表示热交换时的状态。

  应予说明,在图7和图8中,从使图容易观察的观点考虑,省略了框架23。另外,本说明书中“热交换时”是指进行第一流体与第二流体之间的热交换时(即,进行热回收时),“非热交换时”是指不进行第一流体与第二流体之间的热交换时(即,抑制热回收时)。

  如图7和图8所示,本发明的实施方式3的热交换器具备开关阀26,所述开关阀26具有:将内筒27侧的第一流体的流动截断的第一开关阀26a、以及将中空型的蜂窝结构体8的隔室4侧的第一流体的流动截断的第二开关阀26b。第二开关阀26b构成为:在将第一开关阀26a打开时关闭,在第一开关阀26a关闭时打开。另外,设置有在中空型的蜂窝结构体8的隔室4侧流动的第一流体的流路的截断壁28。第二开关阀26b和截断壁28均为能够将内筒27和被覆部件9之间的第一流体的流路的一半截断的半圆环状(半环状),在第二开关阀26b关闭的情况下,第二开关阀26b和截断壁28成为一体而截断第一流体的流动。

  应予说明,在图7和图8中示出了使第二开关阀26b和截断壁28为半圆环状的例子,但是,只要构成为:第二开关阀26b和截断壁28成为一体而截断第一流体的流动即可,对它们的形状没有特别限定。例如,可以将截断壁28制成中心角为270°的环状扇形,将第二开关阀26b制成中心角为90°的环状扇形。

  在具有如上所述的结构的本发明的实施方式3的热交换器中,通过在非热交换时打开第一开关阀26a并关闭第二开关阀26b而将中空型的蜂窝结构体8的隔室4侧的第一流体的流动截断,所以第一流体选择性地流入到中空型的蜂窝结构体8的中空区域10内的内筒27侧。因此,非热交换时能够防止第一流体流入到中空型的蜂窝结构体8的隔室4侧,所以能够增强对热回收的抑制。另一方面,通过在热交换时关闭第一开关阀26a并打开第二开关阀26b而将中空型的蜂窝结构体8的中空区域10内的内筒27侧的第一流体的流动截断,所以第一流体选择性地流入到中空型的蜂窝结构体8的隔室4侧。因此,热交换时能够防止第一流体流入到中空型的蜂窝结构体8的中空区域10内的内筒27侧,所以能够提高热回收。

  应予说明,该实施方式中说明的效果由于并不取决于本发明的实施方式1的热交换部件1,因此也可以利用本技术领域中公知的热交换部件而得到。

  实施方式4.

  本发明的实施方式4的热交换器在形成第二流体的流路的框架和/或被覆部件设置有湍流产生部方面与本发明的实施方式2和3的热交换器不同。以下,与本发明的实施方式2和3的热交换器相同的部分省略说明,仅对不同点进行说明。

  本发明的实施方式2和3的热交换器在第二流体通过第二流体的流路24的期间进行与第一流体的热交换。然而,第二流体的流路24中的第二流体的流动顺畅时,存在无法充分提高与第一流体的热交换效率的情况。

  因此,本发明的实施方式4的热交换器在形成第二流体的流路的框架和/或被覆部件设置有湍流产生部。

  在图9中示出了本发明的实施方式4的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的第二流体的流路的放大截面图。应予说明,在图9中,从使图容易观察的观点考虑,省略了除第二流体的流路以外的部件。

  如图9所示,本发明的实施方式4的热交换器在第二流体的流路24形成有湍流产生部29。此处,本说明书中“湍流产生部29”是指能够使第二流体产生湍流的部分。通过在形成第二流体的流路24的框架23和/或被覆部件9上设置湍流产生部29,从而使通过被覆部件9和框架23之间的第二流体的流路24的第二流体产生湍流,第一流体与第二流体之间的热传递率提高,由此能够提高热交换效率。

  湍流产生部29只要是可产生湍流的形状,就没有特别限定,能够制成突起部、凹部、缩径部等各种形状。另外,湍流产生部29只要形成于第二流体的流路24即可,可以形成于被覆部件9或框架23中的任一者,或者形成于被覆部件9和框架23这两方。此外,湍流产生部29的个数也没有特别限定,可以根据湍流产生部29的形状等而适当地调整。

  图9是在框架23的一部分形成有1处作为湍流产生部29的缩径部的例子。另外,如图10所示,(a)可以在框架23的大部分形成有作为湍流产生部29的缩径部,或者(b)可以在框架23的一部分形成有2处作为湍流产生部29的缩径部,或者(c)可以将作为湍流产生部29的突起部设置于被覆部件9和框架23这两方,或者(d)可以将作为湍流产生部29的凹部设置于被覆部件9和框架23这两方。

  应予说明,该实施方式中说明的效果由于并不取决于本发明的实施方式1的热交换部件1,因此也可以利用本技术领域中公知的热交换部件而得到。

  实施方式5.

  本发明的实施方式2~4的热交换器可以依据公知的方法来制造,但有时难以组装。

  因此,本发明的实施方式5的热交换器通过将构成的部件分成容易组装的部件并将它们以适当的顺序组装而制造。

  在图11中示出了用于对本发明的实施方式5的热交换器的制造方法进行说明的截面图。该截面图是与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  首先,如图11中的(a)所示,准备由中空型的柱状蜂窝结构体8和被覆部件9构成的热交换部件1。被覆部件9具有小径部、大径部、以及用于在轴向连续形成小径部和大径部的台阶部31。

  接下来,如图11中的(b)所示,将热交换部件1插入于框架23并利用焊接等进行固定。框架23设定成框架23的轴向的一端侧的内径大于框架23的轴向的另一端侧的内径。框架23的轴向的一端侧的内径与被覆部件9的大径部的外径对应,框架23的轴向的另一端侧的内径与被覆部件9的小径部的外径对应。因此,能够使热交换部件1相对于框架23的插入方向不容易被弄错。

  接下来,如图11中的(c)所示,将内筒27插入到中空型的柱状蜂窝结构体8的中空区域10。内筒27具有小径部、大径部、以及用于在轴向连续形成小径部和大径部的台阶部31。构成为:内筒27的小径部的外径小于中空型的柱状蜂窝结构体8的中空区域10的直径、内筒27的大径部的外径大于中空型的柱状蜂窝结构体8的中空区域10的直径。而且,台阶部31与中空型的柱状蜂窝结构体8的一个底面(第一底面2或第二底面3)卡合而固定内筒27,由此决定内筒27的位置。因此,能够使内筒27不容易发生错位。作为将台阶部31和柱状蜂窝结构体8的一个底面卡合而固定的方法,可以使其彼此接触而固定,也可以介由公知的接合材料将彼此固定。

  接下来,如图11中的(d)所示,将前盖32设置于内筒27的大径部一侧后,利用焊接等与内筒27和框架23固定。前盖32由于具有与内筒27的大径部的外径和框架23的一端侧的外径对应的内径,因此能够使前盖32的设置位置不容易被弄错。

  接下来,如图11中的(e)所示,将后盖33设置于框架23的另一端侧后,利用焊接等与框架23固定,安装开关阀26。后盖33由于具有与框架23的另一端侧的外径对应的内径,因此能够使后盖33的设置位置不容易被弄错。另外,将截断管34插入到内筒27的大径部一侧后,利用焊接等进行固定。

  应予说明,在图11中未图示第二流体的入口21和出口22,可以预先利用焊接等连接于框架23,也可以在(b)~(e)中的任一阶段后进行连接。

  如上所述制造的本发明的实施方式5的热交换器由于不容易弄错所构成的部件的位置、插入方向等,容易组装,因此易于制造。

  应予说明,该实施方式中说明的效果由于并不取决于本发明的实施方式1的热交换部件1,因此也可以利用本技术领域中公知的热交换部件而得到。

  实施方式6.

  本发明的实施方式6的带净化机构的热交换器具备:本发明的实施方式2~5的热交换器和设置于热交换器的上游侧的第一流体的流路的净化机构,利用热交换器的框架将净化机构和热交换器一体化。以下,由于上述已经对本发明的实施方式2~5的热交换器的构成进行了说明,因此对除此以外的构成进行说明。

  本发明的实施方式2~5的热交换器为了得到净化功能而需要用配管与净化装置连接,因此难以确保配置空间。

  因此,本发明的实施方式6的带净化机构的热交换器在热交换器的上游侧的第一流体的流路设有净化机构,并利用框架将净化机构与热交换器一体化。

  在图12中示出了本发明的实施方式6的带净化机构的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  如图12所示,本发明的实施方式6的带净化机构的热交换器在热交换器的上游侧的第一流体的流路中具备净化机构30。另外,在热交换器和净化机构30之间以将通过净化机构30后的第一流体导入到内筒27的方式设置有隔离壁41。此外,利用框架23将净化机构30与热交换器一体化。因此,无需利用配管将热交换器和净化机构30连接,能够实现省空间化。

  如图13所示,隔离壁41可以具有贯通孔42。隔离壁41具有贯通孔42时,通过净化机构30后的第一流体能够流入到中空型的蜂窝结构体8的隔室4和内筒27这两者中。在具有这样的构成的带净化机构的热交换器中,通过在热交换时关闭开关阀26而使第一流体介由内筒27的贯通孔25和隔离壁41的贯通孔42这两者流入到隔室4。此时,特别是,第一流体从隔离壁41的贯通孔42直线性地流入,因此能够使通气阻力降低。另一方面,在非热交换时,打开开关阀26,由此使第一流体流入到内筒27。此时,第一流体虽然要从隔离壁41的贯通孔42流入隔室4,但由于隔室4的通气阻力远远高于内筒27的通气阻力,因此第一流体大部分在内筒27内通过。

  另外,如图14所示,可以在中空区域10具备内筒27的中空型的柱状蜂窝结构体8和净化机构30之间不设置隔离壁41。不设置隔离壁41时,通过净化机构30后的第一流体有可能流入到中空型的蜂窝结构体8的隔室4和内筒27这两者中。在具有这样的构成的带净化机构的热交换器中,热交换时,通过关闭开关阀26而使通过净化机构30后的第一流体直接流入到隔室4,或者介由内筒27的贯通孔25而流入到隔室4。此时,特别是,通过净化机构30后的第一流体直接且直线性地流入,因此能够使通气阻力降低。另一方面,非热交换时,通过打开开关阀26而使第一流体流入到内筒27。此时,通过净化机构30后的第一流体虽然要流入隔室4,但由于隔室4的通气阻力远远高于内筒27的通气阻力,因此第一流体大部分在内筒27内通过。

  作为净化机构30,没有特别限定,可以使用本技术领域公知的净化机构。作为净化机构30的例子,可举出担载有催化剂的催化体、过滤器等。作为催化剂,例如,使用尾气作为第一流体时,可以使用具有将尾气氧化或还原的功能的催化剂。作为催化剂,可举出贵金属(例如,铂、铑、钯、钌、铟、银、金等)、铝、镍、锆、钛、铈、钴、锰、锌、铜、锡、铁、铌、镁、镧、钐、铋、钡等。这些元素可以为金属单质、金属氧化物、以及除此以外的金属化合物。另外,催化剂可以单独使用或者组合2种以上使用。

  应予说明,该实施方式中说明的效果由于并不取决于本发明的实施方式1的热交换部件1,因此也可以利用本技术领域中公知的热交换部件而得到。

  实施方式7.

  本发明的实施方式7的带净化机构的热交换器在热交换器的下游侧的第一流体的流路中设置有净化机构30方面与本发明的实施方式6的带净化机构的热交换器不同。以下,与本发明的实施方式6的带净化机构的热交换器相同的部分省略说明,仅对不同点进行说明。

  本发明的实施方式6的带净化机构的热交换器在高温的第一流体通过净化机构30时,第一流体的温度降低,存在热回收效率降低的可能性。

  因此,本发明的实施方式7的带净化机构的热交换器在热交换器的下游侧的第一流体的流路中设置净化机构30,并利用框架23将净化机构30与热交换器一体化。

  在图15中示出本发明的实施方式7的带净化机构的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  如图15所示,本发明的实施方式7的带净化机构的热交换器在热交换器的下游侧的第一流体的流路中具备净化机构30。因此,能够在确保净化性能的同时提高热回收效率。另外,利用框架23将净化机构30与热交换器一体化。因此,无需利用配管将热交换器和净化机构30连接,能够实现省空间化。

  实施方式8.

  本发明的实施方式8的带净化机构的热交换器在热交换器的上游侧和下游侧这两方的第一流体的流路中具备净化机构30方面与本发明的实施方式6、7的带净化机构的热交换器不同。以下,与本发明的实施方式6、7的带净化机构的热交换器相同的部分省略说明,仅对不同点进行说明。

  在热交换器的上游侧的第一流体的流路中设置有净化机构30的情况下,在高温的第一流体通过净化机构30时第一流体的温度降低,存在热回收效率降低的可能性。另一方面,在热交换器的下游侧的第一流体的流路中设置有净化机构30的情况下,基于热交换器的热回收导致第一流体的温度降低,存在未能获得足以确保净化机构30的催化作用的热、净化性能降低的可能性。

  因此,本发明的实施方式8的带净化机构的热交换器对净化机构30进行分割,在热交换器的上游侧和下游侧这两方的第一流体的流路中设置净化机构30,并利用框架23使净化机构30与热交换器一体化。

  在图16中示出了本发明的实施方式8的带净化机构的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  如图16所示,本发明的实施方式8的带净化机构的热交换器在热交换器的上游侧和下游侧的第一流体的流路中具备分割成2个的净化机构30。因此,能够提高净化性能和热回收效率这两者。另外,利用框架23将净化机构30与热交换器一体化。因此,无需利用配管将热交换器和净化机构30连接,能够实现省空间化。

  实施方式9.

  本发明的实施方式9的带净化机构的热交换器在具备2个以上热交换器和设置于热交换器之间的第一流体的流路的净化机构、并且热交换器中的至少1个为本发明的实施方式2~5的热交换器方面与本发明的实施方式6、7的带净化机构的热交换器不同。以下,与本发明的实施方式6~8的带净化机构的热交换器相同的部分省略说明,仅对不同点进行说明。

  在图17中示出了本发明的实施方式9的带净化机构的热交换器中的、与中空型的柱状蜂窝结构体的第一流体的流路方向平行的方向的截面图。

  如图17所示,本发明的实施方式8的带净化机构的热交换器具备2个本发明的实施方式2~5所涉及的热交换器,并在2个热交换器之间的第一流体的流路中设置有净化机构30。通过成为这样的构成,能够增加热交换器的个数,因此能够增大热回收量。应予说明,在图17中示出了在第一流体的流路的上游侧和下游侧各设置有1个热交换器的例子,但也可以在第一流体的流路的上游侧和下游侧各设置2个以上的热交换器。

  另外,如图18所示,可以将本发明的实施方式2~5的热交换器和构造与该热交换器不同的热交换器组合使用。在图18中,作为构造与本发明的实施方式2~5的热交换器不同的热交换器,示出了使用具有下述热交换部件的热交换器的例子,该热交换部件具备:具有隔壁和外周壁的中实型的柱状蜂窝结构体、以及被覆中实型的柱状蜂窝结构体的外周壁的被覆部件,用于进行第一流体与在被覆部件的外侧流通的第二流体之间的热交换,所述隔壁区划成型从第一底面贯通到第二底面而形成第一流体的流路的隔室。该热交换器使用中实型的柱状蜂窝结构体来代替中空型的柱状蜂窝结构体,除此以外,具有与本发明的实施方式2~5的热交换器相同的构成。应予说明,作为构造与本发明的实施方式2~5的热交换器不同的热交换器,不限于上述的例子,也可以使用具有该技术领域中公知的构造的其它热交换器。另外,在图18中示出了在第一流体的流路的上游侧使用本发明的实施方式2~5的热交换器的例子,但也可以在第一流体的流路的下游侧使用本发明的实施方式2~5的热交换器。此外,在图18中示出了在第一流体的流路的上游侧和下游侧各设置有1个热交换器的例子,但也可以在第一流体的流路的上游侧和下游侧各设置2个以上的热交换器。通过成为这样的构成,能够增大热回收量,并且能够降低2个以上的热交换器同时故障的风险,因此使可靠性提高。

  [实施例]

  以下,通过实施例对本发明进行更具体的说明,但本发明不受这些实施例任何限定。

  <蜂窝结构体的制造>

  (实施例1)

  将含有SiC粉末的坯土挤出成型为所希望的形状后,进行干燥,加工成规定的外形尺寸,进行Si含浸烧成,由此制造中空型的柱状蜂窝结构体。中空型的柱状蜂窝结构体的外形为如图1、2所示的圆柱状,外径为70mm,中空区域的直径为52mm,第一流体的流路方向的长度为25mm。另外,第一隔壁、第二隔壁、内周壁和外周壁的厚度如表1所示。

  (比较例1、2)

  将内周壁和外周壁的厚度如表1所示进行变更,除此以外,与实施例1同样地制造中空型的柱状蜂窝结构体。

  <等静压强度试验>

  将厚度0.5mm的聚氨酯橡胶制的片材卷绕在中空型的柱状蜂窝结构体的外周面,进一步,在中空型的柱状蜂窝结构体的两端部上以使圆形的聚氨酯橡胶制的片材夹在中间的方式配置厚度20mm的铝制的圆板。铝制的圆板和聚氨酯橡胶制的片材使用与中空型的柱状蜂窝结构体的端部为相同的形状和相同的大小的圆板和片材。进一步,用塑料胶带沿着铝制的圆板的外周进行缠绕,将铝制的圆板的外周与聚氨酯橡胶制的片材之间密封,得到试验用样品。接下来,将试验用样品放入到装满水的压力容器内。接着,以0.3~3.0MPa/分钟的速度使压力容器内的水压上升到200MPa,对中空型的柱状蜂窝结构体发生破坏时的水压进行测量。在该评价结果中,将水压达到200MPa也不发生破坏的情况表示为“≥200(MPa)”。将试验结果示于表1。

  [表1]

  

  如表1所示,内周壁和外周壁的厚度大于隔壁(第一隔壁和第二隔壁)的厚度的实施例1的中空型的柱状蜂窝结构体,与内周壁和外周壁的厚度与隔壁的厚度相同的比较例1的中空型的柱状蜂窝结构体以及内周壁和外周壁的厚度小于隔壁的厚度的比较例2的中空型的柱状蜂窝结构体相比,等静压强度大。

  由以上的结果可知:根据本发明,能够提供对来自外部的冲击、热应力等的耐性优异的热交换部件、热交换器和带净化机构的热交换器。

  符号说明

  1热交换部件,2第一底面,3第二底面,4隔室,5隔壁,5a第一隔壁,5b第二隔壁,6内周壁,7外周壁,8中空型的柱状蜂窝结构体,9被覆部件,10中空区域,20热交换器,21第二流体的入口,22第二流体的出口,23框架,24第二流体的流路,25贯通孔,26开关阀,26a第一开关阀,26b第二开关阀,27内筒,28截断壁,29湍流产生部,30净化机构,31台阶部,32前盖,33后盖,34截断管,41隔离壁,42贯通孔

《热交换部件、热交换器和带净化机构的热交换器.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)