欢迎光临小豌豆知识网!
当前位置:首页 > 机械技术 > 热交换> 覆膜及其形成方法独创技术17645字

覆膜及其形成方法

2021-03-21 12:31:17

覆膜及其形成方法

  技术领域

  本公开涉及为了抑制灰附着于如煤气化炉或粉煤燃烧锅炉那样的火炉而形成于火炉的母材表面的覆膜及其形成方法。

  背景技术

  在煤气化炉中,通过燃烧及气化反应而生成灰,在粉煤燃烧锅炉中,通过燃烧而生成灰。作为不燃物的灰附着、堆积于传热管表面,传热管整体的热阻增加,因此导致传热效率降低。在灰堆积得庞大的情况下,会引起流路的堵塞、因巨大的灰块落下而导致传热管的破损,成为引起设备停止的主要原因。以往,通过利用喷射蒸汽、空气的吹灰器的吹飞,在粉煤燃烧锅炉的情况下还并用由暂时的负载变动引起的温度变化的热冲击,从而实施定期的灰的脱落。

  另一方面,为了抑制灰附着于传热管,提供了以下两种技术。第一是基于添加物而对灰粒子的改性,是通过利用向燃料的煤中添加的添加物来增加灰粒径、增加灰熔点,从而抑制灰粒子向传热管附着的技术。第二是通过在传热管上形成覆膜而抑制灰附着。例如,提供了如下技术:通过喷镀等形成控制传热管表面的润湿性的覆膜,以发挥与熔融的灰粒子的疏水性,从而抑制灰粒子的附着(参照专利文献1)。还提供了如下技术:通过由涂布陶瓷、氧化钛所引起的热膨胀的不同而剥离附着的灰(参照专利文献2、3)。还提供了如下技术:将凝胶状组合物涂布在传热管表面而使得容易除去附着的灰(参照专利文献4、5)。

  现有技术文献

  专利文献

  专利文献1:日本特开2005-146409号公报

  专利文献2:日本特开2003-262490号公报

  专利文献3:日本特开2003-120902号公报

  专利文献4:日本特开2011-169521号公报

  专利文献5:日本特开2011-169476号公报

  发明内容

  发明所要解决的课题

  然而,由于在利用吹灰器、热冲击来除去灰的运用上花费费用,因此要求降低运行成本。另外,现有的抑制灰附着于传热管的技术并不能够对所有煤种实施,也存在没有效果的煤种的情况。因此,要求能够应对煤种的扩大那样的抑制灰附着于传热管的技术。

  本公开是鉴于上述实际情况而提出的,其目的在于,提供一种抑制灰附着于传热管等,并能够降低运行成本,能够应对煤种的扩大那样的覆膜及其形成方法。

  用于解决课题的方案

  为了解决上述课题,本申请涉及的覆膜是在火炉的母材的表面形成的覆膜,其具有滑动性材料层作为顶涂层,该滑动性材料层包含氧化物陶瓷和具有层状晶体结构的化合物。

  本申请涉及的覆膜可以是仅由滑动性材料层构成的单层。即,滑动性材料层可以形成在火炉的母材的表面。

  本申请涉及的覆膜也可以在滑动性材料层的下层具有由耐腐蚀性材料或耐火材料构成的基底层。母材可以由钢材或耐火材料构成。母材可以构成火炉的传热管或壁面。

  对于本申请所涉及的火炉,在火炉的母材的表面形成有覆膜。本申请涉及的煤气化炉、粉煤燃烧锅炉、燃烧装置或反应装置包含火炉。

  本申请涉及的覆膜的形成方法是在火炉的母材的表面形成的覆膜的形成方法,其包括如下工序作为形成顶涂层的工序:涂布含有氧化物陶瓷、具有层状晶体结构的化合物和有机硅的滑动性材料的浆料,然后对浆料进行烧成而成膜。

  发明效果

  根据本公开,能够降低运行成本,能够应对燃料种类的扩大。进而,通过抑制灰附着于火炉,能够抑制流路的堵塞、传热管的破损,能够实现设备的稳定运行。

  附图说明

  图1是表示本实施方式的覆膜的概略结构的截面图。

  图2是说明实施例1的灰附着试验中使用的燃烧炉的结构的图。

  图3是表示实施例1的造渣(slagging)条件的试验结果的照片。

  图4是表示实施例1的污垢(fouling)条件的试验结果的照片。

  图5是说明实施例2的灰附着试验中使用的电炉的图。

  图6是表示实施例2的造渣条件的试验结果的照片。

  图7是表示实施例2的造渣条件的试验结果的图表。

  图8是表示实施例2的污垢条件的试验结果的照片。

  图9是表示实施例2的污垢条件的试验结果的图表。

  具体实施方式

  以下,参照附图对本实施方式的覆膜及其形成方法进行详细说明。图1是表示本实施方式的覆膜的截面图。本实施方式的覆膜抑制灰附着于火炉,且使灰的脱落变得容易。

  如图1所示,覆膜由形成于母材11的表面的基底层12、和在基底层12的表面作为顶涂层而形成的滑动性材料层13构成。在煤气化炉、粉煤燃烧锅炉这样的火炉中,母材11可以是构成壁面的钢材、耐火材料,也可以是构成传热管的碳钢材、不锈钢钢材。作为耐火材料,可举出高铝砖、铬镁砖等。

  基底层12在母材11的表面以预定的厚度形成,形成粗糙度大的表面而使滑动性材料层13固定。基底层12的厚度可以为200~1000μm。基底层12的表面粗糙度以算术平均粗糙度Ra计可以为1~20μm。基底层12可以是金属、陶瓷等无机物,抑制在母材11的表面长时间暴露于灰时因腐蚀反应导致的灰的附着力强化。基底层12通过设为耐腐蚀性材料,能够提高火炉的耐腐蚀性。作为耐腐蚀性材料,可举出高铬系合金等。另外,基底层12也能够通过设为耐火材料来提高火炉的耐火性。作为耐火材料,可举出浇注成型耐火材料。

  滑动性材料层13通过滑动性材料而在基底层12的表面以预定的厚度形成。滑动性材料层13的厚度可以为10~90μm。滑动性材料层13包含氧化物陶瓷和具有层状晶体结构的化合物。作为氧化物陶瓷,可举出含有硅、铝、铬、锰和铁元素中的至少一种的氧化物。层状晶体结构是指原子或原子团排列成平面状而形成片结构,在与该平面垂直的方向上可观察到片结构重复的晶体结构。其中,属于六方晶系的结构也被称为石墨型晶体结构,对称性特别高。作为可构成石墨型晶体结构的化合物,可举出石墨、硫化锰、氟化石墨、氮化硼、二硫化钼及二硫化钨。滑动性材料层13通过层状晶体结构所具有的降低表面的摩擦阻力的作用,从而使碰撞的灰粒子滑动,并且提高附着的灰的脱落性。另外,通过氧化物陶瓷所具有的耐久性,从而抑制高温环境下的灰与基底层12之间的腐蚀反应。

  这样的覆膜通过在形成煤气化炉、粉煤燃烧锅炉的火炉的传热管、壁面的母材11的表面形成基底层12,在基底层12的表面形成作为顶涂层的滑动性材料层13而得到。基底层12可以通过喷镀或涂布无机物来形成。滑动性材料层13可以通过涂布或喷射滑动性材料的浆料来形成。在滑动性材料中,如果除了氧化物陶瓷及具有层状晶体结构的化合物以外,还含有有机硅,则涂布性提高。有机硅是由具有有机基团的硅与氧交替结合而形成的主链构成的聚合物,可以举出有机硅树脂、硅橡胶、硅油、有机硅润滑脂等。滑动性材料中包含的氧化物陶瓷的比例可以为1~30质量%。滑动性材料中包含的具有层状晶体结构的化合物的比例可以为10~30质量%。滑动性材料中包含的有机硅的比例可以为10~50质量%。覆膜除了应用于煤气化炉、粉煤燃烧锅炉的火炉以外,也可以应用于燃烧装置或反应装置的火炉。

  实施例1

  在实施例1中,使用卧式燃烧炉作为火炉,对于本实施方式的覆膜进行了灰附着试验。在实施例1的试验中,模拟燃烧炉的炉内温度,观察在暴露于炉内并形成有覆膜的探针表面附着的灰的情况。

  图2是表示在灰附着试验中使用的燃烧炉的结构的截面图。如图2(a)所示,燃烧炉100构成为燃烧室101沿着从入口102朝向出口103的流路大致水平地延伸的卧式。燃烧室101中,多个区段通过凸缘105可分离地连结,沿着流路构成预热部121、燃烧部122、灰附着部123。

  在预热部121中,从入口102供给LPG及空气,在流路的中途进一步供给空气及氧气,LPG进行燃烧。在从预热部121转移至燃烧部122的部分形成有流路变窄的喉部104。储存在罐131中的粉煤通过煤供给器133与载气的空气一起通过供给通路135供给至喉部104。所供给的粉煤的热量为35kW。在燃烧部122中,从喉部104供给的粉煤燃烧。在灰附着部123中,通过粉煤的燃烧而生成的灰附着于设置在燃烧室101中的探针111、壁面。

  图2(b)是表示构成燃烧室101的灰附着部123的区段110的结构的截断立体图。区段110通过凸缘105相互连结,但在该立体图中为了简单而省略了凸缘105。在圆筒状的区段110形成有向内部导入探针111的探针端口113、观测端口115、采样端口117、以及热电偶端口119。经水冷的探针111从探针端口113伸入燃烧室101内,并能够从观测端口115目视。探针111的直径为31.8mm。能够从采样端口117采集燃烧室101的试样,从热电偶端口119向燃烧室101插入热电偶。

  图2(a)中的符号P1~P6表示设置于燃烧室101的灰附着部123的探针。这些探针P1~P6以喉部104为基准在流路的方向上分别位于836、1200、1562、1924、2297、2794mm处。

  如表1所示,分别针对造渣条件和污垢条件实施试验。在此,造渣条件是在气体温度为灰的软化温度以上的环境下,熔融的灰附着于母材的表面的条件。对于造渣条件,设想火炉内以及火炉出口部的壁面,母材11使用碳钢材(SS400钢)。污垢条件是在气体温度为灰的软化温度以下的环境下,灰附着于母材的表面的条件。对于污垢条件,设想位于火炉后部的传热管,母材11使用不锈钢钢材(SUS304钢)。基底层12是镍-铬合金层,通过大气等离子体喷镀法形成。基底层12的厚度为450μm。基底层12的表面粗糙度以算术平均粗糙度Ra计为10μm。滑动性材料层13是包含含有铁和锰的氧化物陶瓷以及氮化硼的混合物的烧成覆膜,调制含有25质量%的氧化物陶瓷、15质量%的氮化硼、40质量%的有机硅、剩余部分设为有机溶剂的混合物的浆料,将其涂布于基底层12上之后,在500℃烧成30分钟而成膜。滑动性材料层13的厚度为30μm。

  表1

  

  图3是表示在图2的燃烧炉中实施的造渣条件的试验结果的照片。如图3(a)所示,在探针111使用无覆膜的碳钢材(SS400钢)的情况下,从试验开始起在18分钟、40分钟、53分钟观察到灰从探针111脱落。如图3(b)所示,在使用在碳钢材上仅形成有基底层的探针的情况下,从试验开始起在34分钟观察到灰从探针111脱落。如图3(c)所示,在使用在碳钢材上形成有由基底层及滑动性材料层构成的覆膜的探针的情况下,从试验开始起在8分钟、27分钟、43分钟观察到灰从探针111脱落。

  图4是表示在图2的燃烧炉中实施的污垢条件的试验结果的照片。如图4(a)所示,在探针111使用无覆膜的不锈钢钢材(SUS304钢)的情况下,从试验开始起在41分钟观察到灰从探针111脱落。如图4(b)所示,在使用在不锈钢钢材上仅形成有基底层的探针的情况下,从试验开始起在50分钟观察到灰从探针111脱落。如图4(c)所示,在使用在不锈钢钢材上形成有由基底层及滑动性材料层构成的覆膜的探针的情况下,从试验开始在15分钟、29分钟、59分钟观察到灰从探针111脱落。

  在实施例1中,在造渣条件和污垢条件的任一种情况下均确认了:在钢材上形成有覆膜的情况下,与无覆膜的情况以及在钢材上仅形成有基底层的情况相比,能够促进灰的脱落。因此,对于本实施方式的由基底层及滑动性材料层构成的覆膜,确认到抑制灰的附着的效果。

  实施例2

  实施例2通过在电炉中使试验片埋没于模拟灰中并加热,从而对灰向火炉的附着进行了试验。在该试验中,用电炉将模拟灰和试验片加热到相当于火炉的表面温度,计测附着的灰的重量和通过鼓风除去的灰的比例。

  图5是说明灰附着试验的图。如图5(a)所示的电炉150的截面图那样,在电炉150中由炉材152形成加热室151,在炉材152上包围加热室151而配置有加热器154。在加热室151的底面放置有加入了模拟灰158的盘状的容器156。容器156内的模拟灰158的温度由热电偶160监视。

  图5(b)是表示试验片的立体图。试验片21具有将预定长度的管以通过其中心轴的截面切断而成的形状,宽度w为31.8mm,长度l为30mm。图5(c)是表示通过试验附着有模拟灰158的试验片23的立体图。附着有模拟灰158的试验片23沿着中心轴通过来自从截面起角度θ呈45度的方向的鼓风来除去模拟灰158。

  使用图5(a)所示那样的电炉150,模拟火炉的炉内温度,观测在埋没于模拟灰158的试验片21上附着的模拟灰158的状态。如表2所示,分别针对造渣条件和污垢条件实施试验。无论是哪种情况,模拟灰158都是将硫酸钾(K2SO4)、硫酸钠(Na2SO4)、氧化铁(Fe2O3)的粉末以1:1:1.5的摩尔比混合而制成的。

  表2

  

  图6是表示在图5(a)的电炉中实施的造渣条件的试验结果的照片。试验中,作为试验片21,与实施例1同样地准备无覆膜的碳钢材、在碳钢材上仅形成有基底层的试验片、在碳钢材上形成有由基底层和滑动性材料层构成的覆膜的试验片这3种,在加热前、加热后、鼓风后的各个阶段拍摄外观照片。对这些照片进行比较时,可看到:在加热后和鼓风后的任一阶段中,在碳钢材上形成有覆膜的试验片,与无覆膜的碳钢材以及在碳钢材上仅形成有基底层的试验片的任一者相比表面光滑,模拟灰158的附着被抑制。

  图7是表示在图5(a)的电炉中实施的造渣条件下测定灰的量等的试验结果的图表。图7(a)是表示灰在试验片上的附着量的图表。关于灰在试验片21上的附着量,在碳钢材上仅形成有基底层的试验片是最多的,其次是无覆膜的碳钢材,而在碳钢材上形成有由基底层和滑动性材料层构成的覆膜的试验片是最少的。

  图7(b)是表示附着于试验片的灰的基于鼓风的除去率的图表。对于灰的除去率,在碳钢材上形成有由基底层和滑动性材料层构成的覆膜的试验片是最大的,其次是在碳钢材上仅形成有基底层的试验片,而无覆膜的碳钢材是最小的。

  图8是表示图5的电炉中污垢条件的试验结果的照片。试验中,作为试验片23,与实施例1同样地准备无覆膜的不锈钢钢材(SUS304钢)、在不锈钢钢材上仅形成有基底层的试验片、在不锈钢钢材上形成有由基底层和滑动性材料层构成的覆膜的试验片这3种,在加热前、加热后、鼓风后的各个阶段拍摄外观照片。对这些照片进行比较时,可看到:在加热后和鼓风后的任一阶段,在不锈钢钢材上形成有覆膜的试验片,与无覆膜的不锈钢钢材以及在不锈钢钢材上仅形成有基底层的试验片的任一者相比灰的附着少,模拟灰158的附着被抑制。

  图9是表示在图5的电炉中污垢条件下测定了灰的量等的试验结果的图表。图9(a)是表示灰在试验片上的附着量的图表。关于灰在试验片23上的附着量,无覆膜的不锈钢钢材是最多的,其次是在不锈钢钢材上形成有基底层的试验片,而在不锈钢钢材上形成有由基底层和滑动性材料层构成的覆膜的试验片是最少的。

  图9(b)是表示附着于试验片的灰的基于鼓风的除去率的图表。对于灰的除去率,在不锈钢钢材上形成有由基底层和滑动性材料层构成的覆膜的试验片是最大的,其次是在不锈钢钢材上形成有基底层的试验片,而无覆膜的不锈钢钢材是最小的。

  在实施例2中,确认了在造渣条件和污垢条件的任一情况下,在钢材上形成有覆膜的情况,与无覆膜的情况以及在钢材上仅形成有基底层的情况相比,灰的附着得到抑制,并且可促进灰的脱落。因此,在本实施方式的由基底层和滑动性材料层构成的覆膜中,确认到抑制灰的附着、并且使灰的脱落变得容易的效果。

  产业上的可利用性

  本公开能够应用于如煤气化炉、粉煤燃烧锅炉这样的火炉的母材。

  符号说明

  11 母材

  12 基底层

  13 滑动性材料层

  100 燃烧炉。

《覆膜及其形成方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)