欢迎光临小豌豆知识网!
当前位置:首页 > 机械技术 > > 船用自启动永磁电机及船用离心泵独创技术14221字

船用自启动永磁电机及船用离心泵

2021-04-06 23:13:19

船用自启动永磁电机及船用离心泵

  技术领域

  本实用新型属于船用设备技术领域,具体涉及一种船用自启动永磁电机及采用该船用自启动永磁电机的船用离心泵。

  背景技术

  随着船艇吨位、容量的不断增大,船艇海水、淡水的供给区域增多,船艇上装备了越来越多的水泵。目前船用水泵多配用Y系列三相异步电机,电机体积大、噪声大,效率和功率因数较低,对狭窄船舱内船员的身心健康具有不利的影响。永磁同步电机不存在励磁损耗和转子铜耗,功率密度高,体积小且噪声低,是替代异步电机的理想选择;但具有自起动能力的永磁电机的起动笼一般采用上置结构(即永磁体位于起动笼内侧),稳态时电机的转矩脉动大,表现不佳。

  实用新型内容

  本实用新型涉及一种船用自启动永磁电机及采用该船用自启动永磁电机的船用离心泵,至少可解决现有技术的部分缺陷。

  本实用新型涉及一种船用自启动永磁电机,包括定子和转子,所述转子包括起动笼,所述转子还包括多个永磁磁极,各所述永磁磁极均贴装于所述起动笼的外表面上,并且于各所述永磁磁极外设有转子护套。

  作为实施方式之一,所述转子护套为硅钢片护套。

  作为实施方式之一,所述转子护套与所述永磁磁极数量相同且一一对应配置,各所述转子护套沿起动笼的周向依次间隔布置,每一所述转子护套与所述起动笼之间围设形成保护槽,各所述永磁磁极分别嵌置于对应的保护槽内。

  作为实施方式之一,所述定子外设有散热冷却结构。

  作为实施方式之一,所述散热冷却结构包括套设于电机壳体外的冷却壳体,所述冷却壳体与电机壳体之间围设形成散热流道,于所述冷却壳体上设有与所述散热流道连通的冷却水入口和冷却水出口。

  作为实施方式之一,所述散热流道为螺旋流道。

  本实用新型还涉及一种船用离心泵,包括泵壳及设于所述泵壳内的叶轮,还包括如上所述的船用自启动永磁电机,所述转子的转轴与所述叶轮连接。

  本实用新型至少具有如下有益效果:

  本实用新型通过将永磁磁极贴装于起动笼的外表面上,即将起动笼下置,能够在保证船用电机起动要求的情况下,减少电机的稳态转矩脉动,降低电机噪声;同时,基于上述起动笼下置结构,通过试验调整极弧系数和磁极参数,使转子槽开口引起的齿槽效应减弱,可以得到谐波含量较小的空载气隙磁场,减小稳态的转矩脉动、电磁噪声和谐波损耗,提高稳态性能。

  本实用新型进一步具有如下有益效果:

  本实用新型采用硅钢片作为转子护套,既可获得良好的气隙磁密波形,同时,相较于采用成本高昂的碳纤维护套,硅钢片护套能降低该永磁电机的制作成本,相较于采用不锈钢护套易导致涡流损耗较大的情况,采用硅钢片护套能避免护套涡流损耗。

  本实用新型进一步具有如下有益效果:

  本实用新型提供的离心泵,通过在排液管上旁接第一旁接管,利用离心泵出口压力将离心泵排出的液体部分地导引至电机壳体的散热流道内,对电机壳体进行冷却,通过将第二旁接管旁接至吸液管上,在离心泵的吸液作用下,可加速散热流道内冷却液的流速,从而加强对电机壳体的冷却效果,该离心泵利用自身动力完成电机壳体内冷却液的有效流通,省去了传统水冷散热所需的额外电动机,使得离心泵的整体结构大大简化,缩减离心泵的占用空间和制作及运行成本,尤其适用于船用水泵空间受限等情况,利于船艇的空间优化设计。

  附图说明

  为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。

  图1为本实用新型实施例提供的船用自启动永磁电机的结构示意图;

  图2为本实用新型实施例提供的配置有散热冷却结构的电机壳体的剖视结构示意图;

  图3为本实用新型实施例提供的电机内螺旋状散热流道的示意图;

  图4为本实用新型实施例提供的离心泵的结构示意图;。

  具体实施方式

  下面对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本实用新型保护的范围。

  实施例一

  如图1,本实用新型实施例提供一种船用自启动永磁电机1,包括定子11和转子12,所述转子12包括起动笼121和多个永磁磁极122,各所述永磁磁极122均贴装于所述起动笼121的外表面上,并且于各所述永磁磁极122外设有转子护套123。

  上述定子11可采用常规的定子11结构,此处不作详述;上述转子12设置于定子11内,并且与定子11之间具有气隙。

  上述起动笼121为常规鼠笼结构,上述永磁磁极122呈瓦片状,以设计为能够贴合在起动笼121外表面为宜;各永磁磁极122沿起动笼121的周向间隔布置,优选为是均匀间隔布置,也即各永磁磁极122所对应的圆心角之和小于360°;各永磁磁极122的轴向长度优选为是与起动笼121的轴向长度相同;永磁磁极122的数量根据具体电机1性能要求进行设计和调整,本实施例中,示出了在起动笼121外表面贴装4个永磁磁极122的实施例。

  上述转子护套123可以是连续的圆柱形结构,即该转子护套123数量为一个,该一个转子护套123将各永磁磁极122围护于内;在另外的实施例中,如图1,所述转子护套123与所述永磁磁极122数量相同且一一对应配置,各所述转子护套123沿起动笼121的周向依次间隔布置,每一所述转子护套123与所述起动笼121之间围设形成保护槽,各所述永磁磁极122分别嵌置于对应的保护槽内,能更好地保护永磁磁极122。有别于现有的采用碳纤维护套或不锈钢护套的方案,本实施例中,采用硅钢片,即所述转子护套123为硅钢片护套,既可获得良好的气隙磁密波形,同时,相较于采用成本高昂的碳纤维护套,硅钢片护套能降低该永磁电机1的制作成本,相较于采用不锈钢护套易导致涡流损耗较大的情况,采用硅钢片护套能避免护套涡流损耗。

  本实施例提供的船用自启动永磁电机1,通过将永磁磁极122贴装于起动笼121的外表面上,即将起动笼121下置,能够在保证船用电机1起动要求的情况下,减少电机1的稳态转矩脉动,降低电机1噪声;同时,基于上述起动笼121下置结构,通过试验调整极弧系数和磁极参数,使转子12槽开口引起的齿槽效应减弱,可以得到谐波含量较小的空载气隙磁场,减小稳态的转矩脉动、电磁噪声和谐波损耗,提高稳态性能。

  以下例举一船用自启动永磁电机1的参数设计:

  起动笼121的绕组材料采用电阻率较小的铜,斜槽数为0;导条的轴向长度和转子12铁芯的长度一致,方便焊接,端环的宽度设置为20mm,端环的厚度设置为10mm。转子12槽的槽型为凸型槽。其具体参数为B1为6mm,B2为2mm,B3为4mm,B4为2mm,H12为4mm,H34为12mm。转子12铁芯材料型号为38UH,充磁方向为径向充磁。永磁磁极122的外圆半径为60mm,内圆半径为56.5mm,偏向距为8mm,极弧角度为70deg;永磁磁极122的轴向长度和和转子12铁芯的轴向长度相同,均为150mm。采用硅钢片充当转子护套123。电机1的定子11部分设计与传统永磁电机1相似。该电机1的基本参数如下表所示:

  实施例二

  本实用新型实施例提供一种船用自启动永磁电机1,可作为对上述实施例一中的船用自启动永磁电机1的方案优化。

  具体地,如图2和图3,在该船用自启动永磁电机1中,电机壳体13外设有散热冷却结构,通过该散热冷却结构实现电机1的散热冷却,保证该电机1的使用性能,提高该电机1的使用寿命。

  上述的散热冷却结构可以采用在电机壳体13上缠绕换热管等方式,作为本实施例的优选方案,如图2和图3,散热冷却结构包括套设于电机壳体13外的冷却壳体14,冷却壳体14与电机壳体13之间围设形成散热流道15,于冷却壳体14上设有与散热流道15连通的冷却水入口和冷却水出口。在其中一个实施例中,冷却壳体14与电机壳体13之间具有间隙,从而在二者之间围设形成圆柱形水冷通道,这种方式结构简单、设计/改造成本低,但冷却液的流速较低。在另外的实施例中,于电机壳体13上开设流道槽,冷却壳体14贴合套装在电机壳体13上并封堵流道槽的槽口从而围设形成散热流道15;显然地,该流道槽开设于冷却壳体14上也是可行的方案,但冷却液与电机壳体13之间的接触面积就相对减小了,冷却效果自然就相对降低。其中,冷却壳体14的内壁与电机壳体13的外壁是贴合接触的,保证流道槽的密封性,可减少或避免串流和渗漏等现象,在对现有电机1的改造结构中,可设置上述冷却壳体14与电机壳体13焊接固定,而对于新设计及新设备的生产,也可设置上述冷却壳体14与电机壳体13一体成型(例如3D打印)。

  如图3,上述的流道槽优选为是螺旋槽,即上述的散热流道15优选为是螺旋流道,可自电机壳体13一端延伸至电机壳体13另一端,保证对电机壳体13各区域的冷却效果,能减少流道槽的数量;当螺旋槽为一个时,可通过相邻两个旋道之间的间距设计达到所需的冷却散热效果。在另外的实施方案中,上述散热流道15有两组并且该两组散热流道15构成为双螺旋结构,该方式对电机壳体13的冷却效果更好;尤其地,其中一组螺旋式散热流道15的入口端位于冷却壳体14的第一端部且出口端位于冷却壳体14的第二端部,另外一组螺旋式散热流道15的入口端位于冷却壳体14的第二端部且出口端位于冷却壳体14的第一端部,即两组散热流道15内的冷却液流通方向是相反的,这种散热流道15的设计能够进一步提高电机壳体13冷却散热的均匀性,避免电机壳体13一端散热效果强于另一端散热效果的情况,因此电机1的工作性能更好、使用寿命更长。

  实施例三

  如图4,本实用新型实施例提供一种船用离心泵,包括泵壳2及设于所述泵壳2内的叶轮23,还包括上述实施例一或实施例二所提供的船用自启动永磁电机1,所述转子12的转轴与所述叶轮23连接。上述泵壳2及泵壳2内的叶轮23为本领域常规设备,上述电机1用于驱动叶轮23转动,具体涉及的泵壳2内的其他构件及相对连接结构是本领域常规设置,此处不作赘述;该泵壳2上连接有吸液管21和排液管22,待输送液体(水)从吸液管21进入泵壳2内,再由排液管22排出泵壳2外。

  在采用上述实施例二所提供的船用自启动永磁电机1时,优选地,上述冷却水入口连接有第一旁接管16,该第一旁接管16旁接至上述排液管22上,上述冷却水出口连接有第二旁接管17,该第二旁接管17旁接至上述吸液管21上。通过在排液管22上旁接第一旁接管16,利用离心泵出口压力将离心泵排出的液体部分地导引至散热流道15内,对电机壳体13进行冷却,通过将第二旁接管17旁接至吸液管21上,在离心泵的吸液作用下,可加速散热流道15内冷却液的流速,从而加强对电机壳体13的冷却效果,该离心泵利用自身动力完成电机壳体13内冷却液的有效流通,省去了传统水冷散热所需的额外电动机,使得离心泵的整体结构大大简化,缩减离心泵的占用空间和制作及运行成本,尤其适用于船用水泵空间受限等情况,利于船艇的空间优化设计。

  由于离心泵不断地吸取新鲜液体,而且吸取量一般远大于电机壳体13散热冷却所需的冷却液量,在散热流道15排出的换热升温后的冷却液与新鲜液体混合后,混合液的温度相较于新鲜液体的温度升高并不明显,因此仍适用于进入散热流道15内对电机壳体13进行冷却。

  上述的第一旁接管16和第二旁接管17优选为采用散热效果好的材料,例如均采用铜管。

  对于上述散热流道15有两组并且该两组散热流道15构成为双螺旋结构的结构,相应地,第一旁接管16和第二旁接管17都有两个。在进一步优选的方案中,上述离心泵为单级双吸式离心泵,即吸液管21对应有两个,两第一旁接管16均旁接至排液管22上,两第二旁接管17分别旁接至两个吸液管21上,对电机1的散热冷却效果更好。

  以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

《船用自启动永磁电机及船用离心泵.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)