欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种高热导率氮化硅陶瓷材料及其制备方法独创技术28582字

一种高热导率氮化硅陶瓷材料及其制备方法

2021-01-31 20:10:34

一种高热导率氮化硅陶瓷材料及其制备方法

  技术领域

  本发明涉及一种高热导率氮化硅陶瓷材料及其制备方法,具体涉及一种以金属氢化物ZrH2和金属氧化物作为烧结助剂并通过气压烧结制备高热导率Si3N4陶瓷材料的方法,属于无机非金属材料领域。

  背景技术

  随着电子器件向小型化、集成化、高功率密度方向发展,散热成为电子器件发展的瓶颈之一。在集成电路中,陶瓷基板的性能是解决散热问题的关键。同时,陶瓷基板必须具有良好的力学性能,才能承受循环热应力。氮化硅(Si3N4)作为一种结构陶瓷,以其优异的机械性能、良好的摩擦学和磨损性能、优异的抗热震性能和较高的电阻率而备受关注。Haggerty等(J.Haggerty and A.Lightfoot Opportunities for enhancing the thermalconductivities of SiC and Si3N4 ceramics through improved processing,p.475-487 in Proceedings of the 19th Annual Conference on Composites,AdvancedCeramics,Materials,and Structures-A:Ceramic Engineering and ScienceProceedings,Volume 16,Issue 4.)预测了β-Si3N4理论热导率可达200~320Wm-1K-1,这一发现使得氮化硅陶瓷成为很有潜力的高密度大功率半导体器件中散热基板的备选材料。

  对于理想的β-Si3N4单晶来说,不存在杂质、晶界、缺陷等散射因素,声子自由程最大,其热导率最优。但是氮化硅实际制备时,通常采用添加金属氧化物如MgO、Y2O3、ZrO2、Al2O3等作为烧结助剂通过液相烧结得到致密的氮化硅陶瓷。α-Si3N4通过在液相中的溶解析出过程形成β-Si3N4,并通过液相实现晶粒生长和致密化,在冷却时液相作为低热导率的晶间相残留在烧结体内。因此,液相烧结得到的β-Si3N4陶瓷由晶粒和少量晶间相组成,晶间相和晶粒内各种缺陷都会对声子进行散射,从而使得β-Si3N4的热导率远低于理论值。

  在众多缺陷中,晶格氧是影响氮化硅热导率的最主要负面因素,晶界相含量及分布的影响次之。国内外研究人员通过提高烧结温度,延长保温时间等手段,通过促进晶粒长大净化晶格以减少晶格缺陷,进而提高氮化硅陶瓷材料的热导率。但这种方法成本较高,不利于氮化硅的推广应用。另一方面,氮化硅晶格中氧含量和烧结过程中液相组成有密切关系,在溶解析出过程中,若液相中氧含量低,则会抑制氧固溶进β-Si3N4晶格。因此,研究人员也经常采用非氧化物代替氧化物,如用MgSiN2代替MgO,用YF3、Y2Si4N6C等代替Y2O3,用ZrSi2代替ZrO2来调控液相组成,减少液相中氧含量,以降低β-Si3N4晶格中氧含量,进而提高热导率。

  发明内容

  本发明旨在提供一种全新的制备高热导率氮化硅陶瓷材料的方法,该方法首次以金属氢化物ZrH2和碱土金属氧化物作为烧结助剂,通过调控液相组成,阻碍氧固溶进氮化硅晶格,以减少氮化硅晶格中缺陷,降低对声子的散射,进而提高热导率。

  一方面,本发明提供了一种氮化硅陶瓷材料,所述氮化硅陶瓷材料的原料组成包括α-Si3N4和烧结助剂;所述烧结助剂为金属氢化物和碱土金属氧化物,总含量为2~12mol%;所述金属氢化物为ZrH2,所述碱土金属氧化物优选为MgO、CaO和BaO中的至少一种。其中,使用金属氢化物ZrH2做烧结助剂,可以减少通过烧结助剂引入的氧的量,降低液相中氧浓度,阻碍氧固溶进氮化硅晶格,减少晶体缺陷,降低声子散射;此外,使用金属氢化物ZrH2作为烧结助剂,得到的氮化硅陶瓷中低热导率的非晶相含量降低,热导率得以改善。而且,氢化锆随着温度上升会分解出单质Zr,本质是利用单质Zr和原料粉体表面的SiO2的氧化还原移除SiO2。

  较佳的,所述烧结助剂的总含量为5~10mol%。

  较佳的,所述金属氢化物和碱土金属氧化物的摩尔比为1:10~10:1,优选为1:5~5:1。

  较佳的,所述氮化硅陶瓷材料的热导率为热导率为61.25~115.18W/(m·K),抗弯强度为475~759MPa,断裂韧性为5.38~7.95MPa·m1/2。

  另一方面,本发明提供了一种上述氮化硅陶瓷材料的制备方法,包括:

  (1)按照所述氮化硅陶瓷材料的原料组成称取α-Si3N4粉体和烧结助剂并混合,得到混合粉体;

  (2)将所得混合粉体压制成型后,先在600~1600℃下进行预烧结处理,再于1780~1950℃下进行烧结处理,得到所述氮化硅陶瓷材料。

  在本发明中,选用金属氢化物ZrH2和碱土金属氧化物作为烧结助剂来制备高热导率氮化硅陶瓷。其中,金属氢化物ZrH2作为一种无氧助剂,可以减少氧的引入,因此氮化硅烧结体中的低热导率晶间相含量降低,有利于提高热导率。另一方面添加的金属氢化物ZrH2在预烧结处理过程中会分解为单质Zr和H2,H2的存在会降低炉膛内的氧分压(式1:ZrH2→Zr+H2(g))。而且,单质Zr和氮化硅粉体表面的SiO2在预烧结处理时在较低温度下发生反应,将SiO2还原成SiO(g)或Si从而将SiO2移除,同时反应生成ZrO2(式2:Zr+SiO2→ZrO2+SiO(g);和式3:Zr+SiO2→ZrO2+Si)。而且,H2作为一种强还原剂,很明显地会降低氧的含量。生成的ZrO2和碱土金属氧化物可以在较低的温度下形成低氧含量的共熔液相(以MgO作为示例,ZrO2+MgO+SiO2+α-Si3N4→β-Si3N4+Zr-Si-Mg-O-N(液相)),液相中氧含量低会阻碍氧固溶进氮化硅晶格,减少晶格中缺陷数量,降低声子散射,并且生成的液相通过溶解-析出机制促进晶粒生长,有利于提高热导率。

  较佳的,所述混合的方式为采用真空球磨罐湿法球磨后,再经旋转蒸发干燥或真空干燥,得到混合粉体;所述真空球磨罐中的球磨氛围为真空气氛、惰性气氛、或氮气气氛。采用上述混合方式,目的是为了防止球磨过程或者烘干过程中的金属氢化物ZrH2的氧化。

  较佳的,所述压制成型的方式为干压成型或/和等静压处理,优选为先干压成型后等静压处理;所述干压成型的压力为10~50MPa,所述等静压处理的压力为100~300MPa。其中,等静压处理可为冷等静压成型。

  较佳的,所述预烧结处理的气氛为真空气氛、氮气气氛、或惰性气氛,所述惰性气氛为氩气气氛;所述预烧结处理的时间为1~8小时。

  较佳的,其特征在于,所述烧结处理的方式为气压烧结、热压烧结、放电等离子烧结、热等静压烧结、或无压烧结;所述烧结处理的时间≥2小时;优选地,所述气压烧结的气氛为氮气,气压≥1MPa。其中,气压烧结时高的氮气的压力可以避免高温下(1780℃以上)氮化硅的分解,提高了烧结活性,有利于致密化及晶粒生长。

  较佳的,所述烧结处理的升温速率为1~15℃/分钟。

  较佳的,在烧结处理完成之后,先以≤20℃/分钟的降温速率冷却至800~1200℃(优选冷却至1000℃),然后随炉冷却至室温。

  有益效果:

  本发明中,使用金属氢化物ZrH2作为烧结助剂,金属氢化物ZrH2作为一种无氧助剂,减少了氧的引入,可以降低最终烧结体中的玻璃相含量,烧结体中低热导的玻璃相体积分数下降,有助于热导率的提升;

  本发明中,添加的金属氢化物ZrH2在预处理过程中会分解为单质Zr和H2,H2的存在会降低炉膛内的氧分压;此外,单质Zr和α-Si3N4粉体表面的SiO2发生反应生成ZrO2,生成的ZrO2与辅烧结助剂碱土金属氧化物形成共熔液相,通过溶解析出机制促进氮化硅的烧结。此反应促进了SiO2的移除,阻碍氧以SiO2的形式固溶进β-Si3N4中晶格,减少了氮化硅晶格中缺陷,从而提高热导率;

  本发明中,所得氮化硅陶瓷材料的热导率在115.18W/(m·K)以上,抗弯强度可达759MPa、断裂韧性也得以改善,可达7.95MPa·m1/2,可满足氮化硅陶瓷在高密度、大功率半导体器件领域的应用需求。

  附图说明

  图1为实施例4所制得的氮化硅陶瓷材料的断面微观形貌图;

  图2为实施例5所制得的氮化硅陶瓷材料的断面微观形貌图。

  具体实施方式

  以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

  在本公开中,首次以金属氢化物ZrH2和碱土金属氧化物为烧结助剂,来制备高热导氮化硅陶瓷。其中,金属氢化物ZrH2作为一种无氧助剂,可以在不引入氧的前提下引入Zr元素,因此可以减少氮化硅烧结体中的低热导率晶间相含量,有利于提高热导率。另一方面添加的金属氢化物ZrH2在预处理过程中会分解为单质Zr和H2,H2的存在会降低炉膛内的氧分压;此外,单质Zr和氮化硅粉体表面的SiO2在预烧结处理时在较低温度下发生反应,将SiO2还原成SiO(g)或Si从而将SiO2移除,同时反应生成ZrO2。生成的ZrO2和碱土金属氧化物可以在较低的温度下形成低氧含量的共熔液相,液相中氧含量低会阻碍氧固溶进氮化硅晶格,减少晶格中缺陷数量,降低声子散射,并且生成的液相通过溶解-析出机制促进晶粒生长,有利于提高热导率。其中,碱土金属氧化物选自BaO、MgO、CaO等中的至少一种。

  以碱土金属氧化物为MgO时,示例性地说明氮化硅陶瓷材料的制备方法。

  将α-Si3N4粉体和烧结助剂混合均匀,得到混合粉体。其中,烧结助剂包括金属氢化物ZrH2和MgO。预烧结处理时,ZrH2首先发生分解生成单质Zr和H2,单质Zr和α-Si3N4粉体表面的SiO2发生反应生成ZrO2,生成的ZrO2与MgO在后续升温过程中形成低粘度液相,促进氮化硅的烧结。金属氢化物ZrH2和MgO的摩尔比可以为(1:10)~(10:1),优选(1:5)~(5:1)。当金属氢化物ZrH2和MgO的摩尔比为(1:5)~(5:1)时,可以最大程度上与α-Si3N4粉体表面的SiO2发生反应,并且金属氢化物ZrH2与SiO2反应生成的ZrO2与MgO在后续升温过程中形成低共熔液相,通过溶解析出机制促进β-Si3N4晶粒的生长。

  在可选的实施方式中,α-Si3N4粉体的粒径可为0.1~2μm,氧含量<2wt%;金属氢化物ZrH2的粒径可为0.1~20.0μm;MgO粉体的粒径可为10nm~5μm。

  在可选的实施方式中,α-Si3N4粉体和烧结助剂的比例为88mol%:12mol%~98mol%:2mol%,优选90mol%:10mol%~95mol%:5mol%,各组分比例之和为100%。烧结助剂添加量过少,不能完全移除α-Si3N4粉体表面的SiO2,且不能形成足够量的低粘度液相,样品难以致密化;烧结助剂添加量过多会增加低热导晶界相含量,影响热导率。

  在可选的实施方式中,将α-Si3N4粉体和烧结助剂采用真空球磨罐湿法球磨,球磨罐内氛围可以为真空或充Ar、N2,得到的浆料采用旋转蒸发干燥或者真空干燥,再经过筛后,得到混合粉体。作为一个球磨混合的示例,包括:将α-Si3N4粉体和烧结助剂混合,经过球磨、烘干、过筛工序,得到混合均匀的粉体。球磨混料采用真空球磨罐湿法球磨,球磨罐内氛围可以为真空或充Ar、N2。湿法球磨以酒精为溶剂,料:溶剂比例可以为(1:1)~(3:1),料:球比例可以为(1:1)~(5:1),球磨转数为200~500rpm,球磨时间为4~20h。采用旋转蒸发干燥或者真空干燥等方式进行烘干,整个烘干过程可在真空、Ar、N2等保护气氛中进行。其中,烘干的温度可为50℃~120℃,烘干的时间可为8~24h。过筛的目数可为60~300目。

  将混合粉体压制成型,制得坯体。压制成型可以包括:依次进行干压成型和等静压处理。其中,干压成型的压力可以为10~50MPa,等静压处理的压力为100~300MPa。在一个优选方案中,等静压处理采用冷等静压处理。

  将坯体置于惰性气氛、氮气气氛、或真空环境中,在600℃-1600℃下预烧结处理1~8小时。其中,预烧结处理的温度优选为1000℃~1500℃,进一步优选为1000~1400℃。高的预烧结处理温度可以加快金属氢化物ZrH2和α-Si3N4粉体表面的SiO2反应速率,保温时间优选为2-8h,延长保温时间可以保证金属氢化物ZrH2和α-Si3N4粉体表面的SiO2反应完全。其中,预烧结处理时可以在在真空环境或者Ar下进行。

  将预烧结处理后的坯体再于1780℃~1950℃下进行气压烧结,得到高热导率氮化硅陶瓷。所述气压烧结的时间至少为2小时。其中,气压烧结的气氛可为氮气气氛。高的氮气压可以确保1780℃以上氮化硅不会分解。氮化硅在1780℃以上具有更高的烧结活性,有利于晶粒的生长发育。优选气压烧结的温度为1850~1900℃,时间为2~12小时。可以在加压惰性气氛下进行气压烧结,加压的压力可以为1~10MPa。作为一个气压烧结的示例,其工艺条件包括:以N2为烧结气氛,在气压为1~10MPa的条件下,以1~15℃/min的速率升温至1780~1950℃,并保温2小时以上。优选升温速率可为3~10℃/min。

  优选地,在气压烧结结束后,进一步以特定的降温速率冷却至室温,得到高热导率氮化硅陶瓷。例如,可以在烧结结束后,以1~15℃/min的降温速率冷却至1000~1400℃(优选1200℃),然后随炉冷却至室温。

  根据氮化硅陶瓷烧结机理以及文献报道可知,采用提高气压压力和烧结温度、延长保温时间以及减缓降温速率的方法,可以进一步提高热导率,显然本发明不应局限于该气压压力烧结温度段、保温时间以及降温速率。同样,本发明也不应局限于气压烧结,采用广泛应用的无压烧结、热压烧结、热等静压烧结或者放电等离子体烧结后热处理的方法也可以得到预期的效果。

  在本发明中,采用Ahimedes法测定试样的体积密度;Si3N4陶瓷材料的热导率由如下公式计算得到:k=Cp·ρ·α;式中ρ为试样的体积密度,单位为g·cm-3,α为热扩散系数,单位为cm2·s-1,使用Netzsch LFA 467测得,Cp为氮化硅陶瓷材料的热容,此值随成分和显微结构变化非常小,可以视为常量,本发明中采用0.68J·(g·K)-1。所得氮化硅陶瓷材料的热导率可为61.25~115.18W/(m·K)。

  在本发明中,采用三点弯曲法,使用Instron-5566万能材料试验机测定Si3N4陶瓷材料的抗弯强度,跨距为30mm,加载速率为0.5mm·min-1,每个数据点测试6根试条,然后取其平均值。

  所得氮化硅陶瓷材料的抗弯强度可为475~759MPa。

  在本发明中,断裂韧性采用单边切口梁法(SENB)测定,样品加工为3.0×6.0×30.0mm的尺寸,开槽宽约0.25mm、槽深约3mm,采用三点弯曲法在万能材料试验机上测试样品的断裂韧性。测试跨距为24.0mm,加载速率为0.05mm/min,每种样品选取6根试样进行测量,求平均值和标准偏差。

  所得氮化硅陶瓷材料的断裂韧性可为5.38~7.95MPa·m1/2。

  应注意,虽然上述采用MgO作为示例来说明氮化硅陶瓷材料的制备过程,但是BaO、CaO等其他碱土金属氧化物同样适用上述制备过程。

  下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

  实施例1

  以0.5mol%ZrH2及1.5mol%MgO作为烧结助剂,与98mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在20MPa压力下干压成型,再在250MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在Ar气氛下于300℃保温4h后升温至600℃保温4h进行预处理;然后将预烧结后的坯体于1800℃气压烧结,其中升温速率为10℃/min,N2压力为1MPa,保温时间为4h;烧结结束后,以10℃/min的降温速率冷却至1200℃,然后随炉冷却至室温。

  由本实施例1制得的氮化硅陶瓷材料的热导率为66.3W/(m·K),三点抗弯强度为759±42MPa,断裂韧性为7.35±0.24MPa·m1/2。

  实施例2

  以0.5mol%ZrH2及1.5mol%MgO作为烧结助剂,与98mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在20MPa压力下干压成型,再在250MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在Ar气氛下于500℃保温4h后升温至1000℃保温4h进行预处理;然后将预烧结后的坯体于1900℃气压烧结,其中升温速率为10℃/min,N2压力为1MPa,保温时间为4h;烧结结束后,以10℃/min的降温速率冷却至1200℃,然后随炉冷却至室温。

  由本实施例2制得的氮化硅陶瓷材料的热导率为105.08W/(m·K),三点抗弯强度为539±20MPa,断裂韧性为6.75±0.24MPa·m1/2。

  实施例3

  以2.5mol%ZrH2及1.5mol%MgO作为烧结助剂,与96mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在30MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在真空下于400℃保温4h后升温至1400℃保温6h进行预处理;然后将预烧结后的坯体于1850℃气压烧结,其中升温速率为5℃/min,N2压力为1MPa,保温时间为4h;烧结结束后,以10℃/min的降温速率冷却至1000℃,然后随炉冷却至室温。

  由本实施例3制得的氮化硅陶瓷材料的热导率为78.90W/(m·K),三点抗弯强度为621±14MPa,断裂韧性为7.72±0.23MPa·m1/2。

  实施例4

  以2mol%ZrH2及2mol%MgO作为烧结助剂,与96mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在20MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在真空环境下于600℃保温4h后升温至1300℃保温8h进行预处理;然后将预烧结后的坯体于1900℃气压烧结,其中升温速率为5℃/min,N2压力为2MPa,保温时间为12h;烧结结束后,以5℃/min的降温速率冷却至1200℃,然后随炉冷却至室温。

  由本实施例4制得的氮化硅陶瓷材料的热导率为115.18W/(m·K),三点抗弯强度为547±26MPa,断裂韧性为7.95±27MPa·m1/2。由实施例所制得的氮化硅陶瓷材料的断面微观形貌图如图1所示,微观形貌呈现出大晶粒分散于小晶粒基体中的双峰分布,其中大晶粒尺寸较大,长径比较高,这对热导率的提升极为有利。

  实施例5

  以3mol%ZrH2及2mol%MgO作为烧结助剂,与95mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在20MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在真空环境下于500℃保温2h后升温至1300℃保温4h进行预处理;然后将预烧结后的坯体于1900℃气压烧结,其中升温速率为10℃/min,N2压力为1MPa,保温时间为12h;烧结结束后,以10℃/min的降温速率冷却至1000℃,然后随炉冷却至室温。

  由本实施例5制得的氮化硅陶瓷材料的热导率为110.30W/(m·K),三点抗弯强度为564±26MPa,断裂韧性为7.72±0.15MPa·m1/2。由实施例所制得的氮化硅陶瓷材料的断面微观形貌图如图2所示,大晶粒充分长大,长度可达50μm以上且晶粒与晶粒结合处较为干净,低热导率晶间相较少。

  实施例6

  以3mol%ZrH2及2mol%MgO作为烧结助剂,与95mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在30MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在Ar下于450℃保温2h后升温至1500℃保温2h进行预处理;然后将预烧结后的坯体于1850℃气压烧结,其中升温速率为5℃/min,N2压力为1MPa,保温时间为2h;烧结结束后,以5℃/min的降温速率冷却至1200℃,然后随炉冷却至室温。

  由本实施例5制得的氮化硅陶瓷材料的热导率为82.21W/(m·K),三点抗弯强度为621±14MPa,断裂韧性为7.66±0.35MPa·m1/2。

  实施例7

  以4mol%ZrH2及3mol%MgO作为烧结助剂,与93mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在20MPa压力下干压成型,再在280MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在Ar下于300℃保温2h后升温至1000℃保温6h进行预处理;然后将预烧结后的坯体于1800℃气压烧结,其中升温速率为10℃/min,N2压力为1MPa,保温时间为4h;烧结结束后,以15℃/min的降温速率冷却至1200℃,然后随炉冷却至室温。

  由本实施例7制得的氮化硅陶瓷材料的热导率为73.60W/(m·K),三点抗弯强度为707±18MPa,断裂韧性为6.66±0.09MPa·m1/2。

  实施例8

  以5mol%ZrH2及5mol%MgO作为烧结助剂,与90mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在40MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在Ar下于400℃保温2h后升温至1100℃保温2h进行预处理;然后将预烧结后的坯体于1900℃气压烧结,其中升温速率为5℃/min,N2压力为3MPa,保温时间为4h;烧结结束后,以10℃/min的降温速率冷却至1100℃,然后随炉冷却至室温。

  由本实施例8制得的氮化硅陶瓷材料的热导率为103.23W/(m·K),三点抗弯强度为575±46MPa,断裂韧性为6.18±0.18MPa·m1/2。

  实施例9

  以7mol%ZrH2及3mol%MgO作为烧结助剂,与90mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在30MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在Ar下于600℃保温2h后升温至1400℃保温2h进行预处理;然后将预烧结后的坯体于1850℃气压烧结,其中升温速率为3℃/min,N2压力为1MPa,保温时间为4h;烧结结束后,以10℃/min的降温速率冷却至1200℃,然后随炉冷却至室温。

  由本实施例9制得的氮化硅陶瓷材料的热导率为82.56W/(m·K),三点抗弯强度为561±40MPa,断裂韧性为6.71±0.17MPa·m1/2。

  实施例10

  以9mol%ZrH2及2mol%MgO作为烧结助剂,与89mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在30MPa压力下干压成型,再在250MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在Ar下于500℃保温2h后升温至1100℃保温6h进行预处理;然后将预烧结后的坯体于1950℃气压烧结,其中升温速率为5℃/min,N2压力为2MPa,保温时间为4h;烧结结束后,以15℃/min的降温速率冷却至1200℃,然后随炉冷却至室温。

  由本实施例10制得的氮化硅陶瓷材料的热导率为107.85W/(m·K),三点抗弯强度为475±19MPa,断裂韧性为5.38±0.32MPa·m1/2。

  实施例11

  以1mol%ZrH2及10mol%MgO作为烧结助剂,与89mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在40MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体放入BN坩埚中,在Ar气氛下于500℃保温2h后升温至1400℃保温2h进行预处理;然后将预烧结后的坯体于1800℃气压烧结,其中升温速率为5℃/min,N2压力为2MPa,保温时间为2h;烧结结束后,以10℃/min的降温速率冷却至1200℃,然后随炉冷却至室温。

  由本实施例11制得的氮化硅陶瓷材料的热导率为61.25W/(m·K),三点抗弯强度为736±24MPa,断裂韧性为5.38±0.31MPa·m1/2。

  实施例12

  参照实施例5的工艺流程制备氮化硅陶瓷材料,区别仅在于:碱土金属氧化物为CaO。

  由本实施例12制得的氮化硅陶瓷材料的热导率为106.2W/(m·K),三点抗弯强度为634±12MPa,断裂韧性为8.01±0.13MPa·m1/2。

  实施例13

  参照实施例8的工艺流程制备氮化硅陶瓷材料,区别仅在于:碱土金属氧化物为BaO。

  由本实施例13制得的氮化硅陶瓷材料的热导率为99.3W/(m·K),三点抗弯强度为602±23MPa,断裂韧性为6.81±0.42MPa·m1/2。

  对比例1

  以3mol%ZrO2及2mol%MgO作为烧结助剂,与95mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在30MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体于1900℃气压烧结,其中升温速率为5℃/min,N2压力为1MPa,保温时间为12h;烧结结束后,以10℃/min的降温速率冷却至1200℃,然后随炉冷却至室温。

  由本对比例1制得的氮化硅陶瓷材料的热导率为89.2W/(m·K),三点抗弯强度为529±2MPa,断裂韧性为7.34±0.27MPa·m1/2。

  对比例2

  以5mol%MgO作为烧结助剂,与95mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在30MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;将得到的坯体于1900℃气压烧结,其中升温速率为5℃/min,N2压力为1MPa,保温时间为12h;烧结结束后,以10℃/min的降温速率冷却至1200℃,然后随炉冷却至室温。

  由本对比例2制得的氮化硅陶瓷材料的热导率为56.10W/(m·K),三点抗弯强度为426±22MPa,断裂韧性为4.89±0.35MPa·m1/2。

  对比例3

  以5mol%ZrH2作为烧结助剂,与95mol%的α-Si3N4粉体通过球磨混合,烘干后过筛,得到均匀混合的粉体;然后在30MPa压力下干压成型,再在300MPa压力下进行冷等静压处理;在Ar气氛下于500℃保温2h后升温至1300℃保温8h进行预处理;将得到的坯体于1900℃气压烧结,其中升温速率为5℃/min,N2压力为1MPa,保温时间为12h;烧结结束后,以10℃/min的降温速率冷却至1200℃,然后随炉冷却至室温。

  由本对比例3制得的氮化硅陶瓷材料的热导率为45.70W/(m·K),三点抗弯强度为389±18MPa,断裂韧性为5±0.18MPa·m1/2。

  对比例4

  参照实施例5的工艺流程制备氮化硅陶瓷材料,区别仅在于:不加入任何烧结助剂。

  由本对比例4制得的氮化硅陶瓷材料的热导率为30.2W/(m·K),三点抗弯强度为203±52MPa,断裂韧性为4.02±0.11MPa·m1/2。

  表1为本发明实施例1-13和对比例1-4制备的氮化硅陶瓷材料的原料组成及性能参数:

  

  

  比较对比例1、实施例3、实施例4,三者采用相同或相近的工艺,可以发现使用ZrH2代替氧化锆作为烧结助剂时,实施例3和4中所得材料的热导率得到了明显改善。

  最后有必要在此说明的是:以上实施例只用于对本发明的技术方案作进一步详细地说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。

《一种高热导率氮化硅陶瓷材料及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)