欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种磷酸钛铝锂固体电解质材料及其制备方法独创技术15257字

一种磷酸钛铝锂固体电解质材料及其制备方法

2021-02-27 10:38:29

一种磷酸钛铝锂固体电解质材料及其制备方法

  技术领域

  本发明涉及固体电解质材料领域,具体涉及一种磷酸钛铝锂固体电解质材料及其制备方法。

  背景技术

  锂离子电池是一种二次电池(充电电池),其主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li在两个电极之间往返嵌入和脱嵌:充电时,Li从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。锂离子电池因具有质量轻、能量密度高、循环性能好、无记忆效应和绿色环保等优点,在移动通讯、电动车辆、国防科技等领域有着广泛的应用前景。

  电解质是锂离子电池的重要构成部分,传统的锂离子电池采用液体电解质,具有易挥发、易泄露、抗冲击性能差等缺点,存在安全隐患。发展基于固体电解质的全固态锂离子电池可以解决液体电解质引起的安全隐患。聚合物和无机固体电解质是两类重要的固体电解质。其中,无机固体电解质因具有安全易制备、机械强度高、高室温晶粒电导率、高锂离子迁移率和优异的电化学稳定性等优点备受关注。

  无机固体电解质按照结构可主要分为硫化物和氧化物两大体系,硫化物体系中的热门研究方向是LiS-PS体系,氧化物体系中研究比较彻底的包括NASICON(钠超离子导体)类型结构体系、LISICON(锂超离子导体)结构体系、钙钛矿结构体系以及石榴石结构体系。在众多氧化物固体电解质体系中,NASICON型锂离子导体Li1+xAlxTi2-x(PO4)3具有较高的锂离子电导率(10-3S·cm-1),较宽的电化学窗口、良好的热/化学稳定性和机械强度,是最具应用前景的全固态锂离子电池用电解质材料之一,目前被广泛研究。

  目前,对Li1+xAlxTi2-x(PO4)3(x=0.3-0.5)锂离子导体的制备与电解质应用开展了较多的研究,现有该材料的制备方法主要包括固相烧结法[1-2]、液相沉淀法[3-4]、溶胶凝胶法[5-6]等,在这些制备方法中,固相烧结法和沉淀法工艺简单,较适用于工业上大批量生产,但是当采用固相烧结工艺制备Li1+xAlxTi2-x(PO4)3固体电解质时,所需的烧结温度多在1050℃以上,难免导致锂盐因高温挥发造成烧结产物中锂的损失,此外制备能耗也相对较高;而使用共沉淀法制备材料过程中难以控制钛盐的水解速率,往往很难控制其形貌;溶胶凝胶法合成条件温和,煅烧温度较低,但是工艺较为复杂,成本高,需处理好容易水解的钛盐,才能进行下一步反应,并且这几种方法所得产物的致密度和锂离子电导率往往不甚理想。

  参考文献:

  [1]B.Yang,X.Li,H.Guo,Z.Wang,W.Xiao.J Alloy Compd,643(2015)181-185.

  [2]X.Xu,Z.Wen,X.Yang,J.Zhang,Z.Gu.Solid State Ionics,177(2006)2611-2615.

  [3]L.Huang,Z.Wen,M.Wu,X.Wu,Y.Liu,X.Wang.J Power Sources,196(2011)6943-6946.

  [4]M.Kotobuki,B.Kobayashi,M.Koishi,T.Mizushima,N.Kakuta.MaterialsTechnology,29(2014)A93-A97.

  [5]G.Kunshina,O.Gromov,E.Lokshin,V.Kalinnikov.Russian Journal ofInorganicChemistry,59(2014)424-430.

  [6]Q.Ma,Q.Xu,C.L.Tsai,F.Tietz,O.Guillon.J Am Ceram Soc,99(2016)410-414.

  发明内容

  本发明的目的在于提供一种磷酸钛铝锂固体电解质材料的制备方法,解决现有传统技术制备得到的Li1+xAlxTi2-x(PO4)3固体电解质致密度和锂离子电导率不高,并且在制备过程中合成温度过高,容易导致锂的损失,能耗过大和工艺复杂的问题。

  本发明的技术方案:

  一种磷酸钛铝锂固体电解质材料的制备方法,其特征在于,包括如下步骤:

  (1)制备纳米AlOOH前驱体:以可溶性铝盐和沉淀剂为原料,将其按摩尔比为1:1.5-2的比例混合溶于水,得到混合溶液;再将该混合溶液置于反应釜中在180~220℃下反应10~20小时,产物经过滤、洗涤,烘干,得到AlOOH前驱体;

  (2)制备磷酸钛铝锂固体电解质材料:将步骤(1)得到的AlOOH前驱体与锂盐、钛盐和磷盐,按照Li、Al、Ti、P的摩尔比(1+x):x:(2-x):3混合配料,其中x=0.3-0.5,然后加入乙醇介质球磨后,在干燥的空气气氛中经预烧和二次成型烧结,得到磷酸钛铝锂固体电解质材料。

  优选的,步骤(1)中所述可溶性铝盐为硝酸铝、三氯化铝或铝酸钠中的一种或多种。

  优选的,步骤(1)中所述沉淀剂为尿素或氨水中的一种或两种。

  优选的,步骤(2)中所述锂盐为碳酸锂、硝酸锂或异丙醇中的一种或多种。

  优选的,步骤(2)中所述钛盐为二氧化钛、四氯化钛、钛酸四乙酯或钛酸四丁酯中的一种或多种。

  优选的,步骤(2)中所述磷盐为磷酸二氢铵、磷酸氢二铵或磷酸三乙酯中的一种或多种。

  优选的,步骤(1)中所述可溶性铝盐和沉淀剂的摩尔比为1:1.5,反应条件为:200℃下反应12小时。

  优选的,步骤(2)中所述Li、Al、Ti、P的摩尔比为1.3:0.3:1.7:3,所得产物的化学式为Li1.3Al0.3Ti1.7(PO4)3。

  优选的,步骤(2)中所述预烧的温度为700℃-950℃,保温时间为4-10小时,二次成型烧结温度为700℃-950℃,保温时间为4-10小时。

  一种磷酸钛铝锂固体电解质材料,由权利要求1-9任一所述方法制备得到。

  本发明的有益效果在于:

  1、本发明提供了一种磷酸钛铝锂固体电解质材料的制备方法,采用两步法制备得到磷酸钛铝锂固体电解质材料,首先制备得到纳米草形貌结构的AlOOH铝前驱体,该AlOOH铝前驱体具有较高的表面活性,可使第二步的固相烧结过程在950℃这样较低的温度下进行,在节约烧结能耗的同时又能够有效阻止因高温造成的锂损失;此外,其纳米尺度的形貌结构,有助于球磨过程的均匀混料,易于获得微-纳米尺度的烧结产物,提升锂离子电导率;

  2、本发明制备得到了磷酸钛铝锂固体电解质材料具有高致密度和离子电导率的特点,其致密度高达96.06%、锂离子电导率高达3.44×10-3S·cm-1;

  3、本发明工艺简单易控、合成温度较低、易于在工业上实施,所制备得到产物纯度高、致密度好、锂离子电导率高,适合用作全固态锂离子电池的电解质材料。

  附图说明

  图1为实施例1得到的AlOOH前驱体的SEM图;

  图2为实施例1所得到的ALOOH前驱体的XRD图;

  图3为实施例1得到的Li1.3Al0.3Ti1.7(PO4)3固体电解质的SEM图;

  图4为实施例1得到Li1.3Al0.3Ti1.7(PO4)3固体电解质的XRD图。

  具体实施方式

  本说明书中公开的所有特征,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。

  实施例1

  将硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在200℃下反应12小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于700℃烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在950℃条件下二次烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。

  实施例2

  将硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在180℃下反应20小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于700℃烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在950℃条件下二次烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。

  实施例3

  将硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在220℃下反应10小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于700℃烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在950℃条件下二次烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。

  实施例4

  以硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在200℃下反应12小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于850℃烧结5小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在950℃条件下二次烧结4小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。

  实施例5

  以硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在200℃下反应12小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于800℃烧结4小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在850℃条件下二次烧结10小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。

  实施例6

  以硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在200℃下反应12小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于950℃烧结10小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在950℃条件下二次烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。

  实施例7

  将硝酸铝、尿素为原料,按照摩尔比为1:1.5的化学计量比溶解在去离子水中,得到混合溶液;再将该混合溶液置于反应釜中,在200℃下反应12小时,再将产物经过滤、洗涤,烘干,得到AlOOH前驱体;将步骤(1)得到的AlOOH前驱体与碳酸锂、二氧化钛和磷酸二氢铵,按照Li、Al、Ti、P摩尔比为1.3:0.3:1.7:3进行混合配料,然后加入乙醇介质后球磨,在干燥的空气气氛下,于700℃烧结6小时,得到Li1.3Al0.3Ti1.7(PO4)3粉体,再将上述Li1.3Al0.3Ti1.7(PO4)3体压块成型,在700℃条件下二次烧结4小时,得到Li1.3Al0.3Ti1.7(PO4)3固体电解质材料。

  发明人对实施例1-7得到的固体电解质材料进行了致密度和锂离子导电率测试,测试方法如下,并将测试结果与传统方法制备得到的固体电解质进行了对比,结果见表1。

  上述电解质材料的致密度和锂离子电导率可按如下常用的方法测量:

  (1)致密度:以去离子水为浸没介质,借助“阿基米德排水法”测试样品的致密度;在计算过程中,Li1.3Al0.3Ti1.7(PO4)3的理论密度取值为2.94g cm-3。

  (2)将烧结后的Li1.3Al0.3Ti1.7(PO4)3电解质陶瓷样品研磨、抛光后,双面涂上导电银浆,烘干后,进行室温交流阻抗测试(精密阻抗分析仪,4294A),通过对测试数据进行分析计算,获得锂离子电导率。

  表1实施例、以及传统制备方法所得材料的致密度和锂离子电导率

  

  

  [7]L.Huang,Z.Wen,M.Wu,X.Wu,Y.Liu,X.Wang.J Power Sources,196(2011)6943-6946.

  [8]Z.Wang,Z.Kou,C.Miao,W.Xiao.Ceram Int,45(2019)14469-14473.

  [9]K.Kwatek,J.Nowiński.Solid State Ionics,302(2017)54-60.

  由表1可见,较文献中报道的液相法、溶胶凝胶法和固相烧结法相比,本发明中实施例1条件下合成的Li1.3Al0.3Ti1.7(PO4)3固体电解质材料的致密度和锂离子电导率均有大幅提升,特别是锂离子电导率,提升了1~4个数量级;由表1可知,实施例1为最佳实施例。

  需要说明的是,选择本发明中不同的可溶性铝盐、沉淀剂、磷源、锂源、钛源时,也可以达到实施例1相似的效果。

  实验例

  一、扫描电镜图(SEM)

  将实施例1中的所得到的AlOOH前驱体进行扫描,扫描电镜图(SEM)如图1所示。通过SEM电镜分析,得到的AlOOH前驱体呈现特殊的纳米草状形貌结构,单个颗粒长约2微米,厚度约为50纳米,呈现出较好的均匀性。

  将实施例1中的所得到的Li1.3Al0.3Ti1.7(PO4)3固体电解质材料进行扫描,扫描电镜图(SEM)如图3所示。通过SEM电镜分析,得到的Li1.3Al0.3Ti1.7(PO4)3固体电解质材料颗粒之间排列紧密,大小均一,单个颗粒平均尺寸约为1微米,无明显孔洞和缝隙现象。

  二、X射线衍射图谱(XRD)

  将实施例1中所得到的AlOOH前驱体进行X射线衍射,X射线衍射图(XRD)如图2所示。其与标准卡片γ-AlOOH(JCPDS#21-1307)的特征衍射峰完全一致。特征峰(020),(120)和(031)甚是明显,表明前驱体产物晶体是完整的。此外,在XRD图谱没有观察到其他杂质相,表明产物是高纯度的γ-AlOOH。

  将实施例1中所得到的Li1.3Al0.3Ti1.7(PO4)3固体电解质材料进行X射线衍射,X射线衍射图(XRD)如图4所示,可以观察到样品的主要特征衍射峰与标准卡片一致(JCPDS#35-0754),衍射峰峰形尖锐,强度较高,无杂质峰,表明样品结晶性好、纯度高。

  以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

《一种磷酸钛铝锂固体电解质材料及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)