欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法独创技术23141字

铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法

2021-02-13 01:56:03

铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法

  技术领域

  本发明涉及压电材料及其制备方法,特别涉及一种三元体系铁酸铋基高温压电陶瓷材料及其制备方法,属于功能陶瓷材料技术领域

  背景技术

  压电陶瓷作为一种热、力、光敏感功能材料,已经在传感器、变压器、超声换能器、微位移器以及其他电子元器件等方面得到广泛的应用。随着航空航天、汽车、化工等工业的迅猛发展,对压电材料的高温稳定性要求也随之升高。为满足高温应用需求,迫切需要能直接在高温环境中正常工作而不失效的高温压电陶瓷器件。

  为了获得具有高居里温度、高压电性能的压电陶瓷,世界各国研究人员开展了广泛的研究。目前常见的高居里温度的压电陶瓷材料从结构上分为钙钛矿型和非钙钛矿型结构的压电陶瓷。非钙钛矿型的含铋层状和钨青铜结构压电陶瓷,虽然具有非常高的居里温度,但其本身的结构限制了其压电活性,导致其压电系数低。而在钙钛矿型结构的压电陶瓷中,铁酸铋和钛酸铅所形成的二元压电材料具有优越的综合性能。铁酸铋-钛酸铅二元固溶体具有准同形相界(MPB),相界处为三方相和四方相共存,居里温度高达650℃,有应用于高温压电陶瓷器件领域的前景。但是该体系高温压电陶瓷在烧结过程中会发生铁离子变价以及氧化铋的挥发,产生大量的氧空位缺陷,导致室温下电阻率低、漏电流大,同时四方畸变c/a比大,导致矫顽场大难以极化,极大的限制了其压电性能的表征。目前,文献中还未见铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料制备工艺与性能的报道。

  发明内容

  为了解决现有铁酸铋-钛酸铅基高温压电陶瓷虽然居里温度高,但是压电系数低的问题,本发明提供一种铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法,该材料具有良好的压电性能、高的居里温度及良好的烧结特性,非常有望应用于高温压电陶瓷器件领域。

  第一方面,本发明提供一种铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料,所述陶瓷材料的化学组成为(1-x-y)BiFeO3-xPbTiO3-yBa(Sn1/5Ti4/5)O3+zMnCO3;其中,x、y为摩尔比,0.20≤x≤0.26,0.13≤y≤0.18;z为重量比,以合成所述陶瓷材料时粉体的总重量计,0≤z≤0.15wt%。

  本发明铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料室温下为铁电钙钛矿相结构。对于BiFeO3-PbTiO3基钙钛矿陶瓷而言,四方畸变大的原因是由于晶胞结构ABO3中A-O和B-O键强烈的共价键特性,其源于B位的铁电活性离子。具体来说,向BiFeO3-PbTiO3基压电陶瓷体系中引入第三元钙钛矿结构的Ba(Sn1/5Ti4/5)O3,其中Sn4+的3d轨道有电子占据,因此不属于“3d0”铁电活性离子,可以减少A-O和B-O键的共价键属性,有利于降低晶格四方畸变。另外,Ba2+、Sn4+具有大的离子半径,可以有效地增大晶胞参数a,缩小晶胞参数c,即降低了晶格四方畸变度c/a,进而降低娇顽场,促进铁电畴在外加电场下的运动,提高压电性能。

  不仅如此,相较于其他第三元而言(例如第三元BaTiO3的加入相当于BiFeO3-PbTiO3仅仅在A位掺杂大离子半径的Ba2+离子),而Ba(Sn1/5Ti4/5)O3的加入同时在A位掺杂Ba2+离子以及B位掺杂非铁电活性的Sn4+,A位和B位共掺杂可以更有效的降低晶格四方畸变,促进畴运动,提高其压电性能。另外,BiFeO3和PbTiO3分别为三方相和四方相晶体结构,添加第三元伪立方相晶体结构的Ba(Sn1/5Ti4/5)O3,获得了非常宽范围的多相共存区域,即准同型相界MPB,具有MPB结构的压电陶瓷铁电畴壁更容易运动。

  综上因素,本发明铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料大大提高铁酸铋基高温压电陶瓷的压电系数,准静态d33最大可达245pC/N。同时该三元高温压电陶瓷材料仍然具有高的居里温度(Tc>460℃)。此外,本发明加入MnCO3作为烧结添加剂,可以显著降低该体系陶瓷的漏导。

  较佳地,所述高温压电陶瓷材料的居里温度为460-530℃,压电系数d33为120-245pC/N。

  上述高温压电陶瓷材料的物相结构为三方相和四方相共存。

  第二方面,本发明提供上述铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料的制备方法,所述制备方法包括:

  根据铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料的化学组成(1-x-y)BiFeO3-xPbTiO3-yBa(Sn1/5Ti4/5)O3+zMnCO3,按照化学计量比称量后将原料一次球磨烘干,在800-820℃一次煅烧4-6小时,获得一次煅烧粉体;

  将所得一次煅烧粉体在780-800℃二次煅烧2-4小时,获得二次煅烧粉体;以及

  将所得二次煅烧粉体二次球磨烘干后在960-1040℃保温烧结2-4小时,得到所述铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料。

  本发明的制备方法将原料混合后分别进行一次煅烧和二次煅烧处理后、再进行烧结处理。二次煅烧工艺对陶瓷烧结起重要作用,经一次煅烧可以使得氧化物原料反应形成前驱体,经二次煅烧可以让反应更充分,得到均匀相的前驱体。作为一个优选方案,本发明还加入占原料总重量为0.12≤z≤0.30wt%MnCO3作为烧结添加剂,优选范围0.12≤z≤0.15wt%。MnCO3作为烧结添加剂,由于其添加量少,因此不改变材料的物相结构,但由于锰离子的多价态特性,可以有效的抑制Fe3+到Fe2+的转变,从而有效的降低材料的漏导,有利于压电陶瓷的极化处理,进而得到高压电性能的陶瓷。此外,相比于氧化锰,碳酸锰的反应活性更高,可以有效的促进固相反应过程,得到更致密、性能更优异的压电陶瓷。

  较佳地,所述制备方法还包括:在所述烧结之前向所述二次煅烧粉体中加入粘结剂造粒,压制成型,然后排胶,得到陶瓷坯体;并对所述陶瓷坯体进行所述烧结。

  所述排胶条件优选为在550-580℃排胶4-6小时。

  较佳地,所述粘结剂的加入量为二次煅烧粉体质量的5-8wt.%;优选地,所述粘结剂为聚乙烯醇。

  较佳地,所述制备方法还包括:对所述铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料进行刷银、烧银、极化处理。

  较佳地,所述极化条件为在4-5kv/mm的电场下于100-120℃极化。

  优选地,所述极化时间为10-30分钟。

  附图说明

  图1为实施例1-3所制得的陶瓷材料的XRD谱图;

  图2为实施例1-3所制得的陶瓷材料的介温图谱,测试频率为10KHz;

  图3为实施例1-3所制得的陶瓷材料的电滞回线图;

  图4为实施例1所制得的陶瓷材料在平面机电耦合系数随温度变化图谱。

  具体实施方式

  以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。以下各百分含量如无特别说明均指质量百分含量。

  本发明首次提供了一种铁酸铋基三元高温压电陶瓷材料,所述陶瓷材料的化学组成通式为:(1-x-y)BiFeO3-xPbTiO3-yBa(Sn1/5Ti4/5)O3+zMnCO3(简写为BF-PT-BST),其中:x、y为摩尔比,0.20≤x≤0.26,0.13≤y≤0.18;z为重量比,以BF-PT-BST合成粉体总重量计,且满足0≤z≤0.15wt%。在上述三元体系高温压电陶瓷材料中,钛锡酸钡和铁酸铋、钛酸铅结构类似,均为钙钛矿型结构,能够与它们形成三元固溶体,调节相界。另外Sn4+不属于“3d0”的铁电活性离子,它的加入可以减弱B-O共价键特性,有效地降低了晶格四方畸变度c/a,促进畴的转动,从而有望获得优异的压电性能。

  作为本发明优选的技术方案,化学式满足如下数值范围:x=0.24;0.13≤y≤0.18;z=0.12wt%。

  一些实施方式中,所述铁酸铋基高温压电陶瓷材料居里温度为460~530℃,压电系数d33为120~245pC/N。

  与现有技术相比,本发明提供的铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料具有如下有益效果:

  1.本发明基于铁酸铋-钛酸铅基压电陶瓷的高温应用前景,首次通过引入第三元Ba(Sn1/5Ti4/5)O3固溶体,构建了三元体系的准同型相界,显著提高了该体系的压电系数。同时掺杂离子降低了漏导,有利于其在器件中的应用。MnCO3作为烧结添加剂,由于其添加量少,因此不改变材料的物相结构,但由于锰离子的多价态特性,可以有效的抑制Fe3+到Fe2+的转变,从而有效的降低材料的漏导,有利于压电陶瓷的极化处理,进而得到高压电性能的陶瓷。

  2.本发明BF-PT-BST三元体系高温压电陶瓷同时具有高的压电系数和高的居里温度,可满足在高温环境下的应用,与之前报道的高温压电陶瓷,具有明显的优势。并且,本发明材料制备工艺简单,烧结后陶瓷致密度高,不产生开裂,有利于大规模生产。

  该材料的制备方法是利用传统的固相合成工艺,包括球磨混料、预烧合成、二次球磨、造粒压片、烧结、刷银极化等过程。本发明提供的陶瓷材料易烧结、优异的压电性能、高居里温度等优点,非常适合应用于高温压电陶瓷器件领域。

  以下示出本发明一实施方式中铁酸铋基高温压电陶瓷材料的制备方法。

  步骤a),按照(1-x-y)BiFeO3-xPbTiO3-yBa(Sn1/5Ti4/5)O3+zMnCO3通式,以高纯度的Bi2O3、Fe2O3、Pb3O4、TiO2、BaCO3、SnO2及MnCO3为原料粉体,将原料湿法球磨,混合均匀烘干。例如,精确称量各原料,总重量计50g,将原料放入球磨罐,以无水乙醇为球磨介质,在行星球磨机上混合球磨6小时后,出料放入100℃烘箱中快速烘干。

  步骤b),将烘干的粉体过筛压块后,以一定的升温速率升温至800-820℃,并在800-820℃下煅烧4-6小时,得到颗粒细小、无杂相的一次煅烧BF-PT-BST合成粉体。其中,升温速率可为5℃/min。

  步骤c),将一次煅烧的BF-PT-BST粉体打碎研磨后,进行二次煅烧。煅烧温度可为780-800℃,煅烧时间可为2-4小时。

  步骤d),将二次煅烧后的BF-PT-BST粉体打碎研磨,并放入球磨罐中,加入无水乙醇,进行二次球磨,出料并放入烘箱中烘干,得到二次球磨后的粉体。二次球磨时间可为8小时。在可选的实施方式中,烘箱温度为100℃。通过二次球磨形成特定粒径的粉体,会提高烧结活性,使得陶瓷烧结更为致密。

  步骤e),将二次球磨后的粉体加入质量分数为5-8wt%的PVA粘结剂,研磨造粒,陈化,过筛后。再用200MPa的压力压制成直径12mm,厚度1.8mm的小圆片,后升温至550-580℃保温4-6小时,排除陶瓷圆片中的有机物。

  步骤f),将排完胶的小圆片埋粉,盖上坩埚,并放入高温烧结炉中。烧结制度可为:从室温5℃/min升温至在960-1040℃,保温2-4小时,并随炉冷却。

  步骤g),将烧结致密的陶瓷样品加工成所需尺寸,并经过刷银、烧银处理后得到压电陶瓷样品。

  步骤h),将压电陶瓷样品放入100-120℃的硅油中,在4-5kv/mm的电场下极化,即可获得高性能的铁酸铋基高温压电陶瓷材料。

  实施例1

  一种铁酸铋基三元高温压电陶瓷材料组分选取为:0.63BiFeO3-0.24PbTiO3-0.13Ba(Sn1/5Ti4/5)O3+0.15%wtMnCO3。

  上述高温压电陶瓷材料的制备方法包括如下步骤:

  a)以高纯度的Bi2O3、Fe2O3、Pb3O4、TiO2、BaCO3、SnO2及MnCO3为原料粉体,按照0.63BiFeO3-0.24PbTiO3-0.13Ba(Sn1/5Ti4/5)O3+0.15%wtMnCO3通式精确称量总计50g,将原料放入球磨罐,以无水乙醇为球磨介质,在行星球磨机上混合球磨6小时后,出料放入100℃烘箱中快速烘干;

  b)将混合均匀的粉体过筛压块后,以升温速率为5℃/min升温至800-820℃,在800-820℃下煅烧4-6小时,,得到颗粒细小、无杂相的一次煅烧BF-PT-BST合成粉体;

  c)将一次煅烧的BF-PT-BST粉体打碎研磨后,进行二次煅烧,煅烧温度为780-800℃,煅烧时间2小时;

  d)将合成后的BF-PT-BST粉体打碎研磨,并放入球磨罐中,加入无水乙醇,进行二次球磨,时间为8小时,出料并放入100℃烘箱中烘干;

  e)将二次球磨后的粉体加入质量分数为5wt%的PVA粘结剂,研磨造粒,陈化,过筛后。再用200MPa的压力压制成直径12mm、厚度1.8mm的小圆片,后升温至550℃保温4小时,排除陶瓷圆片中的有机物;

  f)将排完胶的小圆片埋粉,盖上坩埚,并放入高温烧结炉中。烧结制度为:从室温5℃/min升温至960-1040℃,保温2-4小时,并随炉冷却;

  g)将烧结致密的陶瓷样品加工成所需尺寸,并经过刷银、烧银处理后得到压电陶瓷样品;

  h)将压电陶瓷样品放入100-120℃的硅油中,在4-5kv/mm的电场下极化10-30分钟,即可获得高性能的铁酸铋基高温压电陶瓷材料。

  将制得的陶瓷材料用D/max2550V衍射仪进行其物相分析,得到的XRD谱图见图1所示。由图1可见,陶瓷为纯的钙钛矿结构,相结构为三方-四方相共存。由图1可知,所有陶瓷材料均为纯的钙钛矿相,无第二相(杂相)产生,说明此三元固溶体可以很好的固溶;同时由45°特征峰可以得知,陶瓷材料的相结构位于三方-四方共存的准同形相界处,这对陶瓷材料压电性能的提高有很大帮助。

  将制得的陶瓷材料用Agilent 4294进行其介温性能分析,得到的介电温谱如图2所示。由图2可见,所制备的陶瓷材料的铁电相到立方相的转变温度在529℃,具有高的居里温度。

  将制得的陶瓷材料用TF Analyzer 2000铁电分析仪测量陶瓷的电滞回线如图3所示。由图3可见,所制备的陶瓷具有较好的铁电性能,其剩余极化为20μC/cm2,矫顽场为30kV/cm。另外,所制备陶瓷室温下准静态d33可达121pC/N。

  将制得的陶瓷材料用Agilent 4294进行其平面机电耦合系数测试,得到随温度变化性能如4所示。由图4可见,所制备的陶瓷具有好的温度稳定性,在480℃以内性能保持稳定。

  实施例2

  在本实施例中,一种铁酸铋基三元高温压电陶瓷材料组分选取为:0.60BiFeO3-0.24PbTiO3-0.16Ba(Sn1/5Ti4/5)O3+0.12%wtMnCO3。

  上述高温压电陶瓷材料的制备方法包括如下步骤:

  a)以高纯度的Bi2O3、Fe2O3、Pb3O4、TiO2、BaCO3、SnO2及MnCO3为原料粉体,按照0.60BiFeO3-0.24PbTiO3-0.16Ba(Sn1/5Ti4/5)O3+0.12%wtMnCO3通式精确称量总计50g,将原料放入球磨罐,以无水乙醇为球磨介质,在行星球磨机上混合球磨6小时后,出料放入100℃烘箱中快速烘干;

  b)将混合均匀的粉体过筛压块后,以升温速率为5℃/min升温至800-820℃,在800-820℃下煅烧4小时,得到颗粒细小、无杂相的一次煅烧BF-PT-BST合成粉体;

  c)将一次煅烧的BF-PT-BST粉体打碎研磨后,进行二次煅烧,煅烧温度为780-800℃,煅烧时间2小时;

  d)将合成后的BF-PT-BST粉体打碎研磨,并放入球磨罐中,加入无水乙醇,进行二次球磨,时间为8小时,出料并放入100℃烘箱中烘干;

  e)将二次球磨后的粉体加入质量分数为5wt%的PVA粘结剂,研磨造粒,陈化,过筛后;再用200MPa的压力压制成直径12mm,厚度1.8mm的小圆片,后升温至550℃保温4小时,排除陶瓷圆片中的有机物;

  f)将排完胶的小圆片埋粉,盖上坩埚,并放入高温烧结炉中。烧结制度为:从室温5℃/min升温至在960-1040℃,保温2-4小时,并随炉冷却;

  g)将烧结致密的陶瓷样品加工成所需尺寸,并经过刷银、烧银处理后得到压电陶瓷样品;

  h)将压电陶瓷样品放入100-120℃的硅油中,在4-5kv/mm的电场下极化10-30分钟,即可获得高性能的铁酸铋基高温压电陶瓷材料。

  将制得的陶瓷材料用D/max2550V衍射仪进行其物相分析,得到的XRD谱图见图1所示。由图1可见:陶瓷为纯的钙钛矿结构,相结构为三方-四方相共存。

  将制得的陶瓷材料用Agilent 4294进行其介温性能分析,得到的介电温谱如图2所示。由图2可见:所制备的陶瓷材料的铁电相到立方相的转变温度在499℃,具有较高的居里温度。

  将制得的陶瓷材料用TF Analyzer 2000铁电分析仪测量陶瓷的电滞回线如图3所示。由图3可见:所制备的陶瓷具有较好的铁电性能,其剩余极化为18μC/cm2,矫顽场为27kV/cm。另外,所制备陶瓷室温下准静态d33可达202pC/N,具有较高的压电系数。

  实施例3

  在本实施例中,一种铁酸铋基三元高温压电陶瓷材料组分选取为:0.58BiFeO3-0.24PbTiO3-0.18Ba(Sn1/5Ti4/5)O3+0.12%wtMnCO3。

  上述高温压电陶瓷材料制备方法包括如下步骤:

  a)以高纯度的Bi2O3、Fe2O3、Pb3O4、TiO2、BaCO3、SnO2及MnCO3为原料粉体,按照0.58BiFeO3-0.24PbTiO3-0.18Ba(Sn1/5Ti4/5)O3+0.12%wtMnCO3通式精确称量总计50g,将原料放入球磨罐,以无水乙醇为球磨介质,在行星球磨机上混合球磨6小时后,出料放入100℃烘箱中快速烘干;

  b)将混合均匀的粉体过筛压块后,以升温速率为5℃/min升温至800-820℃,在800-820℃下煅烧4小时,得到颗粒细小、无杂相的一次煅烧BF-PT-BST合成粉体;

  c)将一次煅烧的BF-PT-BST粉体打碎研磨后,进行二次煅烧,煅烧温度为780-800℃,煅烧时间2小时;

  d)将合成后的BF-PT-BST粉体打碎研磨,并放入球磨罐中,加入无水乙醇,进行二次球磨,时间为8小时,出料并放入100℃烘箱中烘干;

  e)将二次球磨后的粉体加入质量分数为5wt%的PVA粘结剂,研磨造粒,陈化,过筛后;再用200MPa的压力压制成直径12mm,厚度1.8mm的小圆片,后升温至550℃保温4小时,排除陶瓷圆片中的有机物;

  f)将排完胶的小圆片埋粉,盖上坩埚,并放入高温烧结炉中。烧结制度为:从室温5℃/min升温至在960-1040℃,保温2-4小时,并随炉冷却;

  g)将烧结致密的陶瓷样品加工成所需尺寸,并经过刷银、烧银处理后得到压电陶瓷样品;

  h)将压电陶瓷样品放入100-120℃的硅油中,在4-5kv/mm的电场下极化10-30分钟,即可获得高性能的铁酸铋基高温压电陶瓷材料。

  将制得的陶瓷材料用D/max2550V衍射仪进行其物相分析,得到的XRD谱图见图1所示。由图1可见,陶瓷为纯的钙钛矿结构,相结构为三方-四方相共存。

  将制得的陶瓷材料用Agilent 4294进行其介温性能分析,得到的介电温谱如图2所示。由图2可见,所制备的陶瓷材料的铁电相到立方相的转变温度在467℃,具有较高的居里温度。

  将制得的陶瓷材料用TF Analyzer 2000铁电分析仪测量陶瓷的电滞回线如图3所示。由图3可见,所制备的陶瓷具有较好的铁电性能,其剩余极化为18μC/cm2,矫顽场为25kV/cm。另外,所制备陶瓷室温下准静态d33可达245pC/N,具有高的压电系数。

  实施例4

  在本实施例中,一种铁酸铋基三元高温压电陶瓷材料组分选取为:0.58BiFeO3-0.24PbTiO3-0.18Ba(Sn1/5Ti4/5)O3。

  上述高温压电陶瓷材料制备方法包括如下步骤:

  a)以高纯度的Bi2O3、Fe2O3、Pb3O4、TiO2、BaCO3及SnO2为原料粉体,按照0.58BiFeO3-0.24PbTiO3-0.18Ba(Sn1/5Ti4/5)O3通式精确称量总计50g,将原料放入球磨罐,以无水乙醇为球磨介质,在行星球磨机上混合球磨6小时后,出料放入100℃烘箱中快速烘干;

  b)将混合均匀的粉体过筛压块后,以升温速率为5℃/min升温至800-820℃,在800-820℃下煅烧4小时,得到颗粒细小、无杂相的一次煅烧BF-PT-BST合成粉体;

  c)将一次煅烧的BF-PT-BST粉体打碎研磨后,进行二次煅烧,煅烧温度为780-800℃,煅烧时间2小时;

  d)将合成后的BF-PT-BST粉体打碎研磨,并放入球磨罐中,加入无水乙醇,进行二次球磨,时间为8小时,出料并放入100℃烘箱中烘干;

  e)将二次球磨后的粉体加入质量分数为5wt%的PVA粘结剂,研磨造粒,陈化,过筛后;再用200MPa的压力压制成直径12mm,厚度1.8mm的小圆片,后升温至550℃保温4小时,排除陶瓷圆片中的有机物;

  f)将排完胶的小圆片埋粉,盖上坩埚,并放入高温烧结炉中。烧结制度为:从室温5℃/min升温至在960-1040℃,保温2-4小时,并随炉冷却;

  g)将烧结致密的陶瓷样品加工成所需尺寸,并经过刷银、烧银处理后得到压电陶瓷样品;

  h)将压电陶瓷样品放入100-120℃的硅油中,在4-5kv/mm的电场下极化10-30分钟,即可获得高性能的铁酸铋基高温压电陶瓷材料。

  所制备陶瓷极化漏导大,表现出大的漏电流,室温下准静态d33仅126pC/N,相比于实施例3,在没有碳酸锰烧作为结助剂的情况下,压电陶瓷压电性能减少一半,说明碳酸锰有助于提高材料的压电性能。

  结合图1-4及实施例1-4可以看出,本发明设计了一种化学组成为(1-x-y)BiFeO3-xPbTiO3-yBa(Sn1/5Ti4/5)O3+zMnCO3的新型铁酸铋基三元体系高温压电陶瓷材料,通过不同相结构的钙钛矿固溶体之间的相互固溶,形成准同形相界(图1),来提高压电陶瓷材料的压电性能。同时,还掺杂锰离子降低了漏导,有利于陶瓷材料的极化和其在器件中的应用。在保持高的居里温度(460~530℃)基础上,陶瓷材料的压电性能大幅提升(120~245pC/N)。

  综上所述,本发明制备的铁酸铋基三元体系高温压电陶瓷材料,其具有高的压电系数和高的居里温度及良好的温度稳定性和烧结特性,可满足在高温环境下应用的性能要求,是一种极具应用前景的高温压电陶瓷材料。

《铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)