欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种二氧化锆多孔陶瓷材料的制备方法和应用独创技术12753字

一种二氧化锆多孔陶瓷材料的制备方法和应用

2021-02-28 10:56:38

一种二氧化锆多孔陶瓷材料的制备方法和应用

  技术领域

  本发明属于保温隔热材料领域,具体涉及一种二氧化锆多孔陶瓷的制备方法及制得的产品。

  背景技术

  航天飞行器和工程结构材料(如涡轮机叶片、喷气式引擎等)在恶劣的环境中需要特殊的材料给予保护。这些保护层材料不仅要使被保护材料不受腐蚀、磨损和冲蚀,还要起到隔热的作用。尤其是当这些保护层材料在作为防热结构时,要承受极端的高温、高压和热循环的环境。目前,保护层主要用到的材料有:Al2O3、TiO2、CaO/MgO+ZrO2、氧化钇稳定氧化锆(YSZ)、CeO2+YSZ、ZrO2、La2Zr2O7、莫来石等。其中,8YSZ陶瓷材料因具有熔点高、硬度高、抗热震稳定性好、热导率低、线膨胀系数接近金属材料、强度和韧性高、耐化学腐蚀等优点而被广泛使用。

  将ZrO2材料制成多孔陶瓷可进一步降低热导率、减小密度。同时,多孔陶瓷中的孔结构还可以缓解热膨胀不匹配造成的应力。ZrO2多孔陶瓷的制备方法主要有颗粒堆积法、发泡法和造孔剂法。这几种制备方法的主要缺点一是很难制备高孔隙率材料;二是制备的气孔孔径大(约为几十至几百μm)、分布不均匀,很难降低高温下孔隙中气体的热传导(空气的平均自由程为70nm)。以叔丁醇为溶剂的凝胶注模成型工艺是近年来提出的制备多孔陶瓷的一种近净成型的新方法。在该工艺中,有机单体和交联剂溶解在比水更容易挥发的叔丁醇(表面张力小)中形成预混液。将预混液与基体粉料混合均匀后,在催化剂和引发剂的作用下,有机单体和交联剂实现交联聚合,在基体中形成三维网络结构,制备出结构均匀的陶瓷坯体。在干燥和烧结过程中,随着叔丁醇的快速挥发和有机物的分解,在坯体中形成均匀分布的气孔结构。该孔径平均孔径为几微米,比其他几种方法降低一至两个数量级,可以进一步降低材料的热导率。刘瑞平和汪长安发表在《稀有金属材料与工程》2013年第S1期上的论文《造孔剂添加量对凝胶注模成型工艺制备8YSZ多孔陶瓷性能的影响》中采用造孔剂法和叔丁醇凝胶注模相结合制备8YSZ多孔陶瓷,虽然强度高(最高可达85.24±2.31MPa),但气孔率低(22.9%~39.8%),热导率高(0.735~1.108W/m·K),平均孔径在10μm左右,且丙烯酰胺单体具有神经毒性。已申请的专利公开号CN 107353027采用双氧水发泡制备ZrO2泡沫陶瓷,所制备多孔陶瓷的热导率为0.09-0.12W/m·K。已申请的专利公开号CN104987124采用发泡剂法制备ZrO2泡沫陶瓷,所制备多孔陶瓷的热导率为0.09-0.18W/m·K。这两种方法制备的泡沫陶瓷虽然抗压强度大,但室温热导率仍然较高。

  异丙醇的密度为0.79g/cm3,20℃的饱和蒸气压为4.4kPa,表面张力为21.7mN/m,与叔丁醇的性质接近。另外丙烯酰胺单体具有神经毒性。将N,N-羟甲基丙烯酰胺与醇溶剂相结合进行凝胶注模,同时采用冷冻干燥法可进一步减少基体的收缩,得到更高孔隙率的多孔陶瓷,进而进一步降低热导率。

  发明内容

  发明目的:为了克服现有技术中存在的不足,本发明提供一种具备高气孔率、低热导率的二氧化锆多孔陶瓷的制备方法及其应用。

  技术方案:本发明提供的一种二氧化锆多孔陶瓷的制备方法,包括如下制备步骤:

  (1)制备陶瓷浆料悬浮体:将有机单体、交联剂与醇溶剂按一定比例混合均匀后配置成预混液,然后向预混液中加入催化剂、8YSZ纳米粉体、分散剂、添加剂分散于预混液中,经行星球磨和超声振动后得到稳定的陶瓷悬浮体浆料;

  (2)凝胶注模成型:再加入含有引发剂的水溶液,快速搅拌后注入模具,50℃水浴5-10min至凝胶化得到坯体;

  (3)冷冻干燥:将坯体和模具先-16℃冷冻3-5h,再放入冷冻干燥机中,-50℃冷冻干燥18-24h至坯体完全干燥得到陶瓷生坯;

  (4)脱脂烧结:将陶瓷生坯放入高温电炉中升温至700℃并保温1-1.5h,再升温至1000-1400℃热处理1-2h,得到ZrO2多孔陶瓷。

  其中,原材料中纳米8YSZ粉体、有机单体、交联剂、催化剂、引发剂、分散剂、添加剂、醇溶剂和水的质量比为:(50-60):(12-14):(1.2-1.4):(0.35-0.4):(1.7-1.8):(1.2-1.7):(6-15):(110-120):(5-7)。

  具体地,步骤(1)中,经行星球磨0.5-1h和超声振动5-20min后得到稳定的陶瓷悬浮体浆料。

  优选地,所述有机单体为N,N-羟甲基丙烯酰胺;所述交联剂为N,N-亚甲基双丙烯酰胺;所述催化剂为N,N,N’,N’-四甲基乙二胺;所述引发剂为过硫酸铵;所述分散剂为聚乙烯吡络烷酮、六偏磷酸钠或聚丙烯酸铵中的任意两种,其中聚乙烯吡络烷酮提供空间位阻效应,六偏磷酸钠或聚丙烯酸铵提供双电子层互斥效应,两种协同效应使分散效果更佳,所述添加剂为气相SiO2粉体、ZrO2空心球、TiO2粉体和SiC粉体中的任意一种与8YSZ短切纤维的混合,其中8YSZ短切纤维占8YSZ纳米粉体和添加剂总量的8-16wt%。

  优选地,所述气相SiO2粉体粒径为7-40nm,团聚颗粒粒径为200-400nm;所述ZrO2空心球的粒径为2-5μm、壁厚为200-400nm;TiO2粉体和SiC粉体的平均粒径为2-5μm;所述短切8YSZ纤维的长度为2-5mm、直径为10-15μm。

  优选地,8YSZ纳米粉体的粒径为40-50nm,晶相为全稳定立方相。

  其中,所述醇溶剂为叔丁醇、或叔丁醇与乙醇或异丙醇的混合溶液,其中,叔丁醇与乙醇或异丙醇的质量比为(9-10):1。

  根据上述制备方法得到的二氧化锆多孔陶瓷同样在本发明的保护范围内。

  通过本发明方法制备得到的的二氧化锆多孔陶瓷,烧结后的二氧化锆多孔陶瓷的密度为0.67-1.02g/cm3,采用阿基米德排水法测得的气孔率为83~89%,抗压强度为3-6MPa,室温热导率为0.04-0.1W/(m·K)。

  本发明进一步提出了所述的二氧化锆多孔陶瓷在制备隔热材料中的应用。

  有益效果:本发明方法制备的ZrO2多孔陶瓷,相对于现有技术而言,具有如下优点:

  (1)采用醇基凝胶注模结合冷冻干燥成型,进一步提高多孔陶瓷孔隙率,且能保持较小的孔径。通过添加PVP,一方面可以抑制凝胶过程的中的“氧阻聚”,另一方面其具有的高分子性还可作为陶瓷浆料的分散剂;

  (2)在ZrO2陶瓷中添加气相SiO2、氧化锆空心球和8YSZ短纤维,一方面由于添加剂孔隙率高、孔径小,可以进一步提高泡沫陶瓷的隔热性能;另一方面可以抑制干燥过程中样品的收缩,抑制多孔陶瓷的开裂,得到高孔隙率产品;

  (3)采用本方法制备的泡沫陶瓷的抗压强度为3-6MPa,室温热导率为0.04-0.1W/(m·K),兼有较高的强度和较低的热导率;

  (4)泡沫陶瓷成型完整性好、表面没有微裂纹产生。小孔径降低了气体热传导,同时微米和亚微米级的气孔/颗粒界面起到显著的声子和光子散射作用。与现有材料相比,进一步降低了材料的室温和高温热导率,提高了材料的隔热性能。

  附图说明

  图1是本发明实施例方法制备得到的ZrO2多孔陶瓷的实物图。

  具体实施方式

  下面结合附图对本发明作更进一步的说明。本发明采用醇基凝胶注模结合冷冻干燥成型,其中凝胶注模体系中,有机单体为N,N-羟甲基丙烯酰胺(N-MAM)、交联剂为N,N-亚甲基双丙烯酰胺(MBAM)、引发剂为过硫酸铵(APS)、催化剂为N,N,N’,N’-四甲基乙二胺(TEMED)、分散剂为PVP、六偏磷酸钠和聚丙烯酸铵中的任意两种,陶瓷粉体为纳米8YSZ粉体,添加剂为气相SiO2粉体、ZrO2空心球、TiO2粉体和SiC粉体中的任意一种与8YSZ短切纤维的混合,醇溶剂为叔丁醇、或叔丁醇与乙醇或异丙醇的混合溶液。

  实施例1

  实施例中所用原料中,8YSZ粉体的粒径为40-50nm,晶相为全稳定立方相。实施例中采用更小粒径的ZrO2可以获得更小孔径的ZrO2多孔陶瓷,且高温下不会因为ZrO2相变而产生体积变化,导致开裂。作为添加剂的气相SiO2的粒径为7-40nm,团聚颗粒粒径为200-400nm;ZrO2空心球的粒径为2-5μm、壁厚为200-400nm;8YSZ短纤维的直径为5-10μm,长度为2-5mm。

  将13g N-羟甲基丙烯酰胺(N-MAM)、1.3g N,N-亚甲基双丙烯酰胺(MBAM)和110g叔丁醇(TBA)混合均匀后配置成11.5wt%的预混液,再向预混液中加入0.38g N,N,N’,N’-四甲基乙二胺(TEMED)、50g 8YSZ纳米粉体、3g TiO2粉体、0.1g聚丙烯酸铵和1.3g PVP,经行星球磨0.5h后,再加入10g 8YSZ短切纤维,经搅拌5min并超声振动5min,得到稳定的陶瓷悬浮体浆料。再加入5.75g过硫酸铵的水溶液(含有APS 1.75g)作为引发剂,快速搅拌均匀后注入模具,50℃水浴5-10min至凝胶化得到坯体,单体和交联剂发生交联反应并凝胶化。将坯体和模具先-16℃冷冻3-5h,再放入冷冻干燥机中,-50℃冷冻干燥18-24h得到陶瓷生坯。最后将陶瓷生坯放入高温电炉中,以2℃/min升温至700℃,并保温1h进行充分脱脂,再以3℃/min升温至1400℃,并保温2h,样品随炉冷却到室温后取出,得到ZrO2多孔陶瓷,如图1所示。

  多孔陶瓷烧结过程中,颗粒间相互靠近、扩散,结构趋于致密,形成烧结颈结构。气孔相互贯通,形成三维网络结构。所得到的ZrO2多孔陶瓷的密度为1.02g/cm3,采用阿基米德排水法测得的气孔率约为83%,抗压强度为5.92MPa,室温热导率为0.096W/(m·K)。制备的ZrO2多孔陶瓷气孔率高,这些微小气孔形成了对热传导的阻碍,同时多孔陶瓷中微米和亚微米级的气孔/颗粒界面起到显著的声子和光子散射作用。

  实施例2

  将13.5g N-MAM、1.35g MBAM、100g TBA和15g无水乙醇混合均匀配置成质量分数为11.4wt%的预混液,再向预混液中加入0.38g TEMED、60g 8YSZ纳米粉体、3.3g SiC粉体、0.2g六偏磷酸钠和1.35g PVP,经球磨1h后,再加入6g 8YSZ纤维、搅拌5min后再超声振动5min,得到稳定的陶瓷悬浮体浆料。后续步骤按照实施例1进行,得到ZrO2多孔陶瓷。

  所得到的ZrO2多孔陶瓷的密度为0.84g/cm3,采用阿基米德排水法测得的气孔率约为86%,抗压强度为4.36MPa,室温热导率为0.075W/(m·K)。

  实施例3

  按照实施例1,将13.5g N-MAM、1.35g MBAM和100g TBA和15g异丙醇混合均匀配置成质量分数为11.4wt%的预混液。再向预混液中加入0.38g TEMED、60g 8YSZ纳米粉体、0.2g六偏磷酸钠和1.3g PVP,经球磨1h后,再加入4g ZrO2空心球、6g 8YSZ纤维、搅拌5min后再超声振动15min,得到稳定的陶瓷浆料悬浮体。后续步骤按照实施例1进行,得到ZrO2泡沫陶瓷。

  所得到的ZrO2多孔陶瓷的密度为0.67g/cm3,采用阿基米德排水法测得的气孔率为88.8%,抗压强度为3.02MPa,室温热导率为0.043W/(m·K)。

  实施例4

  按照实施例1,将24g N-MAM、2.5g MBAM和190g TBA和20g异丙醇混合均匀配置成质量分数为11.2wt%的预混液。再向预混液中加入0.75g TEMED、100g 8YSZ纳米粉体、2.4g气相SiO2粉体、0.5g聚丙烯酸铵和2.5g PVP,经球磨1h后,再加入20g 8YSZ纤维、搅拌5min后再超声振动15min,得到稳定的陶瓷浆料悬浮体。再加入13.5g过硫酸铵的水溶液(含有APS 3.5g)作为引发剂。后续步骤按照实施例1进行,得到ZrO2泡沫陶瓷。

  所得到的ZrO2泡沫陶瓷的密度为0.73g/cm3,采用阿基米德排水法测得的气孔率为87.9%,抗压强度为3.83MPa,室温热导率为0.058W/(m·K)。

  实施例相对于现有报道中ZrO2多孔陶瓷的制备方法,兼容有良好的抗压强度和较低的室温热导率,同时工艺流程操作简便,易于生产。

  以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

《一种二氧化锆多孔陶瓷材料的制备方法和应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)