欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种钙钛矿阳极材料及其制备方法和应用独创技术16101字

一种钙钛矿阳极材料及其制备方法和应用

2021-01-31 16:08:16

一种钙钛矿阳极材料及其制备方法和应用

  技术领域

  本发明涉及无机材料技术领域,尤其涉及一种钙钛矿阳极材料及其制备方法和应用。

  背景技术

  在固体氧化物燃料电池(SOFC)领域,钙钛矿型阳极材料具有良好的耐硫性能和抗积碳性能,是SOFC稳定、高效地直接使用碳氢化合物作为燃料的首选阳极材料之一。但催化活性和混合导电性能偏低导致其电极性能不如人意。采用静电纺丝工艺制备亚微米纤维结构的钙钛矿阳极,能够增大阳极催化活性区域和优化离子、电子传导路径;再通过浸渍法引入其它离子导体、电子导体相,可以获得电化学性能较好的钙钛矿基复合阳极。该类阳极的优势在于具有良好的耐硫性能和抗积碳性能。

  然而,与传统金属陶瓷复合阳极相比,在电化学输出性能及长期稳定性方面该类阳极仍明显不足。造成这些问题的根本原因在于静电纺丝工艺制备的钙钛矿亚微米纤维的耐高温性能差。静电纺丝技术的工艺特征决定了该方法制备的无机材料纤维是由大量尺寸较小的晶粒沿一维方向排列而成,晶粒形状与大小不均一,晶粒间的结合强度不高。这种情况下,在较高温度下晶粒的生长不均匀,并且晶粒间有颈部收缩生长机制发生,导致纤维的不均匀纵向收缩从而使纤维结构发生破坏甚至坍塌。一般情况下,在1000~1200℃温度范围内,晶粒生长引起的纤维纵向收缩便会导致纤维断裂甚至粉化。这限制了亚微米纤维结构的钙钛矿基阳极的烧成温度,影响着电极与电解质间的界面结合以及阳极内不同物相间的界面结合。长时间工作于较高的温度环境也会引起晶粒的缓慢生长,造成纤维显微结构的不稳定。

  发明内容

  有鉴于此,本发明的目的在于提供一种钙钛矿阳极材料及其制备方法和应用。本发明提供的制备方法制得的钙钛矿阳极材料耐高温性能优异。

  为了实现上述发明目的,本发明提供以下技术方案:

  本发明提供了一种钙钛矿阳极材料的制备方法,包括以下步骤:

  根据钙钛矿阳极材料的分子式称取所需的金属盐后与水混合,得到金属盐溶液;

  将所述金属盐溶液与低分子量聚乙烯吡咯烷酮水溶液混合后调节pH值为1.4~2.8,然后除去水分,得到粘稠状混合溶液,所述低分子量聚乙烯吡咯烷酮水溶液中低分子量聚乙烯吡咯烷酮的重均分子量为3000~5000;

  将所述粘稠状混合溶液与高分子量聚乙烯吡咯烷酮水溶液混合,得到静电纺丝前驱液,所述高分子量聚乙烯吡咯烷酮水溶液中高分子量聚乙烯吡咯烷酮的重均分子量为1200000~1500000;

  将所述静电纺丝前驱液进行静电纺丝,得到纤维;

  将所述纤维进行焙烧,得到所述钙钛矿阳极材料。

  优选地,所述金属盐为金属硝酸盐或金属醇盐。

  优选地,所述钙钛矿阳极材料的分子式为La1-xSrxCr1-yMnyO3,其中x=0.1~0.4,y=0.30~0.70。

  优选地,所述低分子量聚乙烯吡咯烷酮水溶液和高分子量聚乙烯吡咯烷酮水溶液的质量浓度独立地为12~18%,所述金属盐溶液的浓度为0.8~1.2ml/L。

  优选地,所述金属盐溶液与低分子量聚乙烯吡咯烷酮水溶液的体积比为2:1~5:4。

  优选地,所述金属盐溶液与高分子量聚乙烯吡咯烷酮水溶液的体积比为2:1~5:4。

  优选地,所述静电纺丝的条件包括:使用25#医用针头,负压为-3~-1kV,正压为12~24kV,推速为0.03~0.06mm/min,温度为35~70℃,湿度为25%~45%,接收距离为15~25cm。

  优选地,所述焙烧为以0.3~0.8℃/min升温至800~1300℃后保温1~5h。

  本发明还提供了上述技术方式所述制备方法制得的钙钛矿阳极材料。

  本发明还提供了上述技术方案所述的钙钛矿阳极材料作为固体氧化物燃料电池阳极的应用。

  本发明提供了一种钙钛矿阳极材料的制备方法,包括以下步骤:根据钙钛矿阳极材料的分子式称取所需的金属盐后与水混合,得到金属盐溶液;将所述金属盐溶液与低分子量聚乙烯吡咯烷酮水溶液混合后调节pH值为1.4~2.8,然后除去水分,得到粘稠状混合溶液,所述低分子量聚乙烯吡咯烷酮水溶液中低分子量聚乙烯吡咯烷酮的重均分子量为3000~5000;将所述粘稠状混合溶液与高分子量聚乙烯吡咯烷酮水溶液混合,得到静电纺丝前驱液,所述高分子量聚乙烯吡咯烷酮水溶液中高分子量聚乙烯吡咯烷酮的重均分子量为1200000~1500000;将所述静电纺丝前驱液进行静电纺丝,得到纤维;将所述纤维进行焙烧,得到所述钙钛矿阳极材料。本发明基于分子级配原理进行了粘结剂匹配,在静电纺丝前驱液中同时添加小分子量的粘结剂(低分子量聚乙烯吡咯烷酮)和长链大分子量的粘结剂(高分子量聚乙烯吡咯烷酮),大分子量的粘结剂可形成长链金属-有机络合分子,以保证纺丝纤维具有较大长径比,小分子量的粘结剂起到优化金属离子分布均匀性的作用,制备得到了单晶粒连续排列的钙钛矿纤维。实施例的数据表明,本发明制得的钙钛矿阳极材料耐高温性能好,经过1300℃焙烧仍保持较大长径比,晶粒形状较规则且纤维内晶粒间结合良好。

  附图说明

  图1为实施例1制得的钙钛矿阳极材料在低放大倍率下的SEM图;

  图2为实施例1制得的钙钛矿阳极材料在高放大倍率下的SEM图;

  图3为对比例制得的LSCM纤维在低放大倍率下的SEM图;

  图4为对比例制得的LSCM纤维在高放大倍率下的SEM图。

  具体实施方式

  本发明提供了一种钙钛矿阳极材料的制备方法,包括以下步骤:

  根据钙钛矿阳极材料的分子式称取所需的金属盐后与水混合,得到金属盐溶液;

  将所述金属盐溶液与低分子量聚乙烯吡咯烷酮水溶液混合后调节pH值为1.4~2.8,然后除去水分,得到粘稠状混合溶液,所述低分子量聚乙烯吡咯烷酮水溶液中低分子量聚乙烯吡咯烷酮的重均分子量为3000~5000;

  将所述粘稠状混合溶液与高分子量聚乙烯吡咯烷酮水溶液混合,得到静电纺丝前驱液,所述高分子量聚乙烯吡咯烷酮水溶液中高分子量聚乙烯吡咯烷酮的重均分子量为1200000~1500000;

  将所述静电纺丝前驱液进行静电纺丝,得到纤维;

  将所述纤维进行焙烧,得到所述钙钛矿阳极材料。

  本发明根据钙钛矿阳极材料的分子式称取所需的金属盐后与水混合,得到金属盐溶液。

  在本发明中,所述金属盐优选为金属硝酸盐或金属醇盐,所述金属盐溶液的浓度优选为0.8~1.2ml/L。

  在本发明中,所述钙钛矿阳极材料的分子式优选为La1-xSrxCr1-yMnyO3,其中x=0.1~0.4,y=0.30~0.70。在本发明的具体实施例中,优选为根据钙钛矿阳极材料的分子式La1-xSrxCr1-yMnyO3(LSCM),按照化学计量比分别称取所需的金属硝酸盐La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O和Mn(NO3)2,加入去离子水常温下搅拌充分溶解配制成0.8~1.2ml/L的金属盐溶液。

  得到金属盐溶液后,本发明将所述金属盐溶液与低分子量聚乙烯吡咯烷酮水溶液混合后调节pH值为1.4~2.8,然后除去水分,得到粘稠状混合溶液,所述低分子量聚乙烯吡咯烷酮水溶液中低分子量聚乙烯吡咯烷酮的重均分子量为3000~5000。

  在本发明中,所述低分子量聚乙烯吡咯烷酮水溶液的质量浓度优选为12~18%。

  在本发明中,所述金属盐溶液与低分子量聚乙烯吡咯烷酮水溶液的体积比优选为2:1~5:4。

  在本发明中,所述调节pH值的调节剂优选为氨水,本发明对所述氨水的浓度没有特殊的限定,能够将pH值调节为1.4~2.8即可。

  在本发明中,所述除去水分优选为将所得混合溶液密封后于80℃下水浴搅拌10小时后打开密封,继续80℃水浴搅拌。在本发明中,随着水分蒸发,得到粘稠状混合溶液。

  得到粘稠状混合溶液后,本发明将所述粘稠状混合溶液与高分子量聚乙烯吡咯烷酮水溶液混合,得到静电纺丝前驱液,所述高分子量聚乙烯吡咯烷酮水溶液中高分子量聚乙烯吡咯烷酮的重均分子量为1200000~1500000。

  在本发明中,所述高分子量聚乙烯吡咯烷酮水溶液的质量浓度优选为12~18%。

  在本发明中,所述金属盐溶液与高分子量聚乙烯吡咯烷酮水溶液的体积比优选为2:1~5:4。

  在本发明中,所述混合优选为在常温下搅拌24h。

  得到静电纺丝前驱液后,本发明将所述静电纺丝前驱液进行静电纺丝,得到纤维。在本发明中,所述静电纺丝的条件优选包括:使用25#医用针头,负压为-3~-1kV,正压为12~24kV,推速为0.03~0.06mm/min,温度为35~70℃,湿度为25%~45%,接收距离为15~25cm。

  得到纤维后,本发明将所述纤维进行焙烧,得到所述钙钛矿阳极材料。

  在本发明中,所述焙烧优选为以0.3~0.8℃/min升温至800~1300℃后保温1~5h。在本发明中,所述焙烧后优选将所得焙烧产物随炉冷却,得到所述钙钛矿阳极材料。

  本发明还提供了上述技术方案所述制备方法制得的钙钛矿阳极材料。

  本发明还提供了上述技术方案所述的钙钛矿阳极材料作为固体氧化物燃料电池阳极的应用。

  为了进一步说明本发明,下面结合实例对本发明提供的钙钛矿阳极材料及其制备方法和应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。

  实施例1

  根据钙钛矿阳极材料的分子式La0.75Sr0.25Cr0.5Mn0.5O3(LSCM),按照化学计量比分别称取所需的金属硝酸盐La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O和Mn(NO3)2,加入去离子水常温下搅拌充分溶解配制成0.8ml/L的金属盐溶液,即硝酸盐溶液;

  粘结剂选用重均分子量为Mw=3800的PVP(聚乙烯吡咯烷酮)和Mw=1300000的PVP,分别配制成质量浓度为12%的PVP水溶液;

  取一定量的硝酸盐溶液,按照硝酸盐溶液与Mw=3800的PVP水溶液体积比为2:1混合,搅拌2h,常温下用氨水调节pH值为1.4;

  将混合溶液密封后于80℃下水浴搅拌10小时后打开密封,继续80℃水浴搅拌,随着水分蒸发,得到粘稠状混合溶液;

  按照硝酸盐溶液与Mw=1300000的PVP水溶液体积比为5:4混合,常温搅拌24h得到静电纺丝前驱液;

  进行静电纺丝,得到纤维,纺丝参数:25#医用针头,负压:-1kV,正压:12V,推速0.03mm/min,温度35℃,湿度25%,接收距离:15cm。

  纤维于马弗炉中焙烧,以0.3℃/min升温至1300℃保温1h,随炉冷却,得到钙钛矿阳极材料。

  图1为实施例1制得的钙钛矿阳极材料在低放大倍率下的SEM图,图2为实施例1制得的钙钛矿阳极材料在高放大倍率下的SEM图,由图1~2可知,本发明基于分子级配原理进行了粘结剂匹配,静电纺丝制得的LSCM纤维于1300℃焙烧后仍能保持较好的纤维形貌,纤维断裂少,纤维长径比较大。纤维由单晶粒排列而成,晶粒形状接近、排列规则,晶粒间结合部分面积较大、结合较为紧密。这样的显微结构特征决定了高温焙烧时由晶粒间颈部生长造成的横向收缩小,使纤维具有更好的高温结构稳定性能。

  对比例

  与实施例1相同,区别在于仅使用Mw=3800的PVP为粘结剂、1150℃焙烧制备的LSCM纤维,图3为对比例制得的LSCM纤维在低放大倍率下的SEM图,图4为对比例制得的LSCM纤维在高放大倍率下的SEM图,由图3~4可知,1150℃焙烧后纤维断裂情况较明显,纤维的内部晶粒形状和排列不规则是导致高温烧结时其不均匀收缩以致断裂的根本原因。

  实施例2

  根据钙钛矿阳极材料的分子式La0.75Sr0.25Cr0.5Mn0.5O3(LSCM),按照化学计量比分别称取所需的金属硝酸盐La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O和Mn(NO3)2,加入去离子水常温下搅拌充分溶解配制成1.2ml/L的金属盐溶液,即硝酸盐溶液;

  粘结剂选用重均分子量为Mw=3000的PVP(聚乙烯吡咯烷酮)和Mw=1500000的PVP,分别配制成质量浓度为8%的PVP水溶液;

  取一定量的硝酸盐溶液,按照硝酸盐溶液与Mw=3000的PVP水溶液体积比为5:4混合,搅拌2h,常温下用氨水调节pH值为2.8;

  将混合溶液密封后于80℃下水浴搅拌10小时后打开密封,继续80℃水浴搅拌,随着水分蒸发,得到粘稠状混合溶液;

  按照硝酸盐溶液与Mw=1500000的PVP水溶液体积比为2:1混合,常温搅拌24h得到静电纺丝前驱液;

  进行静电纺丝,得到纤维,纺丝参数:25#医用针头,负压:-3kV,正压:24V,推速0.06mm/min,温度70℃,湿度25%,接收距离:25cm。

  纤维于马弗炉中焙烧,以0.8℃/min升温至800℃保温5h,随炉冷却,得到钙钛矿阳极材料。

  对实施例2制得钙钛矿阳极材料进行SEM谱图测定,可知得到的钙钛矿阳极材料具有较好的纤维形貌,纤维断裂少,纤维长径比较大,纤维由单晶粒排列而成,晶粒形状接近、排列规则,晶粒间结合部分面积较大、结合较为紧密。

  实施例3

  根据钙钛矿阳极材料的分子式La0.75Sr0.25Cr0.5Mn0.5O3(LSCM),按照化学计量比分别称取所需的金属硝酸盐La(NO3)3·6H2O、Sr(NO3)2、Cr(NO3)3·9H2O和Mn(NO3)2,加入去离子水常温下搅拌充分溶解配制成1.2ml/L的金属盐溶液,即硝酸盐溶液;

  粘结剂选用重均分子量为Mw=5000的PVP(聚乙烯吡咯烷酮)和Mw=1200000的PVP,分别配制成质量浓度为10%的PVP水溶液;

  取一定量的硝酸盐溶液,按照硝酸盐溶液与Mw=5000的PVP水溶液体积比为5:4混合,搅拌2h,常温下用氨水调节pH值为2.0;

  将混合溶液密封后于80℃下水浴搅拌10小时后打开密封,继续80℃水浴搅拌,随着水分蒸发,得到粘稠状混合溶液;

  按照硝酸盐溶液与Mw=1200000的PVP水溶液体积比为2:1混合,常温搅拌24h得到静电纺丝前驱液;

  进行静电纺丝,得到纤维,纺丝参数:25#医用针头,负压:-2kV,正压:24V,推速0.06mm/min,温度70℃,湿度25%,接收距离:25cm。

  纤维于马弗炉中焙烧,以0.8℃/min升温至1200℃保温4h,随炉冷却,得到钙钛矿阳极材料。

  对实施例3制得钙钛矿阳极材料进行SEM谱图测定,可知得到的钙钛矿阳极材料具有较好的纤维形貌,纤维断裂少,纤维长径比较大,纤维由单晶粒排列而成,晶粒形状接近、排列规则,晶粒间结合部分面积较大、结合较为紧密。

  以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

《一种钙钛矿阳极材料及其制备方法和应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)