欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种高强度发泡陶瓷及其制备方法独创技术17213字

一种高强度发泡陶瓷及其制备方法

2021-02-11 18:27:00

一种高强度发泡陶瓷及其制备方法

  技术领域

  本发明涉及陶瓷材料领域,尤其是一种高强度发泡陶瓷及其制备方法。

  背景技术

  发泡陶瓷是指内部具有封闭孔洞的陶瓷产品,其具有轻质、隔音、保温的特点,是一种良好的砌筑保温材料。生产这种材料的常规做法是在坯体配方中添加发泡剂,发泡剂在高温烧结过程中产生气体,这些气体被高温烧结产生的液相包裹,冷却后在坯体内部形成具有蜂窝状封闭气孔的发泡陶瓷产品。

  目前,工业化生产的发泡陶瓷多采用碳化硅或含有碳化硅的材料作为发泡剂,其烧成温度约为1100-1200℃,优选在1150-1180℃,温度过低,则因为产生的熔融液相过少,且粘度大,难以在内部形成气孔;温度过高,则熔融液相的粘度低,气体膨胀体积大,出现贯穿的大气孔,影响产品强度和耐水性变差。

  发泡陶瓷的体积密度和抗压强度是性能的重要指标,我们希望获得具有封闭气孔的低体积密度发泡陶瓷,但体积密度低也就意味着气孔的孔壁薄,对应的抗压强度也很难达到理想的高度。

  发明内容

  针对背景技术中提出的问题,我们通过对构成孔壁的坯体材料进行改良,提高其强度,进而提高发泡陶瓷制品的强度。

  传统的发泡陶瓷生产工艺,在高温烧结过程,伴随着剧烈的发泡,很难在烧结过程形成晶相,物相构成以非晶态物质为主。本发明通过对发泡陶瓷的物相结构进行调整,使其具有不低于一定含量的结晶物相。这些结晶物相均匀的分布在以非晶态为主的固溶体中,使发泡陶瓷在体积密度≤500kg/m3情况下,抗压强度≥6.0Mpa。

  一种高强度发泡陶瓷,具有封闭的气孔,其物相中晶相物相的质量百分数为15%~25%,余量为非晶相物质,所述晶相物质包括莫来石、堇青石、石英和α-氧化铝,其中莫来石晶相的质量占发泡陶瓷总质量的1.5%~5%,堇青石晶相的质量占发泡陶瓷总质量的1.5%~5%。

  对于具有较大密度的发泡陶瓷制品,气孔的孔壁较厚,因此抗压强度多能满足需求,而对于体积密度≤500kg/m3的发泡陶瓷制品而言,孔壁较薄,而且逐渐增多的贯通气孔也对发泡陶瓷的强度有不利影响。莫来石,指的是一系列由铝硅酸盐组成的矿物统称,具有较高的强度,其是铝硅酸盐在高温下生成的矿物,其化学式为Al6Si2O13,但因为发泡陶瓷的烧成温度范围窄,对于常用的发泡剂碳化硅而言,适宜的烧成温度约为1150℃-1180℃。低于此温度,坯体中熔融液相的粘度大,气泡的膨胀体积小,制品的体积密度无法达到预期;高于此温度,坯体中的熔融液相的粘度小,气泡的膨胀体积大,气孔的孔壁变薄甚至被冲破贯通,强度会大幅降低。此外,需要通过高温烧结方式获得较高含量的莫来石物相,需要较高的烧成温度和较长的保温时间,这对于发泡陶瓷而言是不合适的,因此现有工艺生产的发泡陶瓷物相组成基本为非晶相物质形成的固溶体。

  堇青石的化学式为Mg2Al4Si5O18,其具有较好的耐热震性,并且对强度提升也有一定帮助。与莫来石相似,堇青石陶瓷获取也需要合适的配方组分和匹配的烧成工艺,这对于传统工艺生产的发泡陶瓷是不适合的。

  优选地,在上述高强度发泡陶瓷中,a-氧化铝晶相的质量占发泡陶瓷总质量的0.5%~2%。

  a-氧化铝俗称刚玉,通常由高铝质原料直接引入,例如铝矾土、耐火高岭土等,对于传统建筑陶瓷制品生产,直接引入以上高耐火度原料会使原料的烧成温度大幅提升,因此添加量都很少,因此对于常规建筑陶瓷制品,其物相中晶态的a-氧化铝含量低于0.5。但对于发泡陶瓷而言,一定含量的刚玉会在固溶体体系中作为网络支点的骨架存在,对提成材料的抗压强度具有积极的意义。

  优选地,在上述高强度发泡陶瓷中,其物相中还含有锆石,锆石晶相的质量占发泡陶瓷总质量的0.5%~1%。

  本发明还提供一种高强度发泡陶瓷的制备方法,选用含有莫来石、堇青石、石英和a-氧化铝晶相的矿物和玻璃助熔剂为主料,以碳化硅为发泡剂,主料中晶相物质占原料总质量的15%~25%,主料中莫来石晶相占原料总质量的1.5%~5%、堇青石晶相占原料总质量的1.5%~5%,,将主料和发泡剂混合均匀制成粉料,在1100℃下烧结,冷却后获得高强度发泡陶瓷。

  高温发泡陶瓷在烧结过程发泡剂产生的气体在熔融液相中剧烈膨胀,在此过程晶核难以形成,使用含有晶相物质的矿物原料可以解决此问题,1100℃是较低的烧成温度,原料中含有的晶相物质较少甚至没有参加固相反应,可以基本保持原有含量,而使用玻璃助熔剂的目的是可以获取足够多的液相,玻璃是一种非晶态物质,其可以在较低温度下(500-600℃)软化,随后产生液相,并随着温度提升熔融的液相迅速增多,并且其可以促进碳化硅发泡剂在较低温度下开始发泡,由碳化硅产生的气体被包裹在熔融的玻璃相中,最后形成封闭的气孔。

  优选地,以上莫来石和堇青石通过废砖粉和抛光渣引入。废砖粉是报废的陶瓷砖经破碎后获取的粉料,抛光渣是陶瓷砖抛磨处理后的污水经压榨处理获得的废渣。常规生产的陶瓷砖中含有莫来石和堇青石晶相,抛光渣也含有莫来石和堇青石物相,并且其中还含有一定量的碳化硅,使用抛光渣作为原料可以减少发泡剂碳化硅的用量。

  石英为晶态的二氧化硅,在陶瓷砖中其含量较高,这是因为陶瓷砖生产原料中含有大量的石英,在陶瓷砖高温烧结过程中,虽然很大一部分和其它组分进行固相反应形成新的晶相,但还是会有一部分残留以晶态形式存在。

  优选地,以上a-氧化铝通过高铝质的耐火黏土引入。高铝质耐火黏土是指氧化铝含量高于50%的黏土,其可以迅速提升配方的耐火度,提高烧成温度,这对于吸水率较低的瓷质砖是不利的,因此仅在一些具有耐火度需求的陶瓷制品中有应用(例如耐火砖)。但对于本方案,使用玻璃助熔剂,高铝质耐火黏土中的氧化铝作为固溶体网络中的支撑节点而存在,可以大大提升发泡陶瓷的强度。

  在抛光渣中还会含有一定量的锆石(ZrSiO4),抛光用的磨头中含有硅酸锆,在进行抛磨过程其会磨损,磨损后的碎渣会进入抛光渣中。

  优选地,在以上制备方法中,碳化硅的中位粒径D50为5微米。中位粒径是表示颗粒粒径的一种方法,D50的物理意义是粒径大于它的颗粒占50%,小于它的颗粒也占50%。使用超细的碳化硅作为发泡剂更适合低温快速烧结。

  优选地,在以上制备方法中,所使用的原料还包括助发泡剂,助发泡剂为含有锰和/或铁元素的物质。助发泡剂可以改善烧成后孔筒的形貌,使之更均匀,减少贯通气孔出现的可能。含有锰元素的助发泡剂可以为氧化锰或含有锰元素的矿渣,含有铁元素的助发泡剂可以为三氧化二铁或含有三氧化二铁的矿物或矿渣。

  优选地,在以上制备方法中,所使用的原料还包括硅灰石。硅灰石可在较低温度下产生钙长石,从而降低烧成温度,加快烧成速率,另外可改善板材的饱和水抗压强度(常温泡水48小时后抗压强度),降低吸湿膨胀和吸水率。

  这里需要说明,使用废砖粉和抛光渣引入含有莫来石和堇青石的另一个好处是其晶粒细小,使用玻璃作为主要助熔剂,在较低烧成温度时就会有大量的玻璃液相产生,这些非静态的玻璃液相会将晶态物相进行包裹,因此需要细小晶粒,这样才能使晶相与非晶态物相间的应力较小,减少制品开裂的缺陷。

  优选地,以上制备方法中,烧成制度为:室温-400℃,升温速率10℃/min;400-800℃,升温速率6.7℃/min;800-1100℃,升温速率5℃/min;1100℃保温50min,然后冷却至常温。

  本发明对发泡陶瓷的物相组分进行控制,使用玻璃作为熔剂并通过原料引入晶相的莫来石和堇青石,使发泡陶瓷的制品具有较低的体积密度和较高的抗压强度,并且烧成温度较现有常规技术下降50-100℃,烧成能耗也随之大幅降低。

  具体实施方式

  下面通过具体实施方式对本发明进行详细说明,这里需要说明,实施方式为优选或进行对比,无法进行穷举。

  实施例1

  本实施例提供一种高强度发泡陶瓷的制备方法,其包括如下步骤:

  步骤1:混料造粒,将原料混合后经球磨制成浆料,陈腐24小时以上,经喷雾造粒,制成粉料颗粒;

  步骤2:布料,选用由耐火材料制成的模具,先在模具内壁铺设一层由耐火材料制成的隔垫(在本实施例中选用石棉制成的石棉纸),然后布撒步骤1获得的粉料颗粒,粉料颗粒的布撒厚度为45mm;

  步骤3:入窑烧成,烧成制度为:室温-400℃,升温速率10℃/min;400-800℃,升温速率6.7℃/min;800-1100℃,升温速率5℃/min;1100℃保温50min,然后冷却至常温;

  步骤4:抛磨切割,将步骤3获得的发泡陶瓷从模具中取出,对其进行抛磨、切割加工,获得250mm*250mm*250mm的样块。

  原料的配方组分如下(以质量份数计算):

  膨润土:5份;硅灰石:5份;废砖粉:11份;抛光渣:38份;玻璃粉:30份;煅烧铝矾土:8份;煅烧滑石:3份;石灰石:1份;碳化硅:0.35份;氧化锰:0.8份;铁红(Fe203):0.25份。

  测试获得的发泡陶瓷性能:测试结果如下:

  体积密度:470kg/m3;抗压强度:6.9MPa;真空法吸水率:3.33%。

  使用XRD对其进行物相分析,获得数据如下表1。

  表1

  

  表2

  

  表2为主要原料的化学分析组分构成,其中最后一项L.O.I是指烧失量。此外,同样使用XRD对废砖粉和抛光渣进行物相分析,废砖粉中的莫来石含量约为8wt%,堇青石含量约为8wt%;抛光渣中莫来石晶相含量约为3wt%,堇青石含量约为3wt%,且其中含有约2%的锆石。因此,使用废砖粉和抛光渣引入莫来石和堇青石的极限含量约为5wt%。锆石的极限含量为约为1wt%。

  为了比较晶相组分对发泡陶瓷强度的影响。我们选用化学组分和废砖粉、抛光渣近似的膨润土,并添加一定量的钾长石作为调节,制备对比实施例1。

  对比实施例1

  配方组分如下:

  膨润土:35份;硅灰石:5份;钾长石:18份;玻璃粉:30份;煅烧铝矾土:8份;煅烧滑石:3份;石灰石:1份;碳化硅:1.5份;氧化锰:0.8份;铁红(Fe203):0.25份。

  此组分的化学组分与实施例1类似,因为没有使用抛光渣,需要增加碳化硅的用量,否则对发泡效果影响较大。

  其余制备工艺与实施例1相同,测试获得的发泡陶瓷性能:测试结果如下:

  体积密度:710kg/m3;抗压强度:4.7Mpa;真空法吸水率:3.97%。

  使用XRD对其进行物相分析,获得数据如下表3。

  表3

  

  造成体积密度增大,但抗压强度却降低的主要原因是发泡陶瓷材料的晶相组成中检出莫来石和堇青石的晶相较低,并且其中氧化铝的含量提升、吸水率升高说明烧结度还不够,为了验证此构想我们提供如实施例2-5。

  实施例2-5

  具体配方组分见下表4。

  表4

  

  生产工艺如实施例1,测试制品性能见下表5。

  表5

  

  废砖粉(陶瓷熟料)中呈含有的莫来石和堇青石晶相较多,因此在一定范围内对发泡陶瓷强度提升有利,同时,我们也看到,废砖粉增多而抛光渣用量减少的情况下,制品的烧结程度降低,同时需要添加碳化硅以获得足够的发泡剂,制品的体积密度和吸水率升高就验证了这一点。实施例5中获得的发泡陶瓷中莫来石晶相为3%,堇青石晶相也为3%,继续增大废砖粉的用量,莫来石和堇青石物相含量会增加,但体积密度会对应提升,因此优选的莫来石晶相的含量为2%-3%,堇青石晶相的含量为2%-3%。

  实施例6-15

  为了测算莫来石和堇青石的含量在此体系中对制品强度的影响,我们选用对比实施例1的配方组分为基础,在其中添加堇青石和莫来石,以此测定其对制品强度及其它性能的影响。

  表6

  

  测试获得发泡陶瓷制品的性能参数,所得数据如下表7。

  表7

  

  通过以上数据分析可知,莫来石物相的含量以1.5%~5%为宜,堇青石物相含量以1.5%~5%为宜。高于此范围,因为烧结程度问题,会对强度有不利影响。

  此外,直接添加堇青石和莫来石对制品强度有提升,但对于体积密度,此配方体系是有缺陷的。对比实施例8与实施1的测试数据,两者莫来石和堇青石的物相含量基本相同,但实施例1的体积密度仅为470kg/m3,且抗压强度有所提升,这是因为其是通过废砖粉和抛光渣引入莫来石和堇青石晶相,晶粒更为细小,在玻璃作为熔剂情况下,气孔更大,而强度可以很好的保持甚至有所提升。

  实施例16

  实施例1制备的发泡陶瓷,测试其中含有晶化的氧化铝(刚玉),在此烧成温度下(1100℃)是不可能有此晶相转化,因此是煅烧铝矾土中的游离晶化氧化铝使发泡陶瓷产品的物相构成呈现此特点。

  对此,我们使用塑性粘土对煅烧铝矾土进行替换,为了简化配方增大膨润土用量即可。实施例16的配方组分如下:

  膨润土:13份;硅灰石:5份;废砖粉:11份;抛光渣:38份;玻璃粉:30份;煅烧滑石:3份;石灰石:1份;碳化硅:0.35份;氧化锰:0.8份;铁红(Fe203):0.25份。

  烧成制度:室温-400℃,升温速率10℃/min;400-800℃,升温速率6.7℃/min;800-1100℃,升温速率5℃/min;1100℃保温50min,然后冷却至常温。

  测试获得的发泡陶瓷制品,性能指标如下:体积密度:410kg/m3,抗压强度6.0MPa,吸水率2.96%。使用XRD测试其物相构成,氧化铝含量约为0.5%,这主要是膨润土中含有的少量氧化铝晶相。

  因煅烧铝矾土(高铝粘土均有此特性)引入对烧成温度影响较大,其加入量在15%达到极限,再高于此,会极大增加熔融液相的粘度,对发泡造成不利影响,因此发泡陶瓷中晶化的氧化铝含量以0.5%-2%为宜。

  实施例17

  在此实施例中,配方组分如下:膨润土:5份;废砖粉:16份;抛光渣:38份;玻璃粉:30份;煅烧铝矾土:8份;煅烧滑石:3份;石灰石:1份;碳化硅:0.35份;氧化锰:0.8份;铁红(Fe203):0.25份。

  其余工艺参数与实施例1相同。对获得的发泡陶瓷进行测试,体积密度为450kg/m3,抗压强度为6. 1Mpa,吸水率为3.45%,由此可以得出适量添加硅灰石可以提高发泡陶瓷强度。

  此外,因为发泡陶瓷主要用于建筑墙体砌筑,因此其耐水性能也比较重要。

  耐水性是指材料抵抗水破坏的能力。水对于材料性能的破坏体现在不同方面,最明显的表现是材料的力学性能降低。耐水性通常用软化系数来表示,软化系数按下式计算:

  

  式中,Kf——材料的软化系数;f1——材料在吸水饱和状态下的抗压强度;f0——材料在干燥状态下的抗压强度。

  分别测试实施例1和实施例17发泡陶瓷的软化系数。实施例1的软化系数为0.98;实施例17的软化系数为0.87。使用硅灰石作为原料可以使发泡陶瓷的耐水性能有所提升。

  以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

《一种高强度发泡陶瓷及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)