欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 全方位高导热的电磁屏蔽材料及其制备方法独创技术13390字

全方位高导热的电磁屏蔽材料及其制备方法

2021-02-04 01:30:46

全方位高导热的电磁屏蔽材料及其制备方法

  技术领域

  本发明涉及散热和电磁屏蔽技术领域,具体是全方位高导热的电磁屏蔽材料及其制备方法。

  背景技术

  随着时代的发展,人民生活水平的不断提高,消费娱乐方式的转变,导致了电子产品日新月异,需求量十分巨大。功能要求的日益强大,引起了电子产品的功耗不断提升,散热和电磁屏蔽问题日益突出,已制约行业的快速发展。

  传统的散热和电磁屏蔽解决方案一般都采用导热材料加金属屏蔽罩组合实现导热屏蔽材料,这种组合方式也有自身的不足,特别是在空间狭小的电子产品里,问题更加明显。如高导热垫片,基于导热性能高、结构性差,厚度低于0.3mm就难以操作。

  对此,传统工艺上又为上述导热屏蔽材料添加玻纤布起支撑作用,增强材料的可操作性。但玻纤布热阻比较大,吸油能力强,导热性能下降明显,加上高瓦数垫片粉体填充量大,且粉体颗粒比较粗,做薄片时容易把玻纤布压烂,影响材料美观及产品性能。

  申请人研究发现,如果能在高导热垫片制作时添加适量高焓值储热材料,并在材料中间使用非常薄的金属网或金属薄膜起机械支撑作用,那么所获得高导热储热垫片不但因为机械强度高而具有很好的操作性,还能实现热能快速被吸收或者被传输到散热结构件上。与此同时,产品中间的金属结构还能实现材料的全方位导热和电磁屏蔽作用。

  发明内容

  为了实现上述目的,本发明提供了一种全方位高导热的电磁屏蔽材料,其技术方案如下。

  全方位高导热的电磁屏蔽材料,具有片状结构,片状结构包括电磁屏蔽层,电磁屏蔽层的正反两面皆设有导热储热层,导热储热层系通过压延结合在电磁屏蔽层表面的硅胶基料,硅胶基料中含有均匀分散的导热粉体和/或储热粉体。

  采用上述方案的全方位高导热的电磁屏蔽材料,所述片状结构水平放置时,Z方向导热系数为0-15W/m•K,X方向、Y方向导热系数为2-50W/m•K,拉伸强度为6.5-18MPa,储热值为0-180J/g,磁导率为35000-120000Gs。

  其中,所述硅胶基料采用质量百分比总和为100%的组份混合而成:

  乙烯基硅油4-30%,其粘度为100-10000cps;

  含氢硅油0.1-2.0%,其含氢量为0.1-0.5m/m%;

  反应抑制剂0.02-1%,系1-乙炔基-1-环己醇含量为10-99.8m/m%的溶液;

  铂金催化剂0.1-1%,系铂金含量为1000-5000ppm的溶液;

  色母0-0.5%;

  导热粉体0-94%,系氢氧化铝、α球形氧化铝、氮化铝、碳化硅、氮化硼中的一种或多种粉体,在0.3μm-120μm范围内取多种粒径的粉体复配填充而成;

  储热粉体0-68%,系相变微胶囊、有机相变物-多微孔基质复合材料、聚乙二醇接枝高聚物、聚乙二醇-聚氨酯嵌段共聚物的一种或多种粉体,其粒径为10μm-120μm,其相变储热区间为35~80℃,储热值在100-300J/g。

  为了获得上述的全方位高导热的电磁屏蔽材料,本发明还提供一种全方位高导热的电磁屏蔽材料的制备方法,采用如下步骤:

  S1、制备硅胶基料

  取质量百分比总和为100%的下列组份——

  乙烯基硅油4-30%,其粘度为100-10000cps;

  含氢硅油0.1-2.0%,其含氢量为0.1-0.5m/m%;

  反应抑制剂0.02-1%,系1-乙炔基-1-环己醇含量为10-99.8m/m%的溶液;

  铂金催化剂0.1-1%,系铂金含量为1000-5000ppm的溶液;

  色母0-0.5%;

  导热粉体0-94%,系氢氧化铝、α球形氧化铝、氮化铝、碳化硅、氮化硼中的一种或多种粉体,在0.3μm-120μm范围内取多种粒径的粉体复配填充而成;

  储热粉体0-68%,其储热值为100-300J/g;

  上述组份搅拌均匀,获得硅胶基料;

  S2、成型导热储热层

  提供一平铺的下层离型膜,在下层离型膜上涂覆一层硅胶基料,再将一电磁屏蔽层叠放在硅胶基料上,然后经压延机将下层离型膜上的硅胶基料压延结合在电磁屏蔽层的反面,以在电磁屏蔽层的反面获得导热储热层;

  在电磁屏蔽层的顶面在涂覆一层硅胶基料,再覆盖一平铺的上层离型膜,然后经压延机将上层离型膜覆盖的硅胶基料压延结合在电磁屏蔽层的正面,以在电磁屏蔽层的正面也获得导热储热层;

  S3、烘烤坯料

  电磁屏蔽层的正反两面皆获得导热储热层之后,经隧道烤箱烘烤,获得成品。

  与现有技术相比,本发明的有益效果在于:

  所提供的全方位高导热的电磁屏蔽材料,在X、Y、Z轴向具有可调制的全方位导热性能,以及可调制的储热性能,而且还具有良好的操作性和电磁屏蔽功能,可广泛应用在LED、LCD、新能源汽车电池、汽车中控系统、无线充电器、路由器、行车记录仪、手机、平板、智能穿戴设备、智能音响、人脸识别、投影仪、笔记本电脑等产品上。

  下面,结合说明书附图和具体实施方式对本发明做进一步的说明。

  附图说明

  图1是本发明中全方位高导热的电磁屏蔽材料的结构示意图。

  具体实施方式

  如图1所示,全方位高导热的电磁屏蔽材料,具有片状结构,片状结构包括电磁屏蔽层1,电磁屏蔽层1的正反两面皆设有导热储热层2,导热储热层2系通过压延结合在电磁屏蔽层表面的硅胶基料,硅胶基料中含有均匀分散的导热粉体和/或储热粉体。

  上述技术方案中的全方位高导热的电磁屏蔽材料,所述片状结构水平放置时,Z方向导热系数为0-15W/m•K,X方向、Y方向导热系数为2-50W/m•K,拉伸强度为6.5-18MPa,储热值为0-180J/g,磁导率为35000-120000Gs。

  因此,采用本发明的全方位高导热的电磁屏蔽材料在X、Y、Z轴向具有可调制的全方位导热性能,以及可调制的储热性能,而且还具有良好的操作性和电磁屏蔽功能,可广泛应用在LED、LCD、新能源汽车电池、汽车中控系统、无线充电器、路由器、行车记录仪、手机、平板、智能穿戴设备、智能音响、人脸识别、投影仪、笔记本电脑等产品上。

  可选的,所述硅胶基料采用质量百分比总和为100%的组份混合而成:

  乙烯基硅油4-30%,其粘度为100-10000cps;

  含氢硅油0.1-2.0%,其含氢量为0.1-0.5m/m%;

  反应抑制剂0.02-1%,系1-乙炔基-1-环己醇含量为10-99.8m/m%的溶液;

  铂金催化剂0.1-1%,系铂金含量为1000-5000ppm的溶液;

  色母0-0.5%;

  导热粉体0-94%,系氢氧化铝、α球形氧化铝、氮化铝、碳化硅、氮化硼中的一种或多种粉体,在0.3μm-120μm范围内取多种粒径的粉体复配填充而成;

  储热粉体0-68%,系相变微胶囊、有机相变物-多微孔基质复合材料、聚乙二醇接枝高聚物、聚乙二醇-聚氨酯嵌段共聚物的一种或多种粉体,其粒径为10μm-120μm,其相变储热区间为35~80℃,其储热值为100-300J/g。

  可选的,所述电磁屏蔽层为包括但不限于铜网、铝网、不锈钢网的金属网,其网孔的直径为0.04-0.15mm,其厚度为0.03-0.3mm。

  可选的,所述电磁屏蔽层为包括但不限于铜片、铝片、不锈钢片的金属片,其厚度为0.03-0.3mm。

  为了获得上述的全方位高导热的电磁屏蔽材料,本发明还提供一种全方位高导热的电磁屏蔽材料的制备方法,采用如下步骤:

  S1、制备硅胶基料

  取质量百分比总和为100%的下列组份——

  乙烯基硅油4-30%,其粘度为100-10000cps;

  含氢硅油0.1-2.0%,其含氢量为0.1-0.5m/m%;

  反应抑制剂0.02-1%,系1-乙炔基-1-环己醇含量为10-99.8m/m%的溶液;

  铂金催化剂0.1-1%,系铂金含量为1000-5000ppm的溶液;

  色母0-0.5%;

  导热粉体0-94%,系氢氧化铝、α球形氧化铝、氮化铝、碳化硅、氮化硼中的一种或多种粉体,在0.3μm-120μm范围内取多种粒径的粉体复配填充而成;

  储热粉体0-68%,其储热值为100-300J/g;

  上述组份搅拌均匀,获得硅胶基料;

  S2、成型导热储热层

  提供一平铺的下层离型膜,在下层离型膜上涂覆一层硅胶基料,再将一电磁屏蔽层叠放在硅胶基料上,然后经压延机将下层离型膜上的硅胶基料压延结合在电磁屏蔽层的反面,以在电磁屏蔽层的反面获得导热储热层;

  在电磁屏蔽层的顶面在涂覆一层硅胶基料,再覆盖一平铺的上层离型膜,然后经压延机将上层离型膜覆盖的硅胶基料压延结合在电磁屏蔽层的正面,以在电磁屏蔽层的正面也获得导热储热层;

  S3、烘烤坯料

  电磁屏蔽层的正反两面皆获得导热储热层之后,经隧道烤箱烘烤,获得成品。

  较佳的,所述步骤S1中,系先行机械搅拌20min,然后再抽真空搅拌30min,获得脱泡的硅胶基料。

  较佳的,所述步骤S3中,烘烤温度为120℃,烘烤时间为10-30分钟。

  为便于对上述技术方案进行理解,本发明提供了三种示范性的实施例,具体如下。

  【实施例一】

  (1)按质量百分比配置硅胶基料的组份:A、乙烯基硅油10%;B、含氢硅油0.3%;C、反应抑制剂0.05%;D、铂金催化剂0.3%;E、色母0.2%;F、导热粉体89.15%;G储热粉体0。其中,导热粉体采用粒径在0.3μm-120μm范围的α球形氧化铝、氮化铝复配填充而成。

  (2)将前列配置好的组份先行机械搅拌20min,然后再抽真空搅拌30min,获得脱泡的硅胶基料。

  (3)采用具有前置双辊和后置双辊的四辊压延机,在四辊压延机上安装上层离型膜和下层离型膜,其中下层离型膜贯通前置双辊和后置双辊,上层离型膜则从后置双辊插入。

  (4)采用铜网作为电磁屏蔽层,铜网的厚度为0.06mm,铜网的网孔直径为0.04mm;

  (5)将硅胶基料涂覆放在下层离型膜上,再将电磁屏蔽层叠放在硅胶基料上一起过前置双辊压延,压延厚度控制在成品要求的一半,然后再往已过前置双辊的电磁屏蔽层上涂覆硅胶基料,再过后置双辊压延至厚度为1.0mm;至此电磁屏蔽层的正反两面皆获得导热储热层,电磁屏蔽层刚好在中间层,再进入设为120摄氏度的隧道烤箱烘烤10-30min,最终获得厚度为1.0mm的成品。

  本实施例所获得的全方位高导热的电磁屏蔽材料,经过测试后显示:Z方向导热系数K=9.37W/m•K,XY方向导热系数K=27.49W/m•K,储热值=0J/g,拉伸强度=7.2MPa,磁导率=98000Gs。

  【实施例二】

  与实施例一的不同之处在于:

  (1)硅胶基料的组份质量百分比配置为:A、乙烯基硅油30%;B、含氢硅油1.0%;C、反应抑制剂0.2%;D、铂金催化剂0.5%;E、色母0.1%;F、导热粉体38%;G、储热粉体30.2%。其中,导热粉体采用粒径在0.3μm-120μm范围的氮化铝、氮化硼复配填充而成。

  (2)采用铝网作为电磁屏蔽层,铝网的厚度为0.1mm,铝网的网孔直径为0.06mm;

  (3)已过前置双辊的电磁屏蔽层上涂覆硅胶基料,再过后置双辊压延至前置双辊0.8mm,最终获得厚度为0.8mm的产品。

  本实施例所获得的全方位高导热的电磁屏蔽材料,经过测试后显示:Z方向导热系数K=4.33W/m•K,XY方向导热系数K=24.58W/m•K,储热值=85J/g,拉伸强度=12.6MPa,磁导率=88000Gs。

  【实施例三】

  与实施例一的不同之处在于:

  (1)硅胶基料的组份质量百分比配置为:A、乙烯基硅油30%;B、含氢硅油1.1%;C、反应抑制剂0.2%;D、铂金催化剂0.5%;E、色母0.2%;F、导热粉体0;G、储热粉体68%。

  (2)采用不锈钢网作为电磁屏蔽层,不锈钢网的厚度为0.08mm,不锈钢网的网孔直径为0.04mm;

  (3)已过前置双辊的电磁屏蔽层上涂覆硅胶基料,再过后置双辊压延至前置双辊0.5mm,最终获得厚度为0.5mm的产品。

  本实施例所获得的全方位高导热的电磁屏蔽材料,经过测试后显示:Z方向导热系数K=0.36W/mK,XY方向导热系数K=2.17W/m•K,储热值=180J/g,拉伸强度=10.4MPa,磁导率=120000Gs。

  对于本领域技术人员而言,本发明的保护范围并不限于上述示范性实施例的细节,在没有背离本发明的精神或基本特征的情况下,本领域技术人员基于本发明的要件所做出的等同含义和保护范围内的所有变化的实施方式均应囊括在本发明之内。

《全方位高导热的电磁屏蔽材料及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)