欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 一种紫外光-湿气双固化的三防漆及其制备方法和应用独创技术12187字

一种紫外光-湿气双固化的三防漆及其制备方法和应用

2021-03-31 05:21:26

一种紫外光-湿气双固化的三防漆及其制备方法和应用

  技术领域

  本发明属于三防漆领域,具体涉及一种紫外光-湿气双固化的三防漆及其制备方法和应用。

  背景技术

  三防漆的作用是在极端环境下对电路板起到良好的保护和隔热,以及增加连接器之间的耐压稳定性。随着电子产品逐渐转向小型化、集成化和多功能化发展,对组装产品的安全性能及可靠性的要求也越来越高,同时对线路板中所用三防漆的性能要求也提出更高的要求。现有的常规三防漆存在的固化效率差、不够环保、耐溶剂性能差等缺点,对线路板产品的可靠性和使用寿命产生不利影响。

  因此,希望提供一种性能更为优良,具有固化快、耐酸碱腐蚀、无溶剂污染和环保安全等优点的三防漆产品,以提高线路板产品的可靠性和使用寿命。

  发明内容

  本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种紫外光-湿气双固化的三防漆,具备环保安全、固化速度快、耐高温和耐溶剂性好的特点,有助于提高线路板产品的可靠性和使用寿命。

  本发明还提出了所述紫外光-湿气双固化的三防漆的制备方法。

  一种三防漆,包括改性聚氨酯树脂,所述改性聚氨酯树脂中碳碳双键、异氰酸根和硅氧键的摩尔质量比为(5-7):(10-13):1。

  所述改性聚氨酯树脂中所含有的碳碳双键在光引发剂和紫外光光照条件下发生交联固化,实现漆膜的快速固化(光固化);所含有的异氰酸根可与水发生反应,实现湿气固化(暗固化),克服遮蔽区域无法实现紫外光固化的问题,提高防护性能,并能提高三防漆与线路板基材的附着力;所含有的硅氧键的化学键能高,有助分子间的稳定性,提高了三防漆的耐水耐溶剂性和阻燃性能。

  试验表明,当改性聚氨酯树脂中碳碳双键、异氰酸根和硅氧键的摩尔质量比不在上述范围内时,三防漆所形成的漆膜固化不完全,综合性能达不到要求,防护性能差,附着力差,耐温性能下降。

  本发明主要采用含羟基的烯酸作为封端剂,在消耗游离异氰酸根的同时引入了碳碳双键,因此碳碳双键的增多会造成游离异氰酸根的减少。当碳碳双键含量过高时,游离的异氰酸根不足,使得湿气固化效果不良,三防漆与线路板的附着力下降;而碳碳双键含量较少时,光固化效率低,且耐盐雾和耐酸碱产生下降,降低了防护性能。

  优选的,所述三防漆还包括活性稀释剂、光引发剂、消泡剂、流平剂和硅烷偶联剂。

  更优选的,按重量份数计,包括以下组分:改性聚氨酯树脂50-70份、活性稀释剂10-20份、光引发剂1-3份、消泡剂0.2-5份、流平剂0.3-3份、硅烷偶联剂0.5-3份。

  优选的,所述活性稀释剂选自甲基丙烯酸-β-羟乙酯、异冰片基丙烯酸酯、β-羧乙基丙烯酸酯、2-苯氧基乙基丙烯酸酯、二缩三丙三醇二丙烯酸酯或二缩三丙三醇二甲基丙烯酸酯中的至少一种。

  优选的,所述光引发剂选自1-羟基环己基苯基甲酮、a,a-二甲氧基-a-苯基苯乙酮、2-羟基-2-甲基-1-苯基-1-丙酮或二苯基-(2,4,6-三甲基苯甲酰)氧磷中的至少一种。

  优选的,所述消泡剂选自高碳醇脂肪酸酯复合物、聚氧乙烯聚氧丙烯季戊四醇醚、聚氧乙烯聚氧丙醇胺醚、聚氧丙烯甘油醚或聚氧丙烯聚氧乙烯甘油醚或聚二甲基硅氧烷中的至少一种。

  上述三防漆的制备方法,包括以下步骤:加入改性聚氨酯树脂、活性稀释剂、光引发剂,消泡剂、流平剂和硅烷偶联剂后,搅拌,调黏度,制得所述三防漆。

  优选的,所述调黏度的范围为400-600mPa.s。

  优选的,所述搅拌的转速为800-2000r/min,搅拌的时间为30-60min。

  优选的,所述改性聚氨酯树脂通过在异氰酸酯预聚体中加入含羟基的烯酸和有机硅树脂制得。

  所述改性聚氨酯树脂的制备流程为:首先加入多异氰酸酯和多元醇进行反应生成异氰酸酯预聚体,再加入含羟基的烯酸,最后加入有机硅树脂,在催化剂(月桂酸二丁基锡和/或有机铋)作用下,生成改性聚氨酯树脂。其中多异氰酸酯选自异氟尔酮二异氰酸酯、六亚甲基二异氰酸酯、甲苯二异氰酸酯、4,4-二苯基甲烷二异氰酸酯、氢化苯基甲烷二异氰酸酯或环戊二异氰酸酯中的至少一种。其中多元醇也可有多种选择,但PBA(聚己二酸-1,4-丁二醇酯)的粘度适宜,制程工艺稳定,更为适合制备所述改性聚氨酯树脂。

  更优选的,所述含羟基的烯酸选自丙烯酸羟乙酯、甲基丙烯酸羟丙酯、甲基丙烯酸-2-羟基乙酯或甲基丙烯酸-2-羟基丙酯中的至少一种。

  更优选的,所述有机硅树脂选自甲基三氯硅烷、二甲基二氯硅烷、苯基三氯硅烷、二苯基二氯硅烷或甲基苯基二氯硅烷的中的至少一种。

  所述三防漆的性能优良,可应用于各类线路板产品。使用方法为:将所述三防漆涂覆在印制线路板上,固化,形成漆膜。

  相对于现有技术,本发明的有益效果如下:

  (1)本发明所述三防漆可实现紫外光和湿气的双固化,具有固化时间短、固化效果好的特点;

  (2)本发明所述三防漆所用原料环保安全,无VOC(挥发性有机化合物)排放;

  (3)本发明所述三防漆耐高温性能好(最高可达200℃),且具备良好的耐溶剂性,经盐雾或酸碱腐蚀800h后,三防漆所形成的漆膜表面不出现腐蚀、白斑、起泡、变色、针孔、裂缝、细裂纹、起皱、失光等现象。

  具体实施方式

  为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。

  以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。

  实施例1

  本实施例三防漆的制备方法为:

  在四口瓶中加入91.5g六亚甲基二异氰酸酯、67.5g异佛尔酮二异氰酸酯和300g聚己二酸-1,4-丁二醇酯,加入0.05g有机铋催化剂,于60-80℃反应2h,制得异氰酸酯预聚体;然后加入22g丙烯酸羟乙酯,70℃下反应5h;降温至45-50℃,加入适量活性稀释剂和100g有机硅树脂苯基三氯硅烷,搅拌30min,制得改性聚氨酯树脂。经检测,该改性树脂中碳碳双键、异氰酸根和硅氧键的摩尔质量比为5:12:1。

  按重量份数计,取以上制得的改性聚氨酯树脂50份,加入10份活性稀释剂(异冰片基丙烯酸酯)、1份光引发剂(1-羟基环己基苯基甲酮)、0.4份消泡剂(BYK014,生产厂家:德国毕克化学)、0.3份流平剂(聚醚改性硅氧烷)和0.6份硅烷偶联剂,以1000r/min的转速搅拌30min,调制粘度至550mPa.s,制得三防漆。

  实施例2

  本实施例三防漆的制备方法为:

  在四口瓶中加入108.5g六亚甲基二异氰酸酯、44.6g异佛尔酮二异氰酸酯和300g聚己二酸-1,4-丁二醇酯,加入0.1g二月桂酸二丁基锡,于60-80℃反应2h,制得异氰酸酯预聚体;然后加入33g甲基丙烯酸羟丙酯,70℃下反应5h;降温至45-50℃,加入适量活性稀释剂和105g有机硅树脂二甲基二氯硅烷,搅拌30min,制得改性聚氨酯树脂。经检测,该改性树脂中碳碳双键、异氰酸根和硅氧键的摩尔质量比为7:11:1。

  按重量份数计,取以上制得的改性聚氨酯树脂50份,加入10份活性稀释剂(异冰片基丙烯酸酯)、1份光引发剂(1-羟基环己基苯基甲酮)、0.4份消泡剂(BYK014,生产厂家:德国毕克化学)、0.3份流平剂(聚醚改性硅氧烷)和0.6份硅烷偶联剂,以1000r/min的转速搅拌30min,调制粘度至510mPa.s,制得三防漆。

  实施例3

  本实施例三防漆的制备方法为:

  在四口瓶中加入143g六亚甲基二异氰酸酯和330g聚己二酸-1,4-丁二醇酯,加入0.05g有机铋,于60-80℃反应2h,制得异氰酸酯预聚体;然后加入30g甲基丙烯酸-2-羟基乙酯,70℃下反应5h;降温至45-50℃,加入适量活性稀释剂和110g有机硅树脂苯基三氯硅烷,搅拌30min,制得改性聚氨酯树脂。经检测,该改性树脂中碳碳双键、异氰酸根和硅氧键的摩尔质量比为6:13:1。

  按重量份数计,取以上制得的改性聚氨酯树脂50份,加入10份活性稀释剂(异冰片基丙烯酸酯)、1份光引发剂(1-羟基环己基苯基甲酮)、0.4份消泡剂(BYK014,生产厂家:德国毕克化学)、0.3份流平剂(聚醚改性硅氧烷)和0.6份硅烷偶联剂,以1000r/min的转速搅拌30min,调制粘度至485mPa.s,制得三防漆。

  对比例1

  与实施例1相比,对比例1中三防漆的组分与制备方法基本相同,区别之处仅在于,对比例1中改性聚氨酯树脂的制备不含丙烯酸羟乙酯。

  对比例2

  与实施例1相比,对比例2中三防漆的组分与制备方法基本相同,区别之处仅在于,对比例1中改性聚氨酯树脂的制备不含有机硅树脂二甲基二氯硅烷。

  对比例3

  与实施例1相比,对比例3中三防漆的组分与制备方法基本相同,区别之处仅在于,对比例1改性聚氨酯树脂的制备中多异氰酸酯的用量发生改变,具体为:110g六亚甲基二异氰酸酯、85g异佛尔酮二异氰酸酯,所制得的改性聚氨酯树脂中碳碳双键、异氰酸根和硅氧键的摩尔质量比为5:15:1。

  对比例4

  与实施例1相比,对比例4中三防漆的组分与制备方法基本相同,区别之处仅在于,对比例1改性聚氨酯树脂的制备中丙烯酸羟乙酯的用量发生改变,具体为:38g丙烯酸羟乙酯,所制得的改性聚氨酯树脂中碳碳双键、异氰酸根和硅氧键的摩尔质量比为8:10:1。

  产品效果测试

  在印制线路板上分别涂布实施例1-3、对比例1-4所制得的三防漆,并测试所形成漆膜的性能,其中耐盐雾时间和耐酸碱时间为漆膜经盐雾或酸碱处理后,漆膜表面不产生腐蚀、白斑、起泡、变色、针孔、裂缝、细裂纹、起皱或失光现象的最长保持时间。具体测试结果如表1所示:

  表1:三防漆性能数据

  

  

  由表1可知,实施例1-3制得的三防漆在线路板附着力、固化时间、耐温性、阻燃性、环保性、耐盐雾和耐酸碱性等方面有优异的表现。与实施例1相比,配方组分中缺少丙烯酸羟乙酯的对比例1,其线路板附着率、固化效率以及耐盐酸和耐酸碱性能大幅下降。与实施例1相比,配方组分中缺少有机硅树脂的对比例2,其耐温性、阻燃性、耐盐酸和耐酸碱性能也产生一定的减弱,并导致吸水率的明显提高(即耐水性差)。与实施例1相比,对比例3的配方组分的改性聚氨酯中异氰酸根的含量较高,导致固化性能、线路板结合力、耐盐酸和耐酸碱性能的下降;与实施例1相比,对比例4的配方组分的改性聚氨酯中碳碳双键的含量较高,导致游离的异氰酸根不足,无法实现良好的湿气固化,并造成线路板附着力的降低。以上结果表明,只有在改性聚氨酯树脂的功能性官能团(碳碳双键、异氰酸根和硅氧键)在合适含量范围内时,采用该改性聚氨酯树脂制得的三防漆才具备良好的性能。

《一种紫外光-湿气双固化的三防漆及其制备方法和应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)