欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 一种石墨烯基密胺泡沫、其制备方法和应用独创技术16225字

一种石墨烯基密胺泡沫、其制备方法和应用

2021-02-27 23:57:29

一种石墨烯基密胺泡沫、其制备方法和应用

  技术领域

  本发明涉及油水分离技术领域,具体涉及一种石墨烯基密胺泡沫、其制备方法和应用。

  背景技术

  密胺泡沫是一种由三聚氰胺甲醛树脂经固化发泡工艺制备得到的本征阻燃泡沫。它具有开孔率高,保温性好,吸音,质轻,价廉等特点,在民用、建筑、工业、航空等领域具有重要的应用价值。然而,在国内,密胺泡沫主要用于清洁领域,产品附加值低,高性能高附加值的密胺泡沫产品有待进一步开发。

  近年来,基于密胺泡沫的油水分离材料受到学者们的广泛关注。例如,专利CN105601985A报道了一种木质素密胺基表面疏水泡沫及其制备方法,将密胺泡沫浸泡于异氰酸酯改性过的木质素四氢呋喃溶液中,然后干燥得到疏水泡沫。虽然木质素价格低廉,但该方法需要用到异氰酸酯类试剂以及四氢呋喃有机溶剂,对环境不友好。另外该专利并未提及泡沫的吸油性能和油水分离能力。除了木质素可以作为疏水物质负载于密胺泡沫上,石墨烯或还原氧化石墨烯也是一种非常好的疏水负载材料。

  例如,德国《Small》报道了一种还原氧化石墨烯负载的密胺泡沫(Zhu H,Chen D,An W,Li N,Xu Q,Li H,et al.A Robust and Cost-Effective SuperhydrophobicGraphene Foam for Efficient Oil and Organic Solvent Recovery.Small.2015;11(39):5222-9.),作者采用浸渍法得到了一种超疏水/超亲油的密胺泡沫并用于油水分离。但是,该方法首先要用到氧化石墨烯,氧化石墨烯有石墨氧化剥离得到,制备过程产生大量废酸,极不环保;另外,为了获得疏水性,氧化石墨烯需要热还原除去亲水的含氧基团,耗时耗能。

  发明内容

  本发明旨在提供一种过程环保、成本低廉的石墨烯基密胺泡沫的制备方法,制备过程简单易操作,获得的密胺泡沫疏水性能好,具有优异的油水分离性能。

  为实现上述目的,本发明采用的技术方案是:

  一种石墨烯基密胺泡沫的制备方法,包括如下步骤:

  (1)将石墨和剥离剂分散于溶剂中,超声、离心,取上清液得到石墨烯分散液;

  (2)将密胺泡沫浸渍于所述石墨烯分散液中,反复挤压多次,静置后取出干燥,得到所述石墨烯基密胺泡沫。

  本发明选用原料成本较低的石墨,通过与剥离剂的超声制备石墨烯片层,再采用浸渍法将密胺泡沫浸渍于石墨烯分散液中,密胺泡沫对溶液有高效的吸收能力,均匀分散的石墨烯分散液很容易被吸收到密胺泡沫内部,较强的π-π相互作用可以使石墨烯片层牢牢吸附在密胺泡沫的孔壁上。石墨烯片层的疏水性,加上密胺泡沫的高粗糙度,构成了所述石墨烯基密胺泡沫优异的疏水性能。

  所述石墨包括石墨粉、鳞片石墨、膨胀石墨中任一种或多种。优选地,所述石墨为石墨粉或膨胀石墨,这两种类型的石墨更易剥离形成石墨烯。

  所述石墨的粒径为50~2000目,优选200~500目。该范围粒径下,剥离得到的石墨烯片层大小适宜,利于均匀负载在密胺孔壁上。

  所述剥离剂包括十二烷基苯磺酸钠、十二烷基硫酸钠、1-芘甲酸,1-芘丁酸、1-芘胺或芘中的一种或几种,优选1-芘甲酸、1-芘丁酸或十二烷基苯磺酸钠中任一种或多种。这些剥离剂或其组合能促进石墨剥离,并稳定石墨烯片层,使之均匀分散在溶剂中。

  所述溶剂包括水、乙醇、甲醇、DMF、THF或NMP中一种或多种,优选DMF、THF或NMP中任一种或多种。这些溶剂或其组合表面能与石墨烯相近,可以促进石墨剥离,并且稳定石墨烯片层,减少石墨烯片层团聚

  步骤(1)的石墨烯分散液中,所述石墨的质量份数为0.5-5mg/g,所述剥离剂的质量分数为0.1~1mg/g;所述超声的时间为2~24h。

  优选地,步骤(1)的石墨烯分散液中所述石墨的质量份数为1~3mg/g;所述剥离剂的质量分数0.2~0.5mg/g。在该质量分数下,石墨的剥离效率较高。

  优选地,步骤(1)中,所述超声的时间为4~8h。该超声时间下,石墨烯片层尺寸适宜,剥离效果适宜。超声时间短,剥离效果不理想;超声时间过长,石墨烯片层尺寸过小,不利于均匀负载在密胺泡沫上。

  步骤(1)中,所述离心转速为100~5000rpm,优选为500~2000rpm;离心时间为5~60min,优选为10~30min。该转速和离心时间下,石墨烯分散液浓度适宜,石墨烯片层能均匀并且完整覆盖密胺泡沫孔壁表面,实现疏水化。

  步骤(2)中,泡沫的挤压是为使石墨烯片层能够浸入泡沫内部,有效的搭载在泡沫的孔壁上,挤压的次数为1~20次,静置是为了给予石墨烯充分的时间进入密胺泡沫内部,与外部的水溶液达到浓度平衡,静置时间为1~24h;该时间段下石墨烯片层能完全进入密胺内部,并与外部溶液形成浓度平衡。

  优选地,挤压的次数为5~10次,静置时间为6~12h;该挤压次数和静置时间下,溶剂中的石墨烯片层足以进入密胺孔洞中,并负载在孔壁之上。

  步骤(2)中,烘干温度为40~100℃,烘干时间为6~48h;优选地,烘干温度为50~80℃,烘干时间为6~24h。该温度和时间下,足以使溶剂充分挥发。温度过高和时间过长会破坏密胺泡沫结构。

  优选地,发明人经多次试验,发现在步骤(1)的石墨烯分散液中所述石墨的质量份数为1~3mg/g,所述剥离剂的质量分数0.2~0.5mg/g时,步骤(2)中面泡沫挤压次数为5~10次,静置时间为6~12h,既可以达到良好的负载效果,最终得到的改性密胺泡沫的导热率能够有效降低的同时,疏水性能好,并且所需的时间成本小。

  本发明还提供一种所述的制备方法制备得到的石墨烯基密胺泡沫,所述石墨烯基密胺泡沫的孔径为50~150μm,孔径形状为三棱形,孔隙率为99~99.9%,孔壁厚度为3~8μm;所述石墨烯基密胺泡沫的孔壁表面负载石墨烯,石墨烯负载量为0.05~0.5wr%。

  基于密胺泡沫超高的孔隙率和石墨烯的超疏水性,所述石墨烯基密胺泡沫对油品具有较高的吸附量,本发明还提供所述的石墨烯基密胺泡沫在含油废水处理中的应用。该石墨烯基密胺泡沫可有效的实现油水分离,将含油废水中的油品吸附处理。

  本发明还提供一种连续化油水分离装置,包括油水混合储罐、流体泵、分离器、油罐和水罐;所述流体泵连接油水混合储罐和分离器进料口,所述分离器上端设有与水罐连接的水分出料口,分离器下端设有与油罐连接的油分出料口;所述水分出料口和油分出料口在分离器内部以所述的石墨烯基密胺泡沫分隔。

  该装置的工作过程为:油水混合储罐内的油水混合物通过流体泵进入分离器中,其中的油分被石墨烯基密胺泡沫吸附,从油分出料口流出进入油罐,其中的水分被石墨烯基密胺泡沫阻隔,从上端的水分出料口流出进入水罐,从而实现连续化的油水分离。

  与现有技术相比,本发明具有以下有益效果:

  (1)本发明石墨烯基密胺泡沫制备方法过程环保,易操作,原料主要为石墨和密胺泡沫,成本低,适合工业化推广生产;

  (2)本发明的石墨烯基密胺泡沫具有优异的疏水性能,能选择性的吸收油品,可应用于含油废水的处理,除油效果明显;

  (3)本发明提供的连续化油水分离装置,简易有效,适合连续化作业,其装置结构简单,适合工业化。

  附图说明

  图1是实施例1中石墨烯分散液的透射电子显微镜图。

  图2是实施例1中石墨烯分散液的原子力显微镜图。

  图3是实施例1中石墨烯基密胺泡沫的扫描电子显微镜图。

  图4是实施例1中石墨烯基密胺泡沫吸附不同油品的增重结果图。

  图5是实施例1中石墨烯基密胺泡沫对甲苯的循环吸附曲线。

  图6是实施例2中石墨烯基密胺泡沫对葵花籽油的循环吸附曲线。

  图7是实施例3中石墨烯基密胺泡沫对氯仿的循环吸附曲线。

  图8为实施例5中石墨烯密胺泡沫的扫描电子显微镜图。

  图9是应用例1中连续化油水分离装置示意图,其中1-油水混合储罐、2-流体泵、3-分离器、4-石墨烯基密胺泡沫、5-油罐、6-水罐。

  具体实施方式

  为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本领域技术人员在理解本发明的技术方案基础上进行修改或等同替换,而未脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围内。

  实施例1

  在20mL DMF中加入40mg粒径为325目的石墨粉和6.4mg 1-芘甲酸,超声4h。然后在1000rpm转速下离心20min后,取上清液15mL,即得到稳定的石墨烯分散液。将密胺泡沫(MF)置于石墨烯分散液中,反复挤压吸收10次,在分散液中静置12h,然后取出置于80℃真空烘箱中烘24h,得到石墨烯基密胺泡沫材料。

  性能测试

  对实施例1中的石墨烯分散液进行透射电子显微镜和原子力显微镜观察,结果如图1和图2所示,从图1的透射电子显微镜图(TEM)中可以看出,制备得到的石墨烯片层尺寸在3μm左右,并且单片石墨烯片层大都以折叠的形式存在;

  如图2,通过原子力显微镜(AFM)测量片层的厚度大部分在3.5nm以下,未发现较厚的石墨片层,说明所采用的方法能比较充分的剥离得到石墨烯,石墨烯片层大都在10层以下。

  密胺泡沫对溶液有高效的吸收能力,均匀分散的石墨烯分散液很容易被吸收到密胺泡沫内部,较强的π-π相互作用可以使石墨烯片层牢牢吸附在密胺泡沫的孔壁上。图3是实施例1中制备的石墨烯基密胺泡沫的扫描电子显微镜图,可以看出石墨烯片层均匀地负载在密胺泡沫纤维状的孔壁上。石墨烯片层的疏水性,加上密胺泡沫的高粗糙度,构成了所述石墨烯基密胺泡沫优异的疏水性能。测试该材料的静态表面接触角为140°。

  基于密胺泡沫超高的孔隙率和石墨烯的超疏水性,所述石墨烯基密胺泡沫对油品具有较高的吸附量。图4是实施例1中的石墨烯基密胺泡沫对不同种类油品的吸附量图,纵坐标是吸油后材料的增重率,可以看出实施例1的石墨烯基密胺泡沫对石油醚、丙酮、甲醇、乙醇、甲苯、四氢呋喃、N,N-二甲基甲酰胺、硅油、二氯甲烷、氯仿、泵油和葵花籽油等各种油品都具有很大的吸附容量。

  对于吸附材料,可循环利用性能非常重要。基于优异的压缩回弹性,吸附在复合泡沫里的溶剂很容易通过挤压的方式排出,从而实现泡沫的循环利用和溶剂的回收。对此测定了实施例1中石墨烯基密胺泡沫循环吸附甲苯的材料增重曲线,如图5所示,可以看出经过多次(30次)的吸附/挤压之后,石墨烯基密胺泡沫对甲苯的吸附量基本保持不变,展现出非常出色的循环利用性能。

  实施例2

  在20mL水中加入200mg粒径为325目的石墨粉和15mg十二烷基苯磺酸钠,超声24h。然后在1000rpm转速下离心20min后,取上清液15mL,即得到稳定的石墨烯分散液。将密胺泡沫(MF)置于石墨烯分散液中,反复挤压吸收10次,在分散液中静置12h,然后取出置于80℃真空烘箱中烘24h,得到石墨烯基密胺泡沫材料。

  测定该石墨烯基疏水密胺泡沫的接触角为135°,其对葵花籽油的循环吸附增重曲线如图6所示。可以看出经过多次(30次)的吸附/挤压之后,石墨烯基密胺泡沫对葵花籽油的吸附量均保持基本不变,同样展现出非常出色的循环利用性能。

  实施例3

  在20mL THF中加入40mg粒径为2000目的石墨粉和6.4mg 1-芘丁酸,超声4h。然后在1000rpm转速下离心20min后,取上清液15mL,即得到稳定的石墨烯分散液。将密胺泡沫(MF)置于石墨烯分散液中,反复挤压吸收10次,在分散液中静置12h,然后取出置于80℃真空烘箱中烘24h,得到石墨烯基密胺泡沫材料。

  测定该石墨烯基疏水密胺泡沫的接触角为130°,其对氯仿的吸附容量为自身重量的160倍,循环吸附增重曲线如图7所示。可以看出经过多次(30次)的吸附/挤压之后,石墨烯基密胺泡沫对氯仿的吸附量均保持基本不变,同样展现出非常出色的循环利用性能。

  实施例4

  在20mL THF中加入40mg粒径为2000目的石墨粉和6.4mg 1-芘丁酸,超声4h。然后在1000rpm转速下离心30min后,取上清液15mL,即得到稳定的石墨烯分散液。将密胺泡沫(MF)置于石墨烯分散液中,反复挤压吸收10次,在分散液中静置12h,然后取出置于80℃真空烘箱中烘24h,得到石墨烯基密胺泡沫材料。

  测定该石墨烯基疏水密胺泡沫的接触角为110°,其对氯仿的吸附容量为自身重量的120倍。

  实施例5

  在20mL THF中加入40mg粒径为2000目的石墨粉和6.4mg 1-芘丁酸,超声4h。然后在1000rpm转速下离心60min后,取上清液15mL,即得到稳定的石墨烯分散液。将密胺泡沫(MF)置于石墨烯分散液中,反复挤压吸收10次,在分散液中静置12h,然后取出置于80℃真空烘箱中烘24h,得到石墨烯基密胺泡沫材料。

  测定该石墨烯基疏水密胺泡沫的接触角为70°,其对氯仿的吸附容量为自身重量的100倍,其内部扫描电子显微镜图如图8所示。

  从实施例3-5中可以看出,离心时间越长,石墨烯基疏水密胺泡沫疏水性能越差,甚至表面会表现为亲水状态。因为离心时间越长,石墨烯分散液浓度越低,会导致密胺泡沫孔壁上石墨烯负载量不够,未能完全覆盖密胺泡沫孔壁,使疏水性能下降。

  应用例1

  一种连续化油水分离装置,如图9所示,包括油水混合储罐1、流体泵2、分离器3、油罐5和水罐6;所述流体泵2连接油水混合储罐1和分离器进料口,所述分离器3上端设有与水罐6连接的水分出料口,分离器3下端设有与油罐5连接的油分出料口;所述水分出料口和油分出料口在分离器3内部以实施例1制备的石墨烯基密胺泡沫4分隔。

  从油水混合储罐1中的油水混合物通过流体泵2进入分离器3中,流速20ml/min,其中的油被石墨烯基密胺泡沫吸附,从下方流出进入油罐5,其中的水被阻隔,当达到一定液位后从侧方出料口排出进入水罐6。实验过程中,用氯仿作为油品并用红色染料染色,水用蓝色染料染色,经上述装置分离后,氯仿和水的分离效果非常明显,工作10min后,红色的氯仿中几乎看不到蓝色的水存在,通过卡尔费休法测试氯仿中的平均水含量为0.0867%。

  应用例2

  采用应用例1相同的连续化油水分离装置和应用过程,油水混合物的流速更改为100ml/min,工作30min后,红色的四氯化碳中几乎看不到蓝色的水存在,通过卡尔费休法测试四氯化碳中的平均水含量为0.0657%。

《一种石墨烯基密胺泡沫、其制备方法和应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)