欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 一种耐高温阻燃聚氨酯复合材料及其制备方法独创技术11466字

一种耐高温阻燃聚氨酯复合材料及其制备方法

2021-02-02 04:09:36

一种耐高温阻燃聚氨酯复合材料及其制备方法

  技术领域

  本发明属于高分子材料改性技术领域,具体涉及一种耐高温阻燃聚氨酯复合材料

  背景技术

  聚氨酯发泡剂全称单组分聚氨酯泡沫填缝剂,俗称发泡剂、发泡胶、PU填缝剂,是气雾技术和聚氨酯泡沫技术交叉结合的产物。聚氨酯硬泡复合材料作为一种高性能的保温隔热材料,具有多孔性、相对密度小、比强度高、保温隔热性能好、防水性能强等特点,并具有施工方便、抗老化等特征,已形成了成熟的施工技术。主要应用于家用保温(冰箱、冰柜、太阳能热水器)、冷库及冷链物流(冷藏集装箱、冷藏火车、冷藏汽车等)、建筑保温材料(屋顶喷涂硬泡、外墙绝热保温板材等),以及管道保温材料、工业储罐绝热、高密度仿木结构材料等。

  国内外研究者为增加有机泡沫保温材料的阻燃性,一般通过添加阻燃剂提高泡沫塑料的阻燃性,以延缓燃烧、阻烟甚至使着火部位自熄;也可采用含阻燃元素的多元醇(即反应型阻燃剂)为泡沫原料。阻燃剂的类型多样,其中包括通过在硬质聚氨酯泡沫(RPUF)中添加可膨胀石墨(EG)和聚磷酸铵(APP)的复合阻燃剂,,专利CN201510646750.0公开的技术方案中采用硅氧烷POSS作为阻燃剂,显著提升了聚氨酯泡沫的耐热性和阻燃性能,近年来无机填料对聚氨酯泡沫的阻燃越来越引起人们的重视,将聚氨酯复合材料陶瓷化,无机材料才高温作用下融化、裂解以及高温变相在材料表面行为耐高温的保护层,从而起到防火阻燃耐高温的作用。

  目前经过改性后的聚氨酯复合材料在120℃高温下可以具有良好的隔热性能,但是在更高温度下会发生一系列的变化,导致材料隔热性能降低,因此如何得到一种能够耐900℃的高温并且能够防止火势蔓延,起到良好阻燃效果的聚氨酯符合材料成为亟待解决的技术难题。

  发明内容

  为解决现有技术中存在的技术问题本发明经过反复实验验证,最终在多元醇中筛选出一种阻燃效果好的高分子聚合材料苯酚基曼尼希聚醚多元醇,苯酚基曼尼希聚醚多元醇的使用可以代替传统阻燃聚氨酯泡沫复合材料中的无机阻燃材料,通过将苯酚基曼尼希聚醚多元醇与其他组分的合理搭配实现最优的耐高温阻燃效果,为实现上述技术效果,解决现有技术存在的问题,本发明采用如下技术方案:

  一种耐高温阻燃聚氨酯复合材料,其特征在于:所述阻燃聚氨酯泡沫复合材料由如下重量份数的各组分组成:

  

  所述发泡剂含有烷烃;

  所述多异氰酸酯是以重量比计按照二苯基甲烷二异氰酸酯/甲苯二异氰酸酯=3:2的方式混合而成的;

  所述二苯基甲烷二异氰酸酯为选自单体MDI、聚合MDI、改性MDI中的1种或2种以上;

  所述胺类催化剂为TBAB、CTMAB以及BDMA中的任意一种。

  进一步优选的,所述多异氰酸酯组分的总重量计40重量%至58重量%的芳香族二异氰酸酯混合物。

  进一步优选的,所述发泡剂为三氯氟甲烷、二氯二氟甲烷、环戊烷、异戊烷中的一种或几种。

  进一步优选的,所述的泡沫稳定剂选自聚二甲基硅油、硅油L-580中的一种。

  进一步优选的,所述阻燃聚氨酯泡沫复合材料由如下重量份数的各组分组成:

  

  

  进一步优选的,所述阻燃聚氨酯泡沫复合材料由如下重量份数的各组分组成:

  

  本发明另一目的是提供一种耐高温阻燃聚氨酯复合材料的制备方法,包括如下步骤:

  1)根据配比将苯酚基曼尼希聚醚多元醇、发泡剂、泡沫稳定剂和胺类催化剂混合,搅拌均匀;

  2)称取组分量的多异氰酸酯;

  3)将步骤1)和步骤2)物质混合均匀,倒入模具的模腔中发泡成型,室温放置得到复合材料。

  本发明的另一目的是提供上述耐高温阻燃聚氨酯复合材料用于制备阻燃建筑板材的用途。

  本发明通过优选聚氨酯复合材料的成分和具体含量,提供了一种耐高温的阻燃聚氨酯复合材料,取得如下技术效果:

  1)所得聚氨酯复合材料高温耐受,经测试产品燃烧增长速率指数低,导热系数小,并且经过高温测试前后产品尺寸变化率小。

  2)经过阻燃性测试,产品阻燃性能好,产品经过一段时间的燃烧测试燃烧距离短。

  3)所得产品制备方法简单,产品用途广泛。

  具体实施方式

  为促进本领域技术人员有效的理解本发明的技术方案,以下通过具体实施例对本发明技术方案进行详细的论述,需要说明的是本发明的技术方案是一个整体,各组分组成与含量对本发明技术效果的实现均具有不可替代的作用。

  苯酚基曼尼希聚醚多元醇的制备

  反应釜中加入苯酚和二乙醇胺,升温至70℃,向反应釜中缓慢滴加质量分数为37%的甲醛水溶液,反应1.2h后升高温度回流1h,减压蒸馏,向反应体系中加入环氧乙烷、四丁基溴化铵,升温至90℃反应,保持反应釜内压力为0.28MPa,当压力为0时,聚合反应结束,得到苯酚基曼尼希聚醚多元醇。

  实施例1

  本实施例提供了一种耐高温的阻燃聚氨酯复合材料,各组分按照重量份数表示为:

  

  其中,多异氰酸酯是以重量比计按照二苯基甲烷二异氰酸酯/甲苯二异氰酸酯=3:2的方式混合而成的,二苯基甲烷二异氰酸酯为选自单体MDI(烟台万华聚氨酯有限公司);

  制备方法:

  1)根据配比将苯酚基曼尼希聚醚多元醇、三氯氟甲烷、TBAB和聚二甲基硅油混合,搅拌均匀;

  2)称取组分量的多异氰酸酯;

  3)将步骤1)和步骤2)物质混合均匀,倒入模具的模腔中发泡成型,室温放置得到复合材料。

  所制得的产品极限氧指数在32%以上,且在空气中燃烧絮状污染物产生较少,在马弗炉中经过800℃高温,耐高温阻燃聚氨酯复合材料仍具有一定的力学强度,有一定收缩但基本能维持初始形状。

  实施例2

  本实施例提供了一种耐高温的阻燃聚氨酯复合材料,各组分按照重量份数表示为:

  

  其中,多异氰酸酯是以重量比计按照二苯基甲烷二异氰酸酯/甲苯二异氰酸酯=3:2的方式混合而成的,其中二苯基甲烷二异氰酸酯为选自聚合MID(烟台万华聚氨酯有限公司)

  制备方法:

  1)根据配比将苯酚基曼尼希聚醚多元醇、环戊烷、BDMA和硅油L-580混合,搅拌均匀;

  2)称取组分量的多异氰酸酯;

  3)将步骤1)和步骤2)物质混合均匀,倒入模具的模腔中发泡成型,室温放置得到复合材料。

  所制得的产品极限氧指数在32%以上,且在空气中燃烧絮状污染物产生较少,在马弗炉中经过800℃高温,耐高温阻燃聚氨酯复合材料仍具有一定的力学强度,有一定收缩但基本能维持初始形状。

  实施例3

  本实施例提供了一种耐高温的阻燃聚氨酯复合材料,各组分按照重量份数表示为:

  

  其中,多异氰酸酯是以重量比计按照二苯基甲烷二异氰酸酯/甲苯二异氰酸酯=3:2的方式混合而成的(烟台万华聚氨酯有限公司)

  制备方法:

  1)根据配比将苯酚基曼尼希聚醚多元醇、异戊烷烷、CTMAB和硅油L-580混合,搅拌均匀;

  2)称取组分量的多异氰酸酯;

  3)将步骤1)和步骤2)物质混合均匀,倒入模具的模腔中发泡成型,室温放置得到复合材料。

  所制得的产品极限氧指数在30%以上,且在空气中燃烧絮状污染物产生较少,在马弗炉中经过800℃高温,耐高温阻燃聚氨酯复合材料仍具有一定的力学强度,有一定收缩但基本能维持初始形状。

  对比实施例1

  本对比实施例提供了一种耐高温的阻燃聚氨酯复合材料,各组分按照重量份数表示为:

  

  制备方法同实施例3

  对比实施例2

  本对比实施例提供了一种耐高温的阻燃聚氨酯复合材料,各组分按照重量份数表示为:

  

  制备方法同实施例1

  二、实验分析

  将实施例和对比实施例所得产品进行实验分析,具体主要对产品的阻燃性质进行对比分析,其中燃烧增长速率指数按照GB/T20284-2006的检测方法,高温燃烧的尺寸变化(%)按照GB/T8811-2008的检验方法,产烟毒性级别采用GB/T20285-2006的检验方法,例如此类不一一列举,具体分析结果如表1所示:

  

  三、其他阻燃指标评价

  (1)阻燃性评价

  由实施例和对对比实施例所得所得产品切割出样品,并在以下条件下进行燃烧试验。

  试验方法:FMVSS-302方法(汽车内饰用安全标准的测试方法)

  聚氨酯复合材料的水平燃烧试验测试条件:以透气量为200ml/cm2/s的方式进行调整。(根据JISK6400-7B方法测量透气量。)样品:160mm长,70mm宽,13mm

  厚评价标准:NB:燃烧距离为38mm以下;

  SE:燃烧距离为39mm以上且88mm以下;

  BN:燃烧距离为89mm以上。

  (2)防雾性能评价

  由所得实施例和对对比实施例所得产品切割出样品,并在以下条件下进行防雾特性试验。

  测试条件:使用挡风灰雾测试机,并将聚氨酯泡沫体样品(直径:80mm,厚度:10mm)置于其容器的下部。在100℃下将样品加热16小时。测量由样品飞溅出且附着于容器上部的铝箔上的物质的量作为铝附着量(mg)。

  (3)焦烧

  将所得产品在微波中保持3分钟,然后在70℃下保持4.5分钟。此后,使用色差计(日本电色工业有限公司,颜色计ZE2000)来测量处于高温下的发泡制品中部和处于低温下的发泡制品侧部的变黄度(变白度)。以ΔYI表示它们之间的色差。

  具体测试结果如表2

  

  以上实验分析可以看出,在耐高温防阻燃的性能测试中,采用本发明技术方案所制备的聚氨酯复合材料的抗阻燃效果更好,能够耐受高温,并且导热率低,释放总烟量少。

  以上所述,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书以上所述而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。

《一种耐高温阻燃聚氨酯复合材料及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)