欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 一种高粘附性的水凝胶涂层的制备方法和应用独创技术12307字

一种高粘附性的水凝胶涂层的制备方法和应用

2021-02-26 15:06:00

一种高粘附性的水凝胶涂层的制备方法和应用

  技术领域

  本发明涉及水凝胶涂层技术领域,更具体地,涉及一种高粘附性的水凝胶涂层的制备方法和应用。

  背景技术

  水凝胶是一种具有高分子三维空间网状结构并以水为分散介质的软物质材料。聚合物作为其网络基质,水凝胶在形态上类似于固体并可以维持一定的物理形状,而水介质的扩散或渗透又使得水凝胶兼具了液体的功能与行为,独特的组成与结构使得水凝胶兼具固液属性,从而在组织工程、药物输送、防污涂层、船舶减阻等应用领域应用广泛。

  由于水凝胶具有较高的亲水表面,材料中高分子链密度低,造成了水凝胶和基底材料之间的粘附力较差。因此为了实现水凝胶材料长期可靠的防污功能,这些水凝胶需要与基底材料实现良好的粘结,使得既能够保持水凝胶良好的防污能力,又能够保持基底材料良好的机械性能。针对水凝胶材料粘附力差的问题,有研究在多孔的固体表面通过形成机械互锁的方式实现了水凝胶与固体基底的粘结,粘结强度和水凝胶本体强度相当。但是在这种方式仅仅适合表面粗糙多孔的结构,不适合一般性的平整表面,应用十分有限。

  也有研究通过锚定的方式,设计了硅烷偶联剂来粘结水凝胶和基底,这种偶联剂需要处理基底表面以保证涂刷硅烷偶联剂时能够生成硅氧键,形成偶联剂与基底表面的粘结,然后偶联剂分子另一端含有双键参与水凝胶聚合。这种粘结水凝胶和硬质基底的方式虽然适合一般的固体基底,不需要基底多孔,但是仍要对固体表面进行预处理。从经济上讲,硅烷偶联剂的制备困难,由此造成价格昂贵,仅仅在适用于实验室,不适合大规模工业化应用。专利CN 104861755A公开了一种水凝胶防污涂层的制备方法,将水凝胶固体粉末参杂在环氧树脂中实现水凝胶的粘结,但此方法会导致水凝胶溶胀后与环氧树脂分离,无法在基底材料上有效粘附。因此,亟需开发一种廉价、操作性强、有效粘附在基底表面的水凝胶,对于制备海洋防污、生物应用、船舶减阻、水凝胶防污具有一定的应用价值。

  发明内容

  本发明的目的在于克服现有技术中存在的上述缺陷和不足,提供一种高粘附性的水凝胶涂层的制备方法。

  本发明的上述目的是通过以下技术方案给予实现的:

  一种高粘附性的水凝胶涂层的制备方法,将含羟基的高分子聚合物、助剂加入到水中,搅拌加热溶解,再涂覆在富含羟基的基底表面,干燥成膜,在水性环境中溶胀即得;

  所述含羟基的高分子聚合物选自壳聚糖、聚乙烯醇、淀粉或卡拉胶中的一种或多种;

  所述助剂为冰醋酸、丙三醇、丙二醇、盐酸、乙二醇、山梨醇、氧化石墨烯等小分子或无机纳米颗粒中的一种或多种;

  所述水性环境为纯水、无机盐的水溶液或有机物的水溶液。

  本发明通过将富含羟基的高分子聚合物作为水凝胶原料,富含羟基的基底材料作为待黏附的基底材料。在加热干燥过程中,高分子聚合物的羟基和被粘附材料的羟基之间通过氢键、结晶作用形成稳定的化学键,从而实现水凝胶和基底材料的高效粘附,对于富含羟基的表面具有普适性,且方法廉价、操作性强。

  优选地,所述含羟基的高分子聚合物中羟基在高分子中所占的质量分数不低于15%。

  进一步优选地,所述壳聚糖脱乙酰度大于95%,聚乙烯醇醇解度≥99%,淀粉为马铃薯淀粉(密度1.5g/cm3),卡拉胶为κ-角叉菜聚糖。

  优选地,所述含羟基的高分子聚合物、助剂和水的用量比为2~20:0~3:80~98。所述助剂基本均作为增塑剂,可用于进一步提高水凝胶的机械性能。

  进一步优选地,所述无机盐的水溶液中水的质量分数不低于60%,有机物的水溶液中水的质量分数不低于70%。

  优选地,所述加热溶解为50~120℃,加热5~12h。

  优选地,所述涂覆基为喷涂、刷涂、浸涂、旋涂或延流等。

  优选地,所述干燥成膜温度20~150℃,压力0.001~1bar,干燥时间2h~168h。

  优选地,所述在水性环境中溶胀的方式为喷水、浸泡或高湿度环境下熏蒸等。

  优选地,所述富含羟基的基底表面为环氧树脂、聚氨酯、聚脲、丙烯酸酯、金属、木材、纺织物、玻璃或陶瓷中的一种或几种。

  优选地,制备得到的水凝胶涂层的厚度为0.01~30mm,杨氏模量为0.1~5MPa,拉伸断裂强度为0.5~20MPa,水凝胶涂层与基底的粘附能为100~3000J/m2。

  本发明还请求保护上述任一所述方法制备的水凝胶涂层在海洋防污、减阻、生物医用方面的应用。

  与现有技术相比,本发明具有以下有益效果:

  本发明提供了一种高粘附性的水凝胶涂层的制备方法,以富含羟基的高分子聚合物作为水凝胶原料,富含羟基的基底材料作为待黏附的基底材料。在加热干燥过程中,高分子聚合物的羟基和被粘附材料的羟基之间通过氢键、结晶作用形成稳定的化学键,从而实现水凝胶和基底材料的高效粘附,对于富含羟基的表面具有普适性,且简便、廉价、操作性强,适用于海洋防污、减阻或生物医用等方面。

  附图说明

  图1为不同羟基含量的聚乙烯醇水凝胶的粘结能。

  图2为实施例1~4水凝胶与基底材料的粘结能。

  图3为壳聚糖水凝胶与不同基底之间的粘结能。

  图4为聚乙烯醇水凝胶与环氧在严苛环境下的粘结能。

  具体实施方式

  以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。

  除非特别说明,以下实施例所用试剂和材料均为市购。

  原料:聚乙烯醇1799、聚乙烯醇1788、壳聚糖(脱乙酰度大于95%)、马铃薯淀粉(密度1.5g/cm3)、卡拉胶(κ-角叉菜聚糖);

  用180°剥离装置测试水凝胶与基底之间的粘合强度,测试过程中不断喷雾保持水凝胶湿润,测试温度为室温,测试速度为100mm/min。

  涂层厚度通过使用千分尺测量含水凝胶涂层的表面厚度与不含水凝胶涂层的表面厚度之差表示,随机在不同位置测量3次,取平均值。

  杨氏模量通过万能拉伸机测量,测试过程中不断喷雾保持水凝胶湿润,测试温度为室温,测试速度为100mm/min。取应力应变曲线前10%数据计算杨氏模量。

  拉伸断裂强度通过万能拉伸机测量,测试过程中不断喷雾保持水凝胶湿润,测试温度为室温,测试速度为100mm/min。取测量过程中最大应力作为拉伸断裂强度。

  实施例1

  将醇解度为99%、聚合度1700的聚乙烯醇(PVA)1799 1.5g、山梨醇0.3g、水8.2g混合后溶胀20min,90℃加热搅拌5h,冷却至室温后,延流至完全覆盖的环氧基底表面。

  将涂有醇解度为99%聚乙烯醇的环氧基底放置于90℃下加热4h后,浸泡在去离子水中3d。

  检测结果:测得的粘结能为1400J/m2,涂层的厚度为0.1mm,杨氏模量为0.9MPa,拉伸断裂强度4.1MPa。

  对比例1

  将醇解度为88%,聚合度1700的聚乙烯醇1788 1.5g、山梨醇0.3g、水8.2g混合后溶胀20min,90℃加热搅拌5h,冷却至室温后,延流至完全覆盖的环氧基底表面。

  将涂有醇解度为88%聚乙烯醇的环氧基底放置于90℃下加热1h后,浸泡在去离子水中3d。

  结果:此法制得的水凝胶浸泡在去离子水中后完全溶解,无法稳定粘附环氧表面,故厚度、杨氏模量、断裂强度均计为0。

  图1为在实施例1和对比例1相同基底上不同羟基含量的聚乙烯醇的粘结能。由图1的对比可知,采用本方法所用的羟基含量高的高分子聚合物可有效地将水凝胶牢固粘附在基底表面。

  实施例2

  将脱乙酰度大于95%的壳聚糖(CS)0.2g、冰醋酸0.2g、水9.6g混合,60℃加热搅拌3h,冷却至室温后,延流至完全覆盖的环氧基底表面。

  将涂有脱乙酰度大于95%的壳聚糖的环氧基底放置于130℃下加热1h后,浸泡在去离子水中3d。

  用180°剥离装置测试水凝胶与环氧之间的粘合强度,测试过程中不断喷雾保持水凝胶湿润,测试温度为室温,测试速度为100mm/min。

  检测结果:测得的粘结能为1200J/m2,厚度0.2mm,杨氏模量0.1MPa、拉伸断裂强度2.2MPa。

  实施例3

  将马铃薯淀粉(PS)1g、丙三醇0.2g、水8.8g混合,70℃加热搅拌5h,冷却至室温后,延流至完全覆盖的棉布基底表面。

  将涂有马铃薯淀粉溶液的棉布基底放置于80℃下加热8h后,浸泡在去离子水中3d。

  用180°剥离装置测试水凝胶与棉布之间的粘合强度,测试过程中不断喷雾保持水凝胶湿润,测试温度为室温,测试速度为100mm/min。

  检测结果:测得的粘结能为800J/m2,厚度0.1mm,杨氏模量0.05MPa、拉伸断裂强度0.2MPa。

  实施例4

  将卡拉胶(C)1g、乙二醇0.2g、水8.8g混合,70℃加热搅拌5h,冷却至室温后,延流至完全覆盖的聚氨酯基底表面。

  将涂有卡拉胶溶液的聚氨酯基底放置于90℃下加热4h后,浸泡在去离子水中3d。

  用180°剥离装置测试水凝胶与聚氨酯之间的粘合强度,测试过程中不断喷雾保持水凝胶湿润,测试温度为室温,测试速度为100mm/min。

  检测结果:测得的粘结能为1000J/m2,厚度0.1mm,杨氏模量0.01MPa、拉伸断裂强度0.2MPa。

  实施例1~4所述水凝胶与基底材料的粘结能结果如图2所示,均具有良好的粘结能。

  实施例5

  采用实施例2的办法,将基底材料分别换为玻璃、聚氨酯、聚脲、聚丙烯酸酯涂料、木材、棉布、涤纶等,将其与水凝胶粘结,并用180°剥离装置测试粘结能。

  结果如图3所示,表明所述水凝胶可以与含羟基的基底材料粘结,基底材料所含醇羟基越多,粘结效果越好。

  实施例6

  将醇解度为99%的聚乙烯醇1.5g、山梨醇0.3g、0.5M氯化钠溶液8.2g混合后溶胀20min,100℃加热搅拌5h,冷却至室温后,延流至完全覆盖的环氧基底表面。

  将涂有醇解度为99%聚乙烯醇的环氧基底放置于90℃下加热4h后,浸泡在去离子水中3d。

  用180°剥离装置测试水凝胶与环氧之间的粘合强度,测试过程中不断喷雾保持水凝胶湿润,测试温度为室温,测试速度为100mm/min。

  检测结果:测得的粘结能为1400J/m2,厚度0.2mm,杨氏模量1.2MPa、拉伸断裂强度5.2MPa。

  实施例7

  将醇解度为99%的聚乙烯醇1.5g、山梨醇0.3g、水8.2g混合后溶胀20min,90℃加热搅拌5h,冷却至室温后,延流至完全覆盖的环氧基底表面。

  将涂有醇解度为99%聚乙烯醇的环氧基底放置于90℃下加热4h。制备三份样品,分别浸泡在1M盐酸溶液、1M氢氧化钠溶液、0.5M氯化钠溶液中3d。

  用180°剥离装置测试水凝胶与环氧之间的粘合强度,测试过程中不断喷雾保持水凝胶湿润,测试温度为室温,测试速度为100mm/min。

  结果如图4所示,所述水凝胶可适用于不同的pH溶液环境,表明本发明水凝胶在严苛环境下粘结性能依然优异。

《一种高粘附性的水凝胶涂层的制备方法和应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)