欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 高效阻燃型聚氨酯泡沫及其制备方法和用途独创技术11638字

高效阻燃型聚氨酯泡沫及其制备方法和用途

2021-04-24 01:50:47

高效阻燃型聚氨酯泡沫及其制备方法和用途

  技术领域

  本发明涉及一种高效阻燃型聚氨酯泡沫及其制备方法和用途。

  背景技术

  普通聚氨酯泡沫是一种易燃性的聚合材料,特别是目前市场占有率较高的软质聚氨酯泡沫材料,由于其较高的开孔率和良好的透气性特点,使其在空气中很容易燃烧,且燃烧产生大量的有毒有害气体,对于生产现场来说,存在较高的安全隐患,同时污染环境及影响人体健康。

  近些年以来,向聚氨酯发泡体系中引入阻燃剂成为解决上述隐患的一种常用手段,常见的阻燃剂包括有卤阻燃剂和无卤阻燃剂,尽管这些阻燃剂对泡沫阻燃性能有所提升,且添加量较少,成本较低,但往往会导致泡沫的物理性能,如拉伸强度、撕裂强度和回弹性能受到较大影响,气味和VOC等也明显变差,同时很大程度上破坏体系反应速率平衡,对生产工艺和配方产生较大影响。

  气相二氧化硅是一种非常重要的超微细无机新型材料,因其粒径小、表面积大、表面吸附力强、化学纯度高、分散性能好,且耐热稳定性强,在众多生产工业领域得到广泛应用。

  评价聚氨酯泡沫阻燃性能好坏的测试方法通常有两种,一种是水平燃烧,普通厂家要求燃烧速率≤80mm/min即可,另外一种是氧指数,氧指数在22~27%,为可燃材料,氧指数>27%,为难燃材料,而普通的聚氨酯软质泡沫材料的氧指数仅为17~18%,属于易燃材料。对于高端汽车内饰材料来说,如汽车后备箱地垫,按照GB/T8410-2006标准,燃烧速率≤60mm/min,甚至离火自熄,按照GB/T2406.2-2009,氧指数≥27%。

  通常情况下,普通的聚氨酯软质泡沫材料的耐热稳定性较差,在较高温度(如140℃)、较长时间(168h)处理后,经测量尺寸稳定性均>1%,这会导致后期产品在应用过程中出现变形收缩、尺寸不够等问题。

  专利CN107353388发明了一种高阻燃性高回弹聚氨酯座椅泡沫组合物及发泡工艺,采用阻燃性聚醚多元醇为主料,同时加入纳米三氧化二锑,制备得到了具有高阻燃性能的聚氨酯泡沫材料,其氧指数≥28%,并用于汽车座椅的生产中。

  专利CN110511341A发明了一种阻燃型聚氨酯吸声降噪材料及其制备方法,在聚氨酯的合成过程中添加阻燃填料,该阻燃填料为改性可膨胀石墨,主要是将1,4-二氧六环,可膨胀石墨、三氯氧磷加入三口烧瓶中,60℃水浴加热6h,过滤烘干得到,最终制备得到的聚氨酯泡沫材料的氧指数可达到25%,但该制备过程较为复杂。

  发明内容

  本发明所要解决的技术问题之一是现有技术中聚氨酯泡沫的阻燃性能差和易老化的技术问题,提供一种新的高效阻燃型聚氨酯泡沫。本发明提供的高效阻燃型聚氨酯泡沫,具有阻燃性能好、耐老化性能好的优点。本发明所要解决的技术问题之二是提供一种与解决技术问题之一相对应的制备方法。本发明所要解决的技术问题之三是提供一种与解决技术问题之一相对应的用途。

  为解决上述技术问题之一,本发明提供的技术方案如下:一种高效阻燃型聚氨酯泡沫,由组分A和组分B组成,组分A与组分B的重量份数比为100:65~85,其中组分A以重量份数计包括聚氧化丙烯多元醇为70~90份,端氨基聚醚多元醇为5~15份,开孔剂为2~10份,扩链剂为1~3份,交联剂为2~5份,反应型催化剂为0.8~2份,表面活性剂1~2份,水2~4.5份,气相二氧化硅0.3~1.5份,组分B为改性异氰酸酯;其中端胺基聚醚多元醇是以端仲羟基聚醚二醇或聚醚三醇,胺化得到的产物,其粘度为230~850mPa.s,分子量为1000~5000。

  上述技术方案中,优选地,聚氧化丙烯多元醇以丙三醇、三羟基甲基丙烷、二乙醇胺或三乙醇胺中的一种作为起始剂,环氧乙烷-环氧丙烷共聚,得到分子量为4500~7000,伯羟基含量为70~90%的聚醚多元醇;开孔剂为羟值在25~35mgKOH/g的环氧丙烷-环氧乙烷共聚的聚醚型开孔剂;扩链剂为含2个官能团的小分子醇类化合物;交联剂为含3官能度的醇类化合物或醇胺类化合物;反应型催化剂为含羟基的叔胺型催化剂;表面活性剂为聚硅氧烷-氧化烯烃嵌段共聚物;气相二氧化硅的比表面积为80~250m2/g,原生离子粒径为7~16㎜;改性异氰酸酯选自L223、S2412、C1333或C1344中的至少一种。

  上述技术方案中,优选地,含羟基的叔胺型催化剂选自发泡型叔胺类催化剂、平衡叔胺型催化剂或凝胶叔胺型催化剂中的至少二种;气相二氧化硅为疏水性气相二氧化硅;疏水性气相二氧化硅的比表面积为90-240m2/g,原生离子粒径为8~15㎜。

  上述技术方案中,优选地,发泡型叔胺类催化剂选自NE317、LED103或LE15中的至少一种;平衡叔胺型催化剂选自NE210或LE526中的至少一种;凝胶叔胺型催化剂选自NE1070、NE1082、NE1091或LE506中的至少一种;疏水性气相二氧化硅选自R974、R972、R202或R812S中的至少一种。

  上述技术方案中,优选地,2个官能团的小分子醇类化合物选自1,3-丙二醇、一缩二乙二醇或二缩三乙二醇的至少一种;含3官能度的醇类化合物选自甘油或三羟甲基丙烷;醇胺类化合物选自三异丙醇胺或甲基二乙醇胺;聚硅氧烷-氧化烯烃嵌段共聚物选自B8220、B8228、B8229、B8260、DC5986、DC5687、L5702或L5333中的至少一种;羟值在25~35mgKOH/g的环氧丙烷-环氧乙烷共聚的聚醚型开孔剂选自CHE-350D、CP1421、KF28或FK-8300中的至少一种。

  为解决上述技术问题之二,本发明采用的技术方案如下:高效阻燃型聚氨酯泡沫的制备方法,包括以下步骤:

  (1)制备组分A:在容器A中按照重量份数计,依次加入聚氧化丙烯多元醇为70~90份,端氨基聚醚多元醇为5~15份,开孔剂为2~10份,扩链剂为1~3份,交联剂为2~5份,反应型催化剂为0.8~2份,表面活性剂1~2份,水2~4.5份,气相二氧化硅0.3~1.5份搅拌混合均匀,混合搅拌温度为20~25℃,制备得到混合物Ⅰ;

  (2)制备组分B:在容器B中称量改性异氰酸酯,搅拌温度为20~25℃;

  (3)将组分A与组分B按照重量份数为100:65~85,控制模具温度为80~100℃,快速混合搅拌,搅拌均匀后迅速注入事先铺好基础件的模腔中,闭模熟化3~4min,开模后即可得到高效阻燃型聚氨酯泡沫。

  为解决上述技术问题之三,本发明采用的技术方案如下:高效阻燃型聚氨酯泡沫应用于汽车后备箱地垫中。

  本发明中,通过优选不同的聚氧化丙烯多元醇、端胺基聚醚多元醇、开孔剂、扩链剂、交联剂、和催化剂为原料,特别是添加了特殊结构的气相二氧化硅后,使得到的聚氨酯泡沫具有高效阻燃性能,采用该技术方案得到聚氨酯泡沫具有离火自熄的特点,氧指数高达28.5%,经过140℃,168h热老化后,尺寸稳定性≤1%,取得了较好的技术效果。

  具体实施方式

  聚氧化丙烯多元醇A:以丙三醇作为起始剂,分子量为5000的环氧乙烷-环氧丙烷共聚的聚醚多元醇,伯羟基含量为79%。

  聚氧化丙烯多元醇B:以三羟基甲基丙烷作为起始剂,分子量为6500的环氧乙烷-环氧丙烷共聚的聚醚多元醇,伯羟基含量为75%。

  聚氧化丙烯多元醇C:以二乙醇胺作为起始剂,分子量为6300的环氧乙烷-环氧丙烷共聚的聚醚多元醇,伯羟基含量为83%。

  聚氧化丙烯多元醇D:以三乙醇胺作为起始剂,分子量为7000的环氧乙烷-环氧丙烷共聚的聚醚多元醇,伯羟基含量为85%。

  端氨基聚醚多元醇:

  端胺基聚醚多元醇A:端胺基聚醚多元醇以端仲羟基聚醚二醇胺化得到的产物,其粘度为248mPa.s,分子量为2000。

  端胺基聚醚多元醇B:端胺基聚醚多元醇以端仲羟基聚醚二醇胺化得到的产物,其粘度为367mPa.s,分子量为3000。

  端胺基聚醚多元醇C:端胺基聚醚多元醇以端仲羟基聚醚二醇胺化得到的产物,其粘度为877mPa.s,分子量为4000。

  端胺基聚醚多元醇D:端胺基聚醚多元醇以端仲羟基聚醚三醇胺化得到的产物,其粘度为819mPa.s,分子量为5000。

  表1原料清单

  

  

  

  实施例1

  (1)制备组分A:在容器A中按照重量份数计算,依次加入聚氧化丙烯多元醇A为73份,端氨基聚醚多元醇A15份,开孔剂CHE-350D为2份,扩链剂一缩二乙二醇为2份,交联剂甘油为2份,反应型催化剂LE15为0.3份,NE1091为1份,表面活性剂B8228为1份,水3份,气相二氧化硅R72:0.7份,搅拌混合均匀,混合搅拌温度为20~25℃,制备得到混合物Ⅰ;

  (2)制备组分B:在容器B中称量75重量份数的改性异氰酸酯L223,搅拌温度为20~25℃;

  (3)将组分A与组分B按照重量份数为100:75,控制模具温度为80~100℃,快速混合搅拌,搅拌均匀后迅速注入事先铺好基础件的模腔中,闭模熟化3.5min,开模后即可得到高效阻燃型聚氨酯泡沫,制备得到的高效阻燃型聚氨酯泡沫的性能检测数据如表4所示。

  (4)制备得到的高效阻燃型聚氨酯泡沫应用于汽车后备箱地垫中。

  实施例2至实施例5及比较例1至2

  实施例2至实施例5和比较例1至2按照实施例1中的各个步骤进行,唯一的区别为反应原料的种类、原料配比以及反应时间和反应温度的不同,具体见表2,制备得到的高效阻燃型聚氨酯泡沫的性能检测数据如表4所示。

  表2实施例1至实施例5及比较例1至2中各组分的原料重量份数

  

  

  

  

  实施例6至实施例10及比较例3和比较例4

  实施例6至实施例10及比较例3和比较例4按照实施例1中的各个步骤进行,唯一的区别为反应原料、反应种类、催化剂种类、原料配比、反应时间和反应温度不同,具体见表3,制备得到的高效阻燃型聚氨酯泡沫的性能检测数据如表4所示。

  表3实施例6至实施例10及比较例3和比较例4中各组分的原料重量份数

  

  

  

  

  表4制备得到的高效阻燃型聚氨酯泡沫的性能检测数据

  

  

  由表4可知,实施例1~10和比较例3,添加了特殊结构的气相二氧化硅后的聚氨酯泡沫不仅拉伸强度和撕裂强度没有降低,而且其燃烧性能能达到离火自熄、氧指数高至28.5%、尺寸稳定性≤1%,性能有大幅度提升;实施例1~10和比较例1、2和4,添加了传统有卤或无卤阻燃剂后,尽管聚氨酯泡沫的阻燃性能一定的提高,但是聚氨酯泡沫的拉伸强度和撕裂强度明显降低,气味性变差,且比较例1、2和4的氧指数仅高至26.5,其阻燃效果远远低于本申请。

《高效阻燃型聚氨酯泡沫及其制备方法和用途.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)