欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 组合技术> 一种用模块化设计构建双系统表达质粒文库的方法独创技术94874字

一种用模块化设计构建双系统表达质粒文库的方法

2021-03-12 07:10:56

一种用模块化设计构建双系统表达质粒文库的方法

  技术领域

  本发明涉及质粒文库构建方法,具体涉及一种利用任何已有cDNA或ORF质粒文库,简单、快速、高效地构建UAS-cDNA/ORF质粒文库的方法。

  背景技术

  全基因组无偏好遗传学筛选(genome-wide unbiased genetic screen)是一个研究基因功能的强大手段,被广泛地应用于生物学研究的各个领域。全基因组无偏好遗传 学筛选主要分为功能丧失(loss of function)和功能获得(gain of function)这两 类方法。果蝇因其具有成本低、繁殖快、数目多且足够复杂而又大部分基因进化保守等 优点,成为全基因组无偏好遗传学筛选的一个常用动物模型。果蝇很多基因没有明显的 loss offunction表型,利用UAS/GAL4系统在任意特定组织进行gain of function 筛选是研究这些基因功能的一个重要手段。

  UAS/GAL4系统是果蝇遗传学中一种常用的组织特异的基因过表达系统。其原理是利 用特定的启动子组织特异地表达酵母转录激活因子GAL4,GAL4进一步与GAL4结合元件(UAS)结合,激活靶基因(cDNA/ORF)的转录。因此,只需构建UAS-cDNA/ORF转基因 果蝇,然后再与组织特异表达GAL4的果蝇交配,即可组织特异表达该基因。为了利用 UAS/GAL4系统在任意特定组织进行gain of function筛选,需要构建UAS-cDNA/ORF 转基因果蝇文库。

  传统构建UAS-cDNA/ORF质粒,需要针对每一个基因设计引物、PCR、测序、限制酶切、胶回收等。构建全基因组UAS-RNAi转基因果蝇文库相对简单,因为RNAi序列短, 只需要PCR扩增几百碱基对,所以1998年在线虫里首次发现RNAi后,到2007年就已 构建好全基因组UAS-RNAi转基因果蝇文库。而构建全基因组UAS-ORF转基因果蝇文库 则没有那么简单。果蝇编码蛋白基因有将近14000个,2002年已构建好超过12000个果 蝇cDNA质粒,但是目前为止,还没有构建好全基因组UAS-cDNA/ORF转基因果蝇文库。 因为ORF序列比RNAi序列长很多,用现有方法构建UAS-cDNA/ORF质粒耗时又费力,构 建质粒这一步就成为构建转基因果蝇文库的主要限速步骤。因此,迫切需要建立一种简 单、快速、高效地构建全基因组UAS-cDNA/ORF转基因果蝇质粒文库的方法。

  发明内容

  本发明的目的在于克服上述现有技术存在的不足,提供一种用模块化设计构建双系 统表达质粒文库(UAS-cDNA/ORF质粒文库,以及类UAS-cDNA/ORF质粒文库)的方法, 发明人将其命名为CRISPR-based modular assembly,缩写为CRISPRmass。本发明具体 涉及利用任何已有cDNA或ORF质粒文库,将基因编辑技术和无缝克隆技术结合起来, 并且同时在模块化插入序列中引入与已有cDNA或ORF质粒文库的质粒所不同种类的抗 生素抗性基因以便于筛选。简单、快速、高效地构建类UAS-cDNA/ORF质粒文库的方法。

  本发明的目的是通过以下技术方案来实现的:

  本发明涉及一种用模块化设计构建双系统表达质粒文库的方法,所述方法包括如下 步骤:

  S1、利用基因编辑技术切割已有cDNA或ORF质粒文库的质粒cDNA或ORF的5’端 上游的载体序列,使其线性化,得到原质粒文库的线性化质粒;

  S2、设计并构建模块化插入序列质粒,该模块化插入序列包含类酵母UAS序列、果蝇核心启动子序列、转基因果蝇筛选标记基因、用于把转基因定点插入到果蝇基因组特 定位点的定点整合序列、与原cDNA或ORF质粒所不同的抗生素抗性基因序列;该序列 两端与步骤S1的原质粒文库的线性化质粒末端序列重叠;将模块化插入序列从所述模 块化插入序列质粒上切下,电泳分离回收,得到模块化插入序列片段;

  S3、运用无缝克隆技术将步骤S2回收的模块化插入序列片段与步骤S1的原质粒文库的线性化质粒连接,然后转化大肠杆菌,在同时含有模块化插入序列抗性和原质粒文 库的质粒抗性的对应的抗生素的LB固体平板上培养,再从平板上挑取克隆后过夜培养, 提取质粒并鉴定即得到类UAS-cDNA/ORF文库质粒。

  上述方法步骤S1中,利用基因编辑技术切割任何已有质粒文库中基于相同载体的不同质粒的载体序列,从而实现了对质粒文库中基于相同载体的不同质粒的相同操作, 使得利用模块化设计理念大规模高效快速改造质粒文库成为可能,这是本发明的核心所 在之一。

  优选的,步骤S1中,所述已有cDNA或ORF质粒文库的质粒选自果蝇DGRC GoldCollection文库质粒、人OHS6087CCSB Lentiviral Expression Library文库质粒或 小鼠Mouse MGC Collection文库质粒。

  优选的,步骤S1中,所述已有的cDNA或ORF质粒文库质粒的载体包括pOT2、pFLC-I、pBS SK-(即pBluseScript SK(-))、pOTB7、pOTB7_DraIII、pCR2.1、pDNR-Dual、 pLX304-Blast-V5、pCMV-SPORT6、pSPORT1中的一种或几种。

  优选的,步骤S1中,具体为使用CRISPR/Cas9技术切割质粒,包括针对已有cDNA 或ORF质粒文库的质粒cDNA或ORF的5’端上游的载体序列,设计多个Cas9的靶序列; 所述Cas9的靶序列及其对应载体包括:序列如SEQ ID NO.1-18所示的针对pOT2载体 的sgRNA的靶序列,序列如SEQ ID NO.19-32所示的针对pOTB7和pOTB7_DraIII载体 的sgRNA的靶序列,序列如SEQ ID NO.33-57所示的针对pBS SK-载体的sgRNA的靶序 列,序列如SEQ ID NO.58-66所示的针对pFlc-1载体的sgRNA的靶序列,序列如SEQ ID NO.67-96、SEQ ID NO.97-137所示的针对pCR2.1载体的sgRNA的靶序列,序列如SEQ ID NO.138-175所示的针对pDNR-Dual载体的sgRNA的靶序列,序列如SEQ ID NO.176-183 所示的针对pLX304-Blast-V5载体切点A的sgRNA的靶序列,序列如SEQ ID NO.184-219 所示的针对pLX304-Blast-V5载体切点B的sgRNA的靶序列,序列如SEQ ID NO.220-246 所示的针对pCMV-SPORT6载体切点A的sgRNA的靶序列,序列如SEQ ID NO.247-263所 示的针对pCMV-SPORT6载体切点B的sgRNA的靶序列。

  优选的,步骤S2中,所述类酵母UAS序列包括UAS、LexAop、QUAS或VAS序列。

  优选的,步骤S2中,所述果蝇核心启动子序列包括Hsp70核心启动子和DSCP核心启动子;所述转基因果蝇筛选标记基因包括mini-white或vermilion;所述用于把转基 因定点插入到果蝇基因组特定位点的定点整合序列为用于把转基因定点插入到果蝇基 因组attP位点的定点整合序列attB。

  优选的,步骤S2中,所述与原cDNA或ORF质粒所不同的抗生素抗性基因序列包括氨苄青霉素抗性基因序列、氯霉素抗性基因序列、卡那霉素抗性基因序列、壮观霉素抗 性基因序列、四环素抗性基因、庆大霉素抗性基因、博莱霉素抗性基因、链霉素抗性基 因、潮霉素抗性基因。其本质是常用的几种质粒抗生素抗性基因的替换使用。如原cDNA 或ORF质粒是氨苄青霉素抗性则本模块序列中引入氯霉素抗性基因序列。

  优选的,步骤S2中,所述果蝇核心启动子序列位于模块化插入序列的3’端,所 述类酵母UAS序列位于果蝇核心启动子序列的5’端且紧邻果蝇核心启动子序列;转基 因果蝇筛选标记基因、用于把转基因定点插入到果蝇基因组特定位点的定点整合序列、 与原cDNA或ORF质粒所不同的抗生素抗性基因序列排列顺序可互换的位于类酵母UAS 序列的5’端。

  优选的,步骤S1中,所述双系统表达质粒文库中的双系统包括GAL4-UAS系统、Q 系统、LexA-LexAop系统和TALE-VAS系统。

  优选的,步骤S3中,所述无缝克隆技术包括Gibson Assembly、In-Fusion、Red/ETRecombination、SLIC(Sequenceand Ligation-Independent Cloning)、SLiCE(SeamlessLigation Cloning Extract)、SHA(Successive Hybridization Assembling)。

  本发明还具体涉及一种UAS-cDNA/ORF转基因果蝇质粒文库的构建方法;如图1所示,所述方法包括如下步骤:

  (1)、针对已有基因的cDNA或ORF文库质粒中cDNA或ORF的5’端上游邻近的载体 序列,设计CRISPR/Cas9 sgRNAde的靶序列;然后根据该序列构建sgRNA体外转录模板, 体外转录合成CRISPR/Cas9 sgRNA;再利用CRISPR/Cas9技术切割已有cDNA或ORF基因 文库质粒cDNA或ORF的5’端上游的邻近的载体序列,使其线性化;

  (2)、设计并构建模块化插入序列质粒,该模块化插入序列包含酵母UAS序列、果蝇Hsp70核心启动子序列、转基因果蝇筛选标记基因、用于把转基因定点插入到果蝇基因 组特定位点的定点整合序列、原cDNA或ORF质粒所不含的新的抗生素抗性基因序列, 该序列两端与步骤(1)的线性化原基因文库质粒末端序列重叠;将模块化插入序列从 质粒上切下,电泳分离后,回收模块化插入序列片段;

  (3)、运用无缝克隆技术将步骤(2)回收的片段与步骤(1)的线性化质粒连接,然后转化大肠杆菌,把转化产物涂于LB固体干板(含类UAS模块序列中抗生素抗性基因 对应的抗生素),培养后挑取克隆即得到UAS-cDNA/ORF转基因果蝇文库质粒。所构建质 粒的限制性内切酶酶切结果分析表明,本方法构建质粒的阳性克隆率接近100%。所构建 的质粒可直接用于果蝇胚胎注射,进而构建UAS-cDNA/ORF转基因果蝇。

  与现有技术相比,本发明具有如下有益效果:

  1、模块化。本发明突破了现有方法中将不同的cDNA或ORF片段插入到相同的载体中这一固定思维模式,在构建基因组规模的类UAS-cDNA/ORF质粒文库中,首次引入了 模块化设计理念,设计了针对同一载体的统一的模块化插入序列。对文库质粒中相同载 体的质粒的载体部分,进行统一的模块化操作。首次将基因编辑技术引入基因组规模的 类UAS-cDNA/ORF质粒文库的构建中,并将基因编辑技术与缝克隆技术结合,使模块化 操作文库质粒中相同载体的质粒的载体部分成为可能。

  2、简单。现有方法需要针对文库中上万个基因每个基因进行个体化引物设计、个体化PCR全基因扩增、个体化PCR扩增产物纯化回收、个体化限制性酶切、全基因测序 等步骤,本发明避免了现有方法中针对文库中上万个基因每个基因的个体化操作。变为 针对质粒载体的统一程序化标准化操作,极大简化了构建流程。而且操作简单,操作人 员不需要高超的专业技术,即可胜任质粒构建工作。

  3、适用范围广。现有方法由于需要PCR扩增cDNA或ORF序列全长,如果基因cDNA 或ORF序列过长或GC含量过高,将影响PCR扩增效率,甚至难以扩增,而且也容易引 起序列突变。这些都增加了构建质粒文库的难度。本发明由于在质粒载体上进行操作, 不需要进行PCR扩增cDNA或ORF序列全长,绕过了这一难点,因此不受cDNA或ORF序 列长度和GC含量的限制。

  4、适合大容量文库构建。由于引入了模块化设计,针对同一载体的模块可反复应用。与现有方法相比,文库容量越大,本发明越节省人力、物力、财力和时间,越显示 出其优越性。

  5、高效。现有方法由于不能进行正筛选,所以构建质粒的克隆正确率难以保证,因此为了得到正确质粒,需要鉴定不止一个质粒克隆,这对于构建含有上万个质粒的文 库而言,极大增加了工作量和成本。本发明由于在模块化插入序列中引入抗生素抗性基 因,可以对构建质粒进行正筛选,所以理论上构建质粒的克隆正确率100%,我们的实验 证实,利用本方法构建克隆时,在5986个得到克隆的转化中,每个反应随机挑选一个 克隆鉴定,酶切分析表明,成功插入模块化序列的克隆数为5923,占总克隆数的98.95%。 所以针对含有上万个质粒的文库的构建,本方法构建质粒的克隆正确率接近100%,可以 极大地减少工作量。

  6、经济。按照传统的方法,构建基因组规模的类UAS-cDNA/ORF质粒文库需要耗费大量的人力、物力、财力和时间,所以现在还未成功构建好任何物种的基因组规模的类UAS-cDNA/ORF质粒文库。本发明极大节省了人力、物力、财力和时间,将极大加快基因 组规模的类UAS-cDNA/ORF质粒文库的构建进程。

  附图说明

  图1为本发明的用模块化设计构建双系统表达质粒文库的方法的路线流程图;

  图2为应用本发明方法所构建针对果蝇DGRC Gold Collection文库、人OHS6087CCSB Lentiviral Expression Library、小鼠Mouse MGC Collection文库的UAS-cDNA/ORF质粒的鉴定图,表明应用本方法所构建阳性克隆率接近100%;其中,A为以pFLC-I、pBSSK-、pCR2.1和pDNR-Dual为载体的cDNA或ORF,应用本方法所构建的UAS-cDNA/ORF 质粒的酶切鉴定图谱;B为以pOT2和pOTB7为载体的cDNA或ORF,应用本方法所构建 的UAS-cDNA/ORF质粒的酶切鉴定图谱;C为以pLX304-Blast-V5和pCMV-SPORT6为载体 的cDNA或ORF,应用本方法所构建的UAS-cDNA/ORF质粒的酶切鉴定图谱;

  且,图2A:

  M:GeneRuler 1 Kb Plus DNA Ladder

  1.用PvuII切割pFLC-UAS-Duba质粒

  2.用BamHI切割pBS-UAS-CG7747-3Myc #1质粒

  3.用BamHI切割pBS-UAS-CG7747-3Myc #2质粒

  4.用BamHI切割pBS-UAS-CG7747-3Myc #3质粒

  5.用BamHI切割pBS-UAS-CG7747-3Myc #4质粒

  6.用HindIII切割pCR2.1-UAS-CG13296-3Myc #1质粒

  7.用HindIII切割pCR2.1-UAS-CG13296-3Myc #2质粒

  8.用PstI切割pDNR-UAS-Usp20-33-3Myc #1质粒

  9.用PstI切割pDNR-UAS-Usp20-33-3Myc #2质粒

  10.用PstI切割pDNR-UAS-Usp20-33-3Myc #3质粒;

  图2B:

  M:GeneRuler l Kb Plus DNA Ladder

  1.用PstI切割pOT2-UAS-CG4968-3Myc质粒

  2.用PstI切割pOTB7-UAS-Rpn8-3Myc #1质粒

  3.用PvuII切割pOTB7-UAS-Rpn8-3Myc #1质粒

  4.用PstI切割pOTB7-UAS-Rpn8-3Myc #2质粒

  5.用PvuII切割pOTB7-UAS-Rpn8-3Myc #2质粒;

  图2C:

  M:GeneRuler l Kb Plus DNA Ladder

  1.用PvuII切割pLX304-UAS-COPS5-V5质粒

  2.用PvuII切割pLX304-UAS-STAMBP-V5质粒

  3.用PvuII切割pLX304-UAS-USP1-V5质粒

  4.用PvuII切割pLX304-UAS-USP8-V5质粒

  5.用PvuII切割pLX304-UAS-USP32-V5质粒

  6.用PvuII切割pLX304-UAS-USP54-V5质粒

  7.用PvuII切割pSPORT6-UAS-Ctbp2-2Myc质粒;

  图3为应用本方法所构建质粒注射果蝇胚胎得到转基因果蝇,用该果蝇分别与在运 动神经元特异表达OK6-GAL4和在眼睛特异表达GMR-GAL4果蝇进行交配即得到在神经和眼睛中过表达该基因的果蝇;免疫荧光实验和Western blot已证明基因表达;其中,A 和B为用转基因果蝇与OK6-GAL4果蝇交配得到的三龄幼虫进行免疫荧光染色,检测转 基因的表达;C、D和E为用转基因果蝇与GMR-GAL4果蝇交配得到的成体果蝇头部进行 Westernblot,检测转基因的表达;

  图4为应用本方法所构建质粒注射果蝇胚胎得到转基因果蝇,用该果蝇分别与眼睛 特异表达GMR-GAL4,翅膀特异表达A9-GAL4和肌肉特异表达MEF2-GAL4果蝇进行交配,所展示的为在特定组织中过表达具有特殊表型的基因及其表型,表明应用本方法构建质粒用于构建的转基因果蝇具备转基因过表达,可应用于基因筛选;其中,A为用转基因 果蝇与GMR-GAL4果蝇交配得到眼睛退化的成体果蝇的眼睛普通光学显微镜照片;B为用 转基因果蝇与A9-GAL4果蝇交配得到翅膀脉络异常的成体果蝇的翅膀普通光学显微镜照 片;C为用转基因果蝇与MEF2-GAL4果蝇交配得到三龄幼虫的肌肉Phalloidin染色的激 光共聚焦显微镜照片。

  具体实施方式

  下面结合实施例,对本发明做进一步说明。

  实施例1、利用已有果蝇DGRC Gold Collection文库质粒构建UAS-cDNA/ORF质粒

  本实施例涉及一种利用已有果蝇DGRC Gold Collection文库质粒构建 UAS-cDNA/ORF质粒文库的方法,具体包括如下步骤:

  (1)DGRC Gold Collection共有12192个质粒,克隆在7种载体上,这些载体含 有氨芐青霉素或氯霉素抗性基因。在这7种载体中,对于克隆在pOTB7和pOTB7_DraIII 这两种载体上的cDNA质粒,其cDNA的5’端上游载体序列完全相同,因此,这两类质 粒可以按照一种载体进行操作。针对这7种质粒载体cDNA或0RF的5’端上游载体序列, 本发明设计并构建了6种sgRNA体外转录模板,分别用于体外转录切割质粒所需sgRNA; 具体见以下SEQ IDNO.1-158。利用CRISPR/Cas9切割DGRC Gold Collection文库质粒 cDNA或ORF的5’端上游载体序列,使其线性化(见图1),即得到原质粒文库的线性化 质粒。

  针对pOT2载体的sgRNA的靶序列(5’->3’):SEQ ID NO.1-18

  靶序列 #1 ACGACTCACTATAGGGAGAC

  靶序列 #2 AATTAATACGACTCACTATA

  靶序列 #3 CATTAGGCGGGTTAAATTCC

  靶序列 #4 GGCGATGATATCAGATCTGC

  靶序列 #5 ATGAATCGGCTGCAGTACCC

  靶序列 #6 AATGAATCGGCTGCAGTACC

  靶序列 #7 AAAAAGCCCGCTCATTAGGC

  靶序列 #8 CGTATTAATTTCGATAAGCC

  靶序列 #9 GTTAACCTGCATTAATGAAT

  靶序列 #10 TTCATTAATGCAGGTTAACC

  靶序列 #11 ATTAGGCGGGTTAAATTCCC

  靶序列 #12 AAATTAATACGACTCACTAT

  靶序列 #13 TGCAGCCGATTCATTAATGC

  靶序列 #14 ATTTAACCCGCCTAATGAGC

  靶序列 #15 AATTTAACCCGCCTAATGAG

  靶序列 #16 CAAAAAAAAGCCCGCTCATT

  靶序列 #17 AAAAAAGCCCGCTCATTAGG

  靶序列 #18 TGATATCATCGCCACTGTGC

  针对pOTB7和pOTB7_DraIII载体的sgRNA的靶序列(5’->3’):SEQ ID NO.19-32

  靶序列 #1 GGTCCTAAGGTAGCGAGGCC

  靶序列 #2 GTCCTAAGGTAGCGAGGCCT

  靶序列 #3 CACCCAGGCCTCGCTACCTT

  靶序列 #4 ATAACGGTCCTAAGGTAGCG

  靶序列 #5 CAGTAACTATAACGGTCCTA

  靶序列 #6 CTTAGGACCGTTATAGTTAC

  靶序列 #7 CTAAGGTAGCGAGGCCTGGG

  靶序列 #8 AAAGCAGGCTTGTAAAACGA

  靶序列 #9 ACGACGGCCAGTAACTATAA

  靶序列 #10 ACAAGTTTGTACAAAAAAGC

  靶序列 #11 GGTACGTCGACGTTAGAACG

  靶序列 #12 TCGTATGTGTATGATACATA

  靶序列 #13 GTATCATACACATACGATTT

  靶序列 #14 GGTGACACTATAGAACTCGA

  针对pBS SK-载体的sgRNA的靶序列(5’->3’):SEQ ID NO.33-57

  靶序列 #1 AGCTTTTGTTCCCTTTAGTG

  靶序列 #2 AGCATAAAGTGTAAAGCCTG

  靶序列 #3 TTTCGAGCTTGGCGTAATCA

  靶序列 #4 GCTTTTGTTCCCTTTAGTGA

  靶序列 #5 AAGCTGGAGCTCCACCGCGG

  靶序列 #6 CTTCCGGCTCGTATGTTGTG

  靶序列 #7 AAGCATAAAGTGTAAAGCCT

  靶序列 #8 GAAGCATAAAGTGTAAAGCC

  靶序列 #9 GGCTTTACACTTTATGCTTC

  靶序列 #10 CGAAATTAACCCTCACTAAA

  靶序列 #11 AGCGGATAACAATTTCACAC

  靶序列 #12 TCGAAATTAACCCTCACTAA

  靶序列 #13 ATGTTGTGTGGAATTGTGAG

  靶序列 #14 GTGAGGGTTAATTTCGAGCT

  靶序列 #15 TCACTAAAGGGAACAAAAGC

  靶序列 #16 GGCGGCCGCTCTAGAACTAG

  靶序列 #17 CAAAAGCTGGAGCTCCACCG

  靶序列 #18 TTCTAGAGCGGCCGCCACCG

  靶序列 #19 TAGAGCGGCCGCCACCGCGG

  靶序列 #20 CTAGAACTAGTGGATCCCCC

  靶序列 #21 ATTCCACACAACATACGAGC

  靶序列 #22 GGGATCCACTAGTTCTAGAG

  靶序列 #23 TCTAGAACTAGTGGATCCCC

  靶序列 #24 TAGTGGATCCCCCGGGCTGC

  靶序列 #25 CTGGAGCTCCACCGCGGTGG

  针对pFlc-1载体的sgRNA的靶序列(5’->3’):SEQ ID NO.58-66

  靶序列 #1 ATTATACGAAGTTATGGATC

  靶序列 #2 AAGTTATGCGGCCGCCACCG

  靶序列 #3 GCATACATTATACGAAGTTA

  靶序列 #4 GAATTCGAGCTCGGCCGATT

  靶序列 #5 AGTTATGGATCAGGCCAAAT

  靶序列 #6 GTATGCTATACGAAGTTATG

  靶序列 #7 TTGGAGCTCCACCGCGGTGG

  靶序列 #8 GAATTGGAGCTCCACCGCGG

  靶序列 #9 TTATGCGGCCGCCACCGCGG

  针对所插入ORF方向为正向的pCR2.1载体的sgRNA的靶序列(5’->3’):SEQ IDNO.67-96

  靶序列 #1 GGCTTTACACTTTATGCTTC

  靶序列 #2 CTTCCGGCTCGTATGTTGTG

  靶序列 #3 GAAGCATAAAGTGTAAAGCC

  靶序列 #4 AAGCATAAAGTGTAAAGCCT

  靶序列 #5 GCTCACTCATTAGGCACCCC

  靶序列 #6 AGCATAAAGTGTAAAGCCTG

  靶序列 #7 ATTCCACACAACATACGAGC

  靶序列 #8 GACCATGATTACGCCAAGCT

  靶序列 #9 GAGCTCGGATCCACTAGTAA

  靶序列 #10 ACACTGGCGGCCGTTACTAG

  靶序列 #11 TCCGAGCTCGGTACCAAGCT

  靶序列 #12 GCCAAGCTTGGTACCGAGCT

  靶序列 #13 TACCAAGCTTGGCGTAATCA

  靶序列 #14 GGAGAGGCGGTTTGCGTATT

  靶序列 #15 TGTGAGTTAGCTCACTCATT

  靶序列 #16 TAATGAATCGGCCAACGCGC

  靶序列 #17 AATGAATCGGCCAACGCGCG

  靶序列 #18 ATCGGCCAACGCGCGGGGAG

  靶序列 #19 AACCGCCTCTCCCCGCGCGT

  靶序列 #20 GGCCGATTCATTAATGCAGC

  靶序列 #21 TTAATGAATCGGCCAACGCG

  靶序列 #22 TCACTGCCCGCTTTCCAGTC

  靶序列 #23 CAGGTTTCCCGACTGGAAAG

  靶序列 #24 GGCACGACAGGTTTCCCGAC

  靶序列 #25 GGCCAACGCGCGGGGAGAGG

  靶序列 #26 GGGAGAGGCGGTTTGCGTAT

  靶序列 #27 CTCACTGCCCGCTTTCCAGT

  靶序列 #28 AGGTTTCCCGACTGGAAAGC

  靶序列 #29 AGCGGATAACAATTTCACAC

  靶序列 #30 ATGTTGTGTGGAATTGTGAG

  针对所插入ORF方向为反向的pCR2.1载体的sgRNA的靶序列(5’->3’):SEQ IDNO.97-137

  靶序列 #1 CGAATGGACGCGCCCTGTAG

  靶序列 #2 CGAAAGGGGGATGTGCTGCA

  靶序列 #3 GTGCTGCAAGGCGATTAAGT

  靶序列 #4 TGCTGCAAGGCGATTAAGTT

  靶序列 #5 CATTCAGGCTGCGCAACTGT

  靶序列 #6 AGGCTGCGCAACTGTTGGGA

  靶序列 #7 CTCTTCGCTATTACGCCAGC

  靶序列 #8 GCAGATATCCATCACACTGG

  靶序列 #9 ATTAAGCGCGGCGGGTGTGG

  靶序列 #10 CGATTAAGTTGGGTAACGCC

  靶序列 #11 GATTAAGTTGGGTAACGCCA

  靶序列 #12 GACTCACTATAGGGCGAATT

  靶序列 #13 CGCTCGAGCATGCATCTAGA

  靶序列 #14 CCGCTCGAGCATGCATCTAG

  靶序列 #15 TCGAGCGGCCGCCAGTGTGA

  靶序列 #16 CGACTCACTATAGGGCGAAT

  靶序列 #17 TTGTAATACGACTCACTATA

  靶序列 #18 GTCACGACGTTGTAAAACGA

  靶序列 #19 ATTGTAATACGACTCACTAT

  靶序列 #20 CAACAGTTGCGCAGCCTGAA

  靶序列 #21 GGCTGCGCAACTGTTGGGAA

  靶序列 #22 CGCGCTTAATGCGCCGCTAC

  靶序列 #23 CAACTGTTGGGAAGGGCGAT

  靶序列 #24 GCGCTTAATGCGCCGCTACA

  靶序列 #25 CGCATTAAGCGCGGCGGGTG

  靶序列 #26 CTGTAGCGGCGCATTAAGCG

  靶序列 #27 CAGCTGGCGTAATAGCGAAG

  靶序列 #28 AGCGGCGCATTAAGCGCGGC

  靶序列 #29 TTGGGAAGGGCGATCGGTGC

  靶序列 #30 TGCGCAGCCTGAATGGCGAA

  靶序列 #31 ATTCAGGCTGCGCAACTGTT

  靶序列 #32 GTTGGGAAGGGCGATCGGTG

  靶序列 #33 TAGCGGCGCATTAAGCGCGG

  靶序列 #34 CACATCCCCCTTTCGCCAGC

  靶序列 #35 TATTACGCCAGCTGGCGAAA

  靶序列 #36 TGAGTCGTATTACAATTCAC

  靶序列 #37 CGTCGTGACTGGGAAAACCC

  靶序列 #38 TTACGCCAGCTGGCGAAAGG

  靶序列 #39 ATTACGCCAGCTGGCGAAAG

  靶序列 #40 GGCGCGTCCATTCGCCATTC

  靶序列 #41 CTATTACGCCAGCTGGCGAA

  针对pDNR-Dual载体的sgRNA的靶序列(5’->3’):SEQ ID NO.138-175

  靶序列 #1 ATGGAAAAACGCCAGCAACG

  靶序列 #2 ACTCGCTGCGCTCGGTCGTT

  靶序列 #3 CGTCAGGGGGGCGGAGCCTA

  靶序列 #4 GCTCACTGACTCGCTGCGCT

  靶序列 #5 AAAATCGACGCTCAAGTCAG

  靶序列 #6 CAAAAGGCCAGCAAAAGGCC

  靶序列 #7 TGCGCTCGGTCGTTCGGCTG

  靶序列 #8 TCTGTAATACGACTCACTAT

  靶序列 #9 GCCTTACGCGTGTAAAACGA

  靶序列 #10 TGCGTTATCCCCTGATTCTG

  靶序列 #11 ACAGAATCAGGGGATAACGC

  靶序列 #12 CTGTAATACGACTCACTATA

  靶序列 #13 ACACGCGTAAGGCGGTAATA

  靶序列 #14 GCGCAGCGAGTCAGTGAGCG

  靶序列 #15 GCGCACGAGGGAGCTTCCAG

  靶序列 #16 AGCGCACGAGGGAGCTTCCA

  靶序列 #17 GAGCGCACGAGGGAGCTTCC

  靶序列 #18 CGGAACAGGAGAGCGCACGA

  靶序列 #19 CAGAGGTGGCGAAACCCGAC

  靶序列 #20 AGCTTCCAGGGGGAAACGCC

  靶序列 #21 GGTATCTTTATAGTCCTGTC

  靶序列 #22 TGGTATCTTTATAGTCCTGT

  靶序列 #23 GACAGGACTATAAAGATACC

  靶序列 #24 AGATACCAGGCGTTTCCCCC

  靶序列 #25 TCGGAACAGGAGAGCGCACG

  靶序列 #26 GTATGCTATACGAAGTTATG

  靶序列 #27 GAGTCGTATTACAGATCTAC

  靶序列 #28 AAAGGCCAGGAACCGTAAAA

  靶序列 #29 GTAAGCGGCAGGGTCGGAAC

  靶序列 #30 CGCACGAGGGAGCTTCCAGG

  靶序列 #31 ACGGTTATCCACAGAATCAG

  靶序列 #32 TACGGTTATCCACAGAATCA

  靶序列 #33 CGAGTCAGTGAGCGAGGAAG

  靶序列 #34 ATCGACGCTCAAGTCAGAGG

  靶序列 #35 GTGAGCAAAAGGCCAGCAAA

  靶序列 #36 TGTGATGCTCGTCAGGGGGG

  靶序列 #37 ATACGGTTATCCACAGAATC

  靶序列 #38 GGAAAGAACATGTGAGCAAA

  (2)设计并构建模块化插入序列质粒。该模块化插入序列包含酵母UAS序列、果 蝇Hsp70核心启动子序列、转基因果蝇筛选标记基因(mini-white)、用于把转基因定 点插入到果蝇基因组特定attP位点的定点整合序列attB、与原cDNA或ORF质粒所不同 种类的抗生素抗性基因序列。该模块化插入序列两端,与根据步骤(1)所设计的靶序 列得到的sgRNA与Cas9切割文库原质粒所得线性化质粒末端序列重叠28-40bp(见图 1)。将模块化插入序列从所述模块化插入序列质粒上切下,电泳分离后,回收模块化插 入序列片段。

  本发明的模块化插入序列包含

  A、类酵母UAS序列:UAS,LexAop,QUAS,VAS

  关于UAS序列的文献:Brand AH,Perrimon N.Targeted gene expression as ameans of altering cell fates and generating dominantphenotypes.Development.1993 Jun;118(2):401-15.

  关于LexAop序列的文献:Lai SL,Lee T.Genetic mosaic with dual binarytranscriptional systems in Drosophila.Nature Neuroscience.2006 May; 9(5):703-9.

  关于QUAS序列的文献:Potter CJ,Tasic B,Russler EV,Liang L,Luo L.The Qsystem:a repressible binary system for transgene expression,lineage tracing,and mosaic analysis.Cell.2010Apr;141(3):536-48.

  关于VAS序列的文献:Toegel M,Azzam G,Lee EY,Knapp DJHF,Tan Y,Fa M,FulgaTA.A multiplexable TALE-based binary expression system for in vivo cellularinteraction studies.Nature Communications.2017Nov;8(1):1663.

  B、果蝇核心启动子序列:hsp70,DSCP

  关于hsp70核心启动子(hsp70 core promoter,hsp70 minimal promoter,hsp70TATA box)序列的文献:Brand AH,PerrimonN.Targeted gene expression as a means ofaltering cell fates and generating dominant phenotypes.Development.1993 Jun;118(2):401-15.

  关于DSCP(合成的果蝇核心启动子,Drosophila synthetic core promoter)序列的文献:Pfeiffer BD,Jenett A,Hammonds AS,Ngo TT,Misra S,Murphy C,Scully A,Carlson JW,Wan KH,Laverty TR,Mungall C,Svirskas R,KadonagaJT,Doe CQ, EisenMB,Celniker SE,Rubin GM.Tools for neuroanatomy and neurogenetics inDrosophila.Proc Natl AcadSci U S A.2008Jul;105(28):9715-20.

  C、转基因果蝇筛选标记基因:mini-white,vermilion

  关于mini-white序列的文献:Brand AH,Perrimon N.Targeted gene expressionas a means of altering cell fates and generating dominantphenotypes.Development. 1993 Jun;118(2):401-15.

  关于vermilion序列的文献:Ni JQ,Markstein M,Binari R,Pfeiffer B,Liu LP,Villalta C,Booker M,Perkins L,Perrimon N.Vector and parameters for targetedtransgenic RNA interference in Drosophila melanogaster.Nat Methods.2008Jan; 5(1):49-51.

  D、用于把转基因定点插入到果蝇基因组特定位点的定点整合序列:attB

  关于attB序列的文献:Groth AC,Fish M,Nusse R,Calos MP.Construction oftransgenic Drosophila by using the site-specific integrase from phagephiC31.Genetics.2004Apr;166(4):1775-82.

  E、与原cDNA或ORF质粒所不同的抗生素抗性基因序列:

  氨苄青霉素抗性基因(ampicillin resistance gene)GenBank AccessionNumber: KC844055

  氯霉素抗性基因(chloramphenicol resistance gene)GenBank AccessionNumber: NC_005923 REGION:complement(2136..2795)

  卡那霉素抗性基因(kanamycin resistance gene)GenBank Accession Number:NC_022333 REGION:complement(92991..93785)

  壮观霉素抗性基因(spectinomycinresistance gene)GenBank AccessionNumber: NC_014476

  四环素抗性基因(tetracycline resistance gene,TcR)编码区核苷酸序列:

  参见Addgene质粒pHD7,网址http://www.addgene.org/browse/sequence/14254

  庆大霉素抗性基因(gentamycin resistance gene)GenBank Accession Number:KY977452

  博莱霉素抗性基因(bleomycin resistance gene)GenBank Accession Number:L36850 REGION:5896..6270

  链霉素抗性基因(streptomycin resistance gene,SmR)编码区核苷酸序列:

  参见Addgene质粒pAN4037,网址htrp://www.addgene.org/74703/

  潮霉素抗性基因(hygromycin resistance gene)编码区核苷酸序列:

  参见Addgene质粒pNAHA,网址http://www.addgene.org/44169/

  (3)根据步骤(1)确定的靶序列设计PCR引物,然后通过PCR反应制备可用于体 外转录sgRNA的模板。体外转录反应体系如下:

  0.5ng PCR反应模板:pX330(购自Addgene,plasmid 42230)

  0.5μM正向引物*

  0.5μM反向引物(5’->3’)AAAAGCACCGACTCGGTGCCACTT SEQ ID NO.264

  50μL 2X Q5Hot-start High-Fidelity Master Mix(NEB,M0494s)

  加双蒸水至总体积100μL

  正向引物(PAGE纯化)的序列(5’->3’): TAATACGACTCACTATAGG(N)20GTTTTAGAGCTAGAAATAG SEQ ID NO.265,其中(N)20代表含有 20个核苷酸的靶序列,如果靶序列起始是GG,则去掉(N)20前面的GG;如果靶序列是GN, 则去掉(N)20前面的一个G;如果靶序列起始是NN,则不需要去掉GG。

  PCR反应程序:

  

  PCR产物用琼脂糖凝胶电泳分离,再用QIAquick Gel Extraction Kit(购自Qiagen, 货号28704)进行回收。回收的DNA片段可用于体外转录制备sgRNA。

  (4)用步骤(3)制备的DNA片段作为模板,进行体外转录制备sgRNA。

  体外转录试剂盒HiScribe T7 Quick High Yield RNA Synthesis Kit购自NewEngland Biolabs(货号E2050S)。体外转录反应体系如下:

  330 ng sgRNA模板

  3.3 μL NTP Buffer Mix

  0.67 μL T7RNA Polymerae Mix

  加DEPC处理过的双蒸水至总体积10μL

  37℃4小时

  (5)利用Cas9和步骤(4)制备的相应质粒sgRNA来切割果蝇DGRC Gold Collection文库质粒。

  切割反应体系如下:

  20ng与切割质粒对应的sgRNA

  0.4 μL Cas9(购自GenScript,货号Z03386-50)

  0.015 pmol质粒

  0.6 μL 10X Cas9 Buffer

  补加DEPC处理过的双蒸水至反应总体积6μL。

  切割反应在37℃进行1小时。

  (6)用Gibson assembly方法将骤(2)制备的含有UAS等元件的模块插入被Cas9 切开的果蝇DGRC Gold Collection文库质粒中cDNA或ORF的5’端上游载体序列。

  Gibson assembly反应体系如下:

  0.2μL含有UAS等元件的模块(22.5ng/μL)

  2μL第3步中被Cas9切开的果蝇DGRC Gold Collection文库质粒

  2μLHiFi DNA Assembly Master Mix(购自New England Biolabs,货号E2621X)

  反应总体积为4.2μL,反应在50℃进行1小时。

  (7)取步骤(6)反应产物1μL,转化10μL感受态大肠杆菌(购自北京全式金生 物技术有限公司,货号CD101-01)。转化产物涂在含有氨苄青霉素和氯霉素的LB平板上, 37℃培养过夜。挑取任意一个克隆鉴定。应用本方法所获UAS-cDNA/ORF克隆阳性率接 近100%。代表性鉴定结果(见图2A和图2B)。

  (8)本方法所构建的质粒可用于胚胎注射,进而构建UAS-cDNA/ORF转基因果蝇。

  用果蝇DGRC Gold Collection文库质粒中六种载体,每种载体选取一个代表性基因,运用本发明方法构建相应的UAS-cDNA/ORF质粒,进而制备转基因果蝇。用这些转 基因果蝇分别与OK6-GAL4和GMR-GAL4果蝇进行交配,即分别得到在三龄幼虫运动神经 元表达该基因的三龄幼虫和在成体果蝇眼睛中过表达该基因的成体果蝇,免疫荧光(见 图3A第2-7行)和Western blot(见图3C)实验已证明基因表达。利用本发明针对果 蝇DGRC GoldCollection文库中31个去泛素化酶基因质粒和CG13296基因质粒构建了 相应的32个UAS-cDNA/ORF质粒,并用这些质粒注射果蝇胚胎得到了32个UAS-cDNA/ORF 转基因果蝇品系。利用本实施例中32个转基因果蝇品系,与常用的在果蝇眼睛中特异 过表达基因的GMR-GAL4品系进行交配,得到在眼睛中特异过表达相应基因的果蝇,其 中三个基因过表达导致了眼睛退化(见图4A),表明Usp10、CG4751和DUBAI在果蝇眼 睛发育中起重要作用。利用本实施例中32个转基因果蝇品系,与常用的在果蝇翅膀中 特异过表达基因的A9-GAL4品系进行交配,得到在翅膀中特异过表达相应基因的果蝇, 其中三个基因过表达导致了翅膀脉络形态异常,两个基因过表达导致果蝇死亡(见图4B), 表明USP15-31、not、USP16-45、DUBAI和USP30在果蝇翅膀发育中起重要的作用。利 用本实施例中32个转基因果蝇品系,与常用的在果蝇三龄幼虫肌肉中特异过表达基因 的MEF2-GAL4品系进行交配,得到在三龄幼虫肌肉中特异过表达相应基因的果蝇幼虫, 其中三个基因过表达导致了肌肉形态异常,一个基因过表达导致果蝇死亡(见图4C), 表明CG4711、USP14、Uch、USP15-31、USP30、Rpn11、Usp5、CYLD和DUBAI在果蝇肌 肉发育中起重要作用。

  实施例2、利用已有人OHS6087CCSB Lentiviral Expression Library文库质粒构建UAS-ORF转基因果蝇文库质粒

  本实施例涉及利用已有人OHS6087 CCSB Lentiviral Expression Library文库质 粒构建UAS-ORF转基因果蝇文库质粒的方法,具体包括如下步骤:

  (1)人OHS6087 CCSB Lentiviral Expression Library共有大约16000个质粒,克隆在pLX304-Blast-V5载体上。本应用针对这种质粒ORF的5’上游载体2个特定适 宜公共位点A和B,针对这两个切点分别设计并构建了2种sgRNA转录模板,分别用于 转录切割质粒所需sgRNA。利用Cas9及这两种sgRNA切割人OHS6087 CCSB Lentiviral ExpressionLibrary质粒,该操作的目的是使质粒变小,并弃去原质粒上对构建 UAS-cDNA/ORF质粒不必须的CMV 启动子等序列,并使其线性化。

  针对pLX304-Blast-V5载体切点A,可供选择的sgRNA的靶序列(5’->3’):SEQ IDNO.176-183

  靶序列 #1 GAGCTCTCTGGCTAACTGTC

  靶序列 #2 AAATGGGCGGTAGGCGTGTA

  靶序列 #3 GGGCGGTAGGCGTGTACGGT

  靶序列 #4 TGGGCGGTAGGCGTGTACGG

  靶序列 #5 AGAGCTCTCTGGCTAACTGT

  靶序列 #6 CGGTAGGCGTGTACGGTGGG

  靶序列 #7 TCTATATAAGCAGAGCTCTC

  靶序列 #8 ACAAGTTTGTACAAAAAAGT

  针对pLX304-Blast-V5载体切点B,可供选择的sgRNA的靶序列(5’->3’):SEQ IDNO.184-219

  靶序列 #1 GGAGAGGCGGTTTGCGTATT

  靶序列 #2 AACCGCCTCTCCCCGCGCGT

  靶序列 #3 GCGCAGCGAGTCAGTGAGCG

  靶序列 #4 GCTCACTGACTCGCTGCGCT

  靶序列 #5 GGCACGACAGGTTTCCCGAC

  靶序列 #6 ATCGGCCAACGCGCGGGGAG

  靶序列 #7 AATGAATCGGCCAACGCGCG

  靶序列 #8 CAGGTTTCCCGACTGGAAAG

  靶序列 #9 GGCCGATTCATTAATGCAGC

  靶序列 #10 TTAATGAATCGGCCAACGCG

  靶序列 #11 TAATGAATCGGCCAACGCGC

  靶序列 #12 TGCGCTCGGTCGTTCGGCTG

  靶序列 #13 ACTCGCTGCGCTCGGTCGTT

  靶序列 #14 GCTCACTCATTAGGCACCCC

  靶序列 #15 TGTGAGTTAGCTCACTCATT

  靶序列 #16 TCACTGCCCGCTTTCCAGTC

  靶序列 #17 TGCGTTATCCCCTGATTCTG

  靶序列 #18 CTCACTCAAAGGCGGTAATA

  靶序列 #19 AGCGGTATCAGCTCACTCAA

  靶序列 #20 CAAAAGGCCAGCAAAAGGCC

  靶序列 #21 ACAGAATCAGGGGATAACGC

  靶序列 #22 AGGTTTCCCGACTGGAAAGC

  靶序列 #23 TACGGTTATCCACAGAATCA

  靶序列 #24 AAAGGCCAGGAACCGTAAAA

  靶序列 #25 GGTATCAGCTCACTCAAAGG

  靶序列 #26 CTCACTGCCCGCTTTCCAGT

  靶序列 #27 GGGAGAGGCGGTTTGCGTAT

  靶序列 #28 GGCCAACGCGCGGGGAGAGG

  靶序列 #29 ACGGTTATCCACAGAATCAG

  靶序列 #30 CGAGTCAGTGAGCGAGGAAG

  靶序列 #31 ATACGGTTATCCACAGAATC

  靶序列 #32 TGCCAGCTGCATTAATGAAT

  靶序列 #33 GTGAGCAAAAGGCCAGCAAA

  靶序列 #34 ATTAATGCAGCTGGCACGAC

  靶序列 #35 GGTCGTTCGGCTGCGGCGAG

  靶序列 #36 GGAAAGAACATGTGAGCAAA

  (2)设计并构建模块化插入序列质粒。该模块化插入序列包含酵母UAS序列、果蝇Hsp70核心启动子序列、转基因果蝇筛选标记基因(mini-white)、用于把转基因定点插 入到果蝇基因组特定位点的定点整合序列、原cDNA或ORF质粒所不含的氯霉素抗性基 因序列,该模块化插入序列两端,与根据步骤(1)所设计的靶序列得到的sgRNA与Cas9 切割文库原质粒所得线性化质粒末端序列重叠35-40bp(见图1)。将模块化插入序列从 质粒上切下,电泳分离后,回收模块化插入序列片段。详见实例1步骤2。

  (3)根据步骤(1)确定的靶序列设计PCR引物,然后通过PCR反应制备可用于体 外转录sgRNA的模板。详见实例1步骤3。

  (4)用步骤(3)制备的DNA片段作为模板,进行体外转录制备sgRNA。详见实例1 步骤4。

  (5)利用Cas9和步骤(4)制备的相应质粒sgRNA来切割人OHS6087 CCSBLentiviral Expression Library文库质粒。切割反应体系如下:

  20 ng与质粒pLX304-Blast-V5载体切点A对应的sgRNA

  20 ng与质粒pLX304-Blast-V5载体切点B对应的sgRNA

  0.4 μL Cas9(购自GenScript,货号Z03386-50)

  0.015 pmol质粒

  0.6 μL 10X Cas9 Buffer

  补加DEPC处理过的双蒸水至反应总体积6μL。

  切割反应在37℃进行1小时。

  (6)用Gibson assembly方法将骤(2)制备的含有UAS等元件的模块插入被Cas9 切开的人OHS6087 CCSB Lentiviral Expression Library文库质粒中cDNA或ORF的5’ 端上游载体序列。详见实例1步骤6。

  (7)取步骤(6)反应产物1 μL,转化10 μL感受态大肠杆菌(购自北京全式金 生物技术有限公司,货号CD101-01)。转化产物涂在含有氨苄青霉素和氯霉素的LB平板 上,37℃培养过夜。挑取任意一个克隆鉴定。应用本方法所获UAS-cDNA/ORF克隆阳性 率接近100%。代表性鉴定结果(见图2C样品1-6)。

  (8)本方法所构建的质粒可用于果蝇胚胎注射,进而构建人源基因UAS-ORF转基因果蝇。

  从人OHS6087 CCSB Lentiviral Expression Library文库质粒中,选取一个USP8基因,运用本发明方法构建相应的UAS-ORF质粒,进而制备转基因果蝇。用这个转基因 果蝇品系分别与OK6-GAL4和GMR-GAL4果蝇进行交配,即分别得到在三龄幼虫运动神经 元表达该基因的三龄幼虫和在成体果蝇眼睛中过表达该基因的成体果蝇,免疫荧光(见 图3B)和Western blot(见图3D)实验已证明基因表达。利用本发明针对人OHS6087 CCSBLentiviral Expression Library文库中6个去泛素化酶基因质粒构建了相应的6个 UAS-ORF质粒,并用这些质粒注射果蝇胚胎得到了6个UAS-ORF转基因果蝇品系。利用 本实施例中6个转基因果蝇品系,与常用的在果蝇眼睛中特异过表达基因的GMR-GAL4 品系进行交配,得到在眼睛中特异过表达相应基因的果蝇,这些果蝇眼睛外在形态未见 明显异常,本实验可用来探讨这些基因在果蝇眼睛发育中的作用。利用本实施例中6个 转基因果蝇品系,与常用的在果蝇翅膀中特异过表达基因的A9-GAL4品系进行交配,得 到在翅膀中特异过表达相应基因的果蝇,其中USP54基因过表达导致了翅膀脉络形态异 常(见图4B),表明USP54在果蝇翅膀发育中起重要的作用。利用本实施例中6个转基 因果蝇品系,与常用的在果蝇三龄幼虫肌肉中特异过表达基因的MEF2-GAL4品系进行交 配,得到在三龄幼虫肌肉中特异过表达相应基因的果蝇幼虫,这些幼虫肌肉形态未见明 显异常,本实验可用来探讨这些基因在果蝇肌肉发育中的作用。

  实施例3、利用已有小鼠Mouse MGC Collection文库质粒构建UAS-cDNA/ORF转基因果蝇文库质粒

  本实施例涉及利用已有小鼠Mouse MGC Collection文库质粒构建UAS-cDNA/ORF转 基因果蝇文库质粒的方法,包括如下步骤:

  (1)Mouse MGC Collection共大约20000个cDNA或ORF质粒,克隆在9种载体质 粒上。本发明挑选了其中1种基于pCMV-SPORT6载体的含有氨苄青霉素抗性基因的质粒, 针对这种质粒ORF的5’上游载体2个特定适宜公共位点A和B,针对这两个切点分别 设计并构建了2种sgRNA转录模板,分别用于转录切割质粒所需sgRNA。利用CRISPR/Cas9 和sgRNA切割pCMV-SPORT6载体中cDNA或ORF上游邻近的载体序列,使其线性化。

  针对pCMV-SPORT6载体切点A,可供选择的sgRNA的靶序列(5’->3’):SEQ IDNO.220-246

  靶序列 #1 CGGACTCTAGCCTAGGCCGC

  靶序列 #2 CCGGACTCTAGCCTAGGCCG

  靶序列 #3 CGGCCTAGGCTAGAGTCCGG

  靶序列 #4 TAGTGAACCGTCAGATCGCC

  靶序列 #5 CTCTAGCCTAGGCCGCGGGA

  靶序列 #6 TGTTATCCGTCCCGCGGCCT

  靶序列 #7 TGTCACCTAAATAGGCCTAA

  靶序列 #8 TATGACCATTAGGCCTATTT

  靶序列 #9 AGGAAACAGCTATGACCATT

  靶序列 #10 TGAAATTGTTATCCGTCCCG

  靶序列 #11 CTAGAGTCCGGAGGCTGGAT

  靶序列 #12 CAGCCTCCGGACTCTAGCCT

  靶序列 #13 TTGACCTCCATAGAAGACAC

  靶序列 #14 ACAGCGTGGATGGCGTCTCC

  靶序列 #15 GGCGTCTCCAGGCGATCTGA

  靶序列 #16 ATCGGTCCCGGTGTCTTCTA

  靶序列 #17 TCCGGAGGCTGGATCGGTCC

  靶序列 #18 ACCGGGACCGATCCAGCCTC

  靶序列 #19 GGAGGTCAAAACAGCGTGGA

  靶序列#20 TTCTATAGTGTCACCTAAAT

  靶序列 #21 CTATGGAGGTCAAAACAGCG

  靶序列 #22 GACGGATAACAATTTCACAC

  靶序列 #23 TGACCTCCATAGAAGACACC

  靶序列 #24 CTAGGCTAGAGTCCGGAGGC

  靶序列 #25 GTTTGTACAAAAAAGCAGGC

  靶序列 #26 GGTCCCGGTGTCTTCTATGG

  靶序列 #27 ACAAGTTTGTACAAAAAAGC

  针对pCMV-SPORT6载体切点B,可供选择的sgRNA的靶序列(5’->3’):SEQ IDNO.247-263

  靶序列 #1 ACTCGCTGCGCTCGGTCGTT

  靶序列 #2 TGCGCTCGGTCGTTCGGCTG

  靶序列 #3 GCTCACTGACTCGCTGCGCT

  靶序列 #4 GCGCAGCGAGTCAGTGAGCG

  靶序列 #5 GGAGAGGCGGTTTGCGTATT

  靶序列 #6 CTCACTCAAAGGCGGTAATA

  靶序列 #7 AGCGGTATCAGCTCACTCAA

  靶序列 #8 TGCGTTATCCCCTGATTCTG

  靶序列 #9 ACAGAATCAGGGGATAACGC

  靶序列 #10 GGGAGAGGCGGTTTGCGTAT

  靶序列 #11 ACGGTTATCCACAGAATCAG

  靶序列 #12 TACGGTTATCCACAGAATCA

  靶序列 #13 GGTATCAGCTCACTCAAAGG

  靶序列 #14 CGAGTCAGTGAGCGAGGAAG

  靶序列 #15 ATACGGTTATCCACAGAATC

  靶序列 #16 GGAAAGAACATGTGAGCAAA

  靶序列 #17 GGTCGTTCGGCTGCGGCGAG

  (2)设计并构建模块化插入序列质粒。该模块化插入序列包含酵母UAS序列、果蝇Hsp70核心启动子序列、转基因果蝇筛选标记基因(mini-white)、用于把转基因定点插 入到果蝇基因组特定位点的定点整合序列、原cDNA或ORF质粒所不含的氯霉素抗性基 因序列,该模块化插入序列两端,与步骤(1)所得线性化质粒末端序列重叠40bp(见 图1)。将模块化插入序列从质粒上切下,电泳分离后,回收模块化插入序列片段。详见 实例1步骤2。

  (3)根据步骤(1)确定的靶序列设计PCR引物,然后通过PCR反应制备可用于体 外转录sgRNA的模板。详见实例1步骤3。

  (4)用步骤(3)制备的DNA片段作为模板,进行体外转录制备sgRNA。详见实例1 步骤4。

  (5)利用Cas9和步骤(4)制备的相应质粒sgRNA来切割小鼠Mouse MGC Collection文库质粒。详见实例2步骤5。

  (6)用Gibson assembly方法将骤(2)制备的含有UAS等元件的模块插入被Cas9 切开的Mouse MGC Collection文库质粒中cDNA或ORF的5’端上游载体序列。详见实 例1步骤6。

  (7)取步骤(6)反应产物1 μL,转化10 μL感受态大肠杆菌(购自北京全式金 生物技术有限公司,货号CD101-01)。转化产物涂在含有氨芐青霉素和氯霉素的LB平板 上,37℃培养过夜。挑取任意一个克隆鉴定。应用本方法所获UAS-cDNA/ORF克隆阳性 率接近100%。鉴定结果见图2C样品7。

  (8)本方法所构建的质粒可用于果蝇胚胎注射,进而构建鼠源基因UAS-cDNA/ORF转基因果蝇。

  应用本方法,已成功构建去泛素化酶Ctbp2的UAS-cDNA/ORF转基因果蝇,免疫荧光(见图3A最后一行)和Western blot(见图3E)实验已证明基因表达。

  (9)本方法所构建的质粒可用于果蝇胚胎注射,进而构建鼠源基因UAS-cDNA/ORF转基因果蝇。

  从Mouse MGC Collection文库质粒中,选取一个Ctbp2基因,运用本发明方法构建相应的UAS-cDNA/ORF质粒,进而制备转基因果蝇。用这个转基因果蝇品系分别与 OK6-GAL4和GMR-GAL4果蝇进行交配,即分别得到在三龄幼虫运动神经元表达该基因的 三龄幼虫和在成体果蝇眼睛中过表达该基因的成体果蝇,免疫荧光((见图3A最后一行) 和Western blot(见图3E)实验已证明基因表达。利用本发明针对Mouse MGC Collection 文库1个去泛素化酶基因质粒构建了相应的1个UAS-ORF质粒,并用这些质粒注射果蝇 胚胎得到了1个UAS-ORF转基因果蝇品系。利用本实施例中1个转基因果蝇品系,与常 用的在果蝇眼睛中特异过表达基因的GMR-GAL4品系进行交配,得到在眼睛中特异过表 达相应基因的果蝇,这些果蝇眼睛外在形态未见明显异常,本实验可用来探讨这些基因 在果蝇眼睛发育中的作用。利用本实施例中1个转基因果蝇品系,与常用的在果蝇翅膀 中特异过表达基因的A9-GAL4品系进行交配,得到在翅膀中特异过表达相应基因的果蝇, 其中Ctbp2基因过表达导致了翅膀脉络形态异常(见图4B),表明Ctbp2在果蝇翅膀发 育中起重要的作用。利用本实施例中1个转基因果蝇品系,与常用的在果蝇三龄幼虫肌 肉中特异过表达基因的MEF2-GAL4品系进行交配,得到在三龄幼虫肌肉中特异过表达相 应基因的果蝇幼虫,这些幼虫肌肉形态未见明显异常,本实验可用来探讨这些基因在果 蝇肌肉发育中的作用。

  进一步的,为了彰显本发明方法在构建基因组规模质粒文库方面的优势,我们以利 用已有果蝇DGRC Gold Collection文库质粒构建UAS-cDNA/ORF质粒文库为例,将本发明方法与传统克隆技术以及重组克隆技术(Gateway)进行了比较,如下表:

  以利用果蝇DGRC Gold Collection文库质粒构建UAS-cDNA/ORF质粒文库(共12192 个质粒)为例,对比本发明方法与现有技术

  

  以上所述为本发明的3个应用实例。但本发明不应局限于该实施例所公开的内容。所以, 凡是不脱离本发明所公开的精神下完成的等效或修改,部落入本发明的保护范围。

  序列表

  <110> 王纪武

  <120> 一种用模块化设计构建双系统表达质粒文库的方法

  <141> 2019-02-11

  <160> 265

  <170> SIPOSequenceListing 1.0

  <210> 1

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 1

  acgactcact atagggagac 20

  <210> 2

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 2

  aattaatacg actcactata 20

  <210> 3

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 3

  cattaggcgg gttaaattcc 20

  <210> 4

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 4

  ggcgatgata tcagatctgc 20

  <210> 5

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 5

  atgaatcggc tgcagtaccc 20

  <210> 6

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 6

  aatgaatcgg ctgcagtacc 20

  <210> 7

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 7

  aaaaagcccg ctcattaggc 20

  <210> 8

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 8

  cgtattaatt tcgataagcc 20

  <210> 9

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 9

  gttaacctgc attaatgaat 20

  <210> 10

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 10

  ttcattaatg caggttaacc 20

  <210> 11

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 11

  attaggcggg ttaaattccc 20

  <210> 12

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 12

  aaattaatac gactcactat 20

  <210> 13

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 13

  tgcagccgat tcattaatgc 20

  <210> 14

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 14

  atttaacccg cctaatgagc 20

  <210> 15

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 15

  aatttaaccc gcctaatgag 20

  <210> 16

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 16

  caaaaaaaag cccgctcatt 20

  <210> 17

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 17

  aaaaaagccc gctcattagg 20

  <210> 18

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 18

  tgatatcatc gccactgtgc 20

  <210> 19

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 19

  ggtcctaagg tagcgaggcc 20

  <210> 20

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 20

  gtcctaaggt agcgaggcct 20

  <210> 21

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 21

  cacccaggcc tcgctacctt 20

  <210> 22

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 22

  ataacggtcc taaggtagcg 20

  <210> 23

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 23

  cagtaactat aacggtccta 20

  <210> 24

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 24

  cttaggaccg ttatagttac 20

  <210> 25

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 25

  ctaaggtagc gaggcctggg 20

  <210> 26

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 26

  aaagcaggct tgtaaaacga 20

  <210> 27

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 27

  acgacggcca gtaactataa 20

  <210> 28

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 28

  acaagtttgt acaaaaaagc 20

  <210> 29

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 29

  ggtacgtcga cgttagaacg 20

  <210> 30

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 30

  tcgtatgtgt atgatacata 20

  <210> 31

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 31

  gtatcataca catacgattt 20

  <210> 32

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 32

  ggtgacacta tagaactcga 20

  <210> 33

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 33

  agcttttgtt ccctttagtg 20

  <210> 34

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 34

  agcataaagt gtaaagcctg 20

  <210> 35

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 35

  tttcgagctt ggcgtaatca 20

  <210> 36

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 36

  gcttttgttc cctttagtga 20

  <210> 37

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 37

  aagctggagc tccaccgcgg 20

  <210> 38

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 38

  cttccggctc gtatgttgtg 20

  <210> 39

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 39

  aagcataaag tgtaaagcct 20

  <210> 40

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 40

  gaagcataaa gtgtaaagcc 20

  <210> 41

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 41

  ggctttacac tttatgcttc 20

  <210> 42

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 42

  cgaaattaac cctcactaaa 20

  <210> 43

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 43

  agcggataac aatttcacac 20

  <210> 44

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 44

  tcgaaattaa ccctcactaa 20

  <210> 45

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 45

  atgttgtgtg gaattgtgag 20

  <210> 46

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 46

  gtgagggtta atttcgagct 20

  <210> 47

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 47

  tcactaaagg gaacaaaagc 20

  <210> 48

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 48

  ggcggccgct ctagaactag 20

  <210> 49

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 49

  caaaagctgg agctccaccg 20

  <210> 50

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 50

  ttctagagcg gccgccaccg 20

  <210> 51

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 51

  tagagcggcc gccaccgcgg 20

  <210> 52

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 52

  ctagaactag tggatccccc 20

  <210> 53

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 53

  attccacaca acatacgagc 20

  <210> 54

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 54

  gggatccact agttctagag 20

  <210> 55

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 55

  tctagaacta gtggatcccc 20

  <210> 56

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 56

  tagtggatcc cccgggctgc 20

  <210> 57

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 57

  ctggagctcc accgcggtgg 20

  <210> 58

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 58

  attatacgaa gttatggatc 20

  <210> 59

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 59

  aagttatgcg gccgccaccg 20

  <210> 60

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 60

  gcatacatta tacgaagtta 20

  <210> 61

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 61

  gaattcgagc tcggccgatt 20

  <210> 62

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 62

  agttatggat caggccaaat 20

  <210> 63

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 63

  gtatgctata cgaagttatg 20

  <210> 64

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 64

  ttggagctcc accgcggtgg 20

  <210> 65

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 65

  gaattggagc tccaccgcgg 20

  <210> 66

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 66

  ttatgcggcc gccaccgcgg 20

  <210> 67

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 67

  ggctttacac tttatgcttc 20

  <210> 68

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 68

  cttccggctc gtatgttgtg 20

  <210> 69

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 69

  gaagcataaa gtgtaaagcc 20

  <210> 70

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 70

  aagcataaag tgtaaagcct 20

  <210> 71

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 71

  gctcactcat taggcacccc 20

  <210> 72

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 72

  agcataaagt gtaaagcctg 20

  <210> 73

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 73

  attccacaca acatacgagc 20

  <210> 74

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 74

  gaccatgatt acgccaagct 20

  <210> 75

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 75

  gagctcggat ccactagtaa 20

  <210> 76

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 76

  acactggcgg ccgttactag 20

  <210> 77

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 77

  tccgagctcg gtaccaagct 20

  <210> 78

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 78

  gccaagcttg gtaccgagct 20

  <210> 79

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 79

  taccaagctt ggcgtaatca 20

  <210> 80

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 80

  ggagaggcgg tttgcgtatt 20

  <210> 81

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 81

  tgtgagttag ctcactcatt 20

  <210> 82

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 82

  taatgaatcg gccaacgcgc 20

  <210> 83

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 83

  aatgaatcgg ccaacgcgcg 20

  <210> 84

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 84

  atcggccaac gcgcggggag 20

  <210> 85

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 85

  aaccgcctct ccccgcgcgt 20

  <210> 86

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 86

  ggccgattca ttaatgcagc 20

  <210> 87

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 87

  ttaatgaatc ggccaacgcg 20

  <210> 88

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 88

  tcactgcccg ctttccagtc 20

  <210> 89

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 89

  caggtttccc gactggaaag 20

  <210> 90

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 90

  ggcacgacag gtttcccgac 20

  <210> 91

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 91

  ggccaacgcg cggggagagg 20

  <210> 92

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 92

  gggagaggcg gtttgcgtat 20

  <210> 93

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 93

  ctcactgccc gctttccagt 20

  <210> 94

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 94

  aggtttcccg actggaaagc 20

  <210> 95

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 95

  agcggataac aatttcacac 20

  <210> 96

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 96

  atgttgtgtg gaattgtgag 20

  <210> 97

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 97

  cgaatggacg cgccctgtag 20

  <210> 98

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 98

  cgaaaggggg atgtgctgca 20

  <210> 99

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 99

  gtgctgcaag gcgattaagt 20

  <210> 100

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 100

  tgctgcaagg cgattaagtt 20

  <210> 101

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 101

  cattcaggct gcgcaactgt 20

  <210> 102

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 102

  aggctgcgca actgttggga 20

  <210> 103

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 103

  ctcttcgcta ttacgccagc 20

  <210> 104

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 104

  gcagatatcc atcacactgg 20

  <210> 105

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 105

  attaagcgcg gcgggtgtgg 20

  <210> 106

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 106

  cgattaagtt gggtaacgcc 20

  <210> 107

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 107

  gattaagttg ggtaacgcca 20

  <210> 108

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 108

  gactcactat agggcgaatt 20

  <210> 109

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 109

  cgctcgagca tgcatctaga 20

  <210> 110

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 110

  ccgctcgagc atgcatctag 20

  <210> 111

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 111

  tcgagcggcc gccagtgtga 20

  <210> 112

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 112

  cgactcacta tagggcgaat 20

  <210> 113

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 113

  ttgtaatacg actcactata 20

  <210> 114

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 114

  gtcacgacgt tgtaaaacga 20

  <210> 115

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 115

  attgtaatac gactcactat 20

  <210> 116

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 116

  caacagttgc gcagcctgaa 20

  <210> 117

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 117

  ggctgcgcaa ctgttgggaa 20

  <210> 118

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 118

  cgcgcttaat gcgccgctac 20

  <210> 119

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 119

  caactgttgg gaagggcgat 20

  <210> 120

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 120

  gcgcttaatg cgccgctaca 20

  <210> 121

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 121

  cgcattaagc gcggcgggtg 20

  <210> 122

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 122

  ctgtagcggc gcattaagcg 20

  <210> 123

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 123

  cagctggcgt aatagcgaag 20

  <210> 124

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 124

  agcggcgcat taagcgcggc 20

  <210> 125

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 125

  ttgggaaggg cgatcggtgc 20

  <210> 126

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 126

  tgcgcagcct gaatggcgaa 20

  <210> 127

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 127

  attcaggctg cgcaactgtt 20

  <210> 128

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 128

  gttgggaagg gcgatcggtg 20

  <210> 129

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 129

  tagcggcgca ttaagcgcgg 20

  <210> 130

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 130

  cacatccccc tttcgccagc 20

  <210> 131

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 131

  tattacgcca gctggcgaaa 20

  <210> 132

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 132

  tgagtcgtat tacaattcac 20

  <210> 133

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 133

  cgtcgtgact gggaaaaccc 20

  <210> 134

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 134

  ttacgccagc tggcgaaagg 20

  <210> 135

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 135

  attacgccag ctggcgaaag 20

  <210> 136

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 136

  ggcgcgtcca ttcgccattc 20

  <210> 137

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 137

  ctattacgcc agctggcgaa 20

  <210> 138

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 138

  atggaaaaac gccagcaacg 20

  <210> 139

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 139

  actcgctgcg ctcggtcgtt 20

  <210> 140

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 140

  cgtcaggggg gcggagccta 20

  <210> 141

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 141

  gctcactgac tcgctgcgct 20

  <210> 142

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 142

  aaaatcgacg ctcaagtcag 20

  <210> 143

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 143

  caaaaggcca gcaaaaggcc 20

  <210> 144

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 144

  tgcgctcggt cgttcggctg 20

  <210> 145

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 145

  tctgtaatac gactcactat 20

  <210> 146

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 146

  gccttacgcg tgtaaaacga 20

  <210> 147

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 147

  tgcgttatcc cctgattctg 20

  <210> 148

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 148

  acagaatcag gggataacgc 20

  <210> 149

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 149

  ctgtaatacg actcactata 20

  <210> 150

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 150

  acacgcgtaa ggcggtaata 20

  <210> 151

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 151

  gcgcagcgag tcagtgagcg 20

  <210> 152

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 152

  gcgcacgagg gagcttccag 20

  <210> 153

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 153

  agcgcacgag ggagcttcca 20

  <210> 154

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 154

  gagcgcacga gggagcttcc 20

  <210> 155

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 155

  cggaacagga gagcgcacga 20

  <210> 156

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 156

  cagaggtggc gaaacccgac 20

  <210> 157

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 157

  agcttccagg gggaaacgcc 20

  <210> 158

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 158

  ggtatcttta tagtcctgtc 20

  <210> 159

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 159

  tggtatcttt atagtcctgt 20

  <210> 160

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 160

  gacaggacta taaagatacc 20

  <210> 161

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 161

  agataccagg cgtttccccc 20

  <210> 162

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 162

  tcggaacagg agagcgcacg 20

  <210> 163

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 163

  gtatgctata cgaagttatg 20

  <210> 164

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 164

  gagtcgtatt acagatctac 20

  <210> 165

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 165

  aaaggccagg aaccgtaaaa 20

  <210> 166

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 166

  gtaagcggca gggtcggaac 20

  <210> 167

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 167

  cgcacgaggg agcttccagg 20

  <210> 168

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 168

  acggttatcc acagaatcag 20

  <210> 169

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 169

  tacggttatc cacagaatca 20

  <210> 170

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 170

  cgagtcagtg agcgaggaag 20

  <210> 171

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 171

  atcgacgctc aagtcagagg 20

  <210> 172

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 172

  gtgagcaaaa ggccagcaaa 20

  <210> 173

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 173

  tgtgatgctc gtcagggggg 20

  <210> 174

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 174

  atacggttat ccacagaatc 20

  <210> 175

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 175

  ggaaagaaca tgtgagcaaa 20

  <210> 176

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 176

  gagctctctg gctaactgtc 20

  <210> 177

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 177

  aaatgggcgg taggcgtgta 20

  <210> 178

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 178

  gggcggtagg cgtgtacggt 20

  <210> 179

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 179

  tgggcggtag gcgtgtacgg 20

  <210> 180

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 180

  agagctctct ggctaactgt 20

  <210> 181

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 181

  cggtaggcgt gtacggtggg 20

  <210> 182

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 182

  tctatataag cagagctctc 20

  <210> 183

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 183

  acaagtttgt acaaaaaagt 20

  <210> 184

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 184

  ggagaggcgg tttgcgtatt 20

  <210> 185

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 185

  aaccgcctct ccccgcgcgt 20

  <210> 186

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 186

  gcgcagcgag tcagtgagcg 20

  <210> 187

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 187

  gctcactgac tcgctgcgct 20

  <210> 188

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 188

  ggcacgacag gtttcccgac 20

  <210> 189

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 189

  atcggccaac gcgcggggag 20

  <210> 190

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 190

  aatgaatcgg ccaacgcgcg 20

  <210> 191

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 191

  caggtttccc gactggaaag 20

  <210> 192

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 192

  ggccgattca ttaatgcagc 20

  <210> 193

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 193

  ttaatgaatc ggccaacgcg 20

  <210> 194

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 194

  taatgaatcg gccaacgcgc 20

  <210> 195

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 195

  tgcgctcggt cgttcggctg 20

  <210> 196

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 196

  actcgctgcg ctcggtcgtt 20

  <210> 197

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 197

  gctcactcat taggcacccc 20

  <210> 198

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 198

  tgtgagttag ctcactcatt 20

  <210> 199

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 199

  tcactgcccg ctttccagtc 20

  <210> 200

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 200

  tgcgttatcc cctgattctg 20

  <210> 201

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 201

  ctcactcaaa ggcggtaata 20

  <210> 202

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 202

  agcggtatca gctcactcaa 20

  <210> 203

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 203

  caaaaggcca gcaaaaggcc 20

  <210> 204

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 204

  acagaatcag gggataacgc 20

  <210> 205

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 205

  aggtttcccg actggaaagc 20

  <210> 206

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 206

  tacggttatc cacagaatca 20

  <210> 207

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 207

  aaaggccagg aaccgtaaaa 20

  <210> 208

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 208

  ggtatcagct cactcaaagg 20

  <210> 209

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 209

  ctcactgccc gctttccagt 20

  <210> 210

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 210

  gggagaggcg gtttgcgtat 20

  <210> 211

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 211

  ggccaacgcg cggggagagg 20

  <210> 212

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 212

  acggttatcc acagaatcag 20

  <210> 213

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 213

  cgagtcagtg agcgaggaag 20

  <210> 214

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 214

  atacggttat ccacagaatc 20

  <210> 215

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 215

  tgccagctgc attaatgaat 20

  <210> 216

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 216

  gtgagcaaaa ggccagcaaa 20

  <210> 217

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 217

  attaatgcag ctggcacgac 20

  <210> 218

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 218

  ggtcgttcgg ctgcggcgag 20

  <210> 219

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 219

  ggaaagaaca tgtgagcaaa 20

  <210> 220

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 220

  cggactctag cctaggccgc 20

  <210> 221

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 221

  ccggactcta gcctaggccg 20

  <210> 222

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 222

  cggcctaggc tagagtccgg 20

  <210> 223

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 223

  tagtgaaccg tcagatcgcc 20

  <210> 224

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 224

  ctctagccta ggccgcggga 20

  <210> 225

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 225

  tgttatccgt cccgcggcct 20

  <210> 226

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 226

  tgtcacctaa ataggcctaa 20

  <210> 227

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 227

  tatgaccatt aggcctattt 20

  <210> 228

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 228

  aggaaacagc tatgaccatt 20

  <210> 229

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 229

  tgaaattgtt atccgtcccg 20

  <210> 230

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 230

  ctagagtccg gaggctggat 20

  <210> 231

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 231

  cagcctccgg actctagcct 20

  <210> 232

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 232

  ttgacctcca tagaagacac 20

  <210> 233

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 233

  acagcgtgga tggcgtctcc 20

  <210> 234

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 234

  ggcgtctcca ggcgatctga 20

  <210> 235

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 235

  atcggtcccg gtgtcttcta 20

  <210> 236

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 236

  tccggaggct ggatcggtcc 20

  <210> 237

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 237

  accgggaccg atccagcctc 20

  <210> 238

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 238

  ggaggtcaaa acagcgtgga 20

  <210> 239

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 239

  ttctatagtg tcacctaaat 20

  <210> 240

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 240

  ctatggaggt caaaacagcg 20

  <210> 241

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 241

  gacggataac aatttcacac 20

  <210> 242

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 242

  tgacctccat agaagacacc 20

  <210> 243

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 243

  ctaggctaga gtccggaggc 20

  <210> 244

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 244

  gtttgtacaa aaaagcaggc 20

  <210> 245

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 245

  ggtcccggtg tcttctatgg 20

  <210> 246

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 246

  acaagtttgt acaaaaaagc 20

  <210> 247

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 247

  actcgctgcg ctcggtcgtt 20

  <210> 248

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 248

  tgcgctcggt cgttcggctg 20

  <210> 249

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 249

  gctcactgac tcgctgcgct 20

  <210> 250

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 250

  gcgcagcgag tcagtgagcg 20

  <210> 251

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 251

  ggagaggcgg tttgcgtatt 20

  <210> 252

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 252

  ctcactcaaa ggcggtaata 20

  <210> 253

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 253

  agcggtatca gctcactcaa 20

  <210> 254

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 254

  tgcgttatcc cctgattctg 20

  <210> 255

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 255

  acagaatcag gggataacgc 20

  <210> 256

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 256

  gggagaggcg gtttgcgtat 20

  <210> 257

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 257

  acggttatcc acagaatcag 20

  <210> 258

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 258

  tacggttatc cacagaatca 20

  <210> 259

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 259

  ggtatcagct cactcaaagg 20

  <210> 260

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 260

  cgagtcagtg agcgaggaag 20

  <210> 261

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 261

  atacggttat ccacagaatc 20

  <210> 262

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 262

  ggaaagaaca tgtgagcaaa 20

  <210> 263

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 263

  ggtcgttcgg ctgcggcgag 20

  <210> 264

  <211> 24

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 264

  aaaagcaccg actcggtgcc actt 24

  <210> 265

  <211> 61

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 265

  taatacgact cactatagg 60

  n 120

  gttttagagc tagaaatag 41

《一种用模块化设计构建双系统表达质粒文库的方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)