欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 光敏树脂基碳源/碳化硅陶瓷浆料、制备多孔碳/碳化硅坯体的方法、结构件及制备方法独创技术22475字

光敏树脂基碳源/碳化硅陶瓷浆料、制备多孔碳/碳化硅坯体的方法、结构件及制备方法

2021-02-11 16:40:38

光敏树脂基碳源/碳化硅陶瓷浆料、制备多孔碳/碳化硅坯体的方法、结构件及制备方法

  技术领域

  本发明属于碳化硅陶瓷制造技术领域,特别是涉及一种光敏树脂基碳源/碳化硅陶瓷浆料及多孔碳/碳化硅坯体制备方法、反应烧结碳化硅结构件及其制备方法。

  背景技术

  碳化硅(SiC)是一种性能优良的陶瓷材料,具有高强度、高刚度和高稳定性等优点,广泛应用于航空航天、半导体和核工业领域。但碳化硅是 Si-C键很强的共价键化合物,硬度高难以加工;而传统的成型工艺,如注浆成型、干压成型和凝胶注模成型等,在制备高精度、复杂结构碳化硅部件方面具有一定的局限性。因此,很有必要开发一种高精度、复杂异形结构的碳化硅成型方法。

  增材制造技术又称3D打印,是一种先进的高精度制造技术,该技术将复杂的三维实体分解成简单的二维平面的组合,通过增加材料的方式来生成实体,具有快速制造、高度集成化和高度灵活性等优点,为制备复杂结构、高精度和高强度碳化硅结构件提供了可能。

  光固化成型具有成型坯体强度高、表面质量好和成型精度高等优点,其成型精度<1.0μm,表面粗糙度Ra≤0.4μm,是已有陶瓷增材制造技术中成型精度最高的。但是,目前关于碳化硅陶瓷的光固化成型技术面临诸多技术难题,主要在于以下几个方面:1、光敏树脂大部分是采用双组分树脂,如,采用双官能团单体和三官能团单体作为原料制备树脂;此种树脂虽然在光固化速率和光固化精度方面具有突出的性能,但是树脂黏度较大,流动性较差,在树脂流变性方面还有待提升;2、光敏树脂大多是非极性的,而粉体材料则大多是极性的,因此二者相容的时候难以分散,使得混合物的黏度很高,难以得到高固相含量和低黏度的浆料;3、以光敏树脂作为多孔碳/碳化硅坯体的碳源,但是一般光敏树脂的残炭率只有7wt.%左右,很难提高多孔碳/碳化硅坯体中的碳含量,难以得到高强度、高致密度的反应烧结碳化硅结构件。

  发明内容

  本发明的主要目的在于提供一种光敏树脂基碳源/碳化硅陶瓷浆料及多孔碳/碳化硅坯体制备方法、反应烧结碳化硅结构件及其制备方法,所要解决的技术问题能够制造出高致密度、高强度的反应烧结碳化硅结构件,使其密度≥2.7g/cm3、抗弯强度≥270.0MPa,从而更加适于实用。

  本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据本发明提出的一种光敏树脂基碳源/碳化硅陶瓷浆料,以体积百分含量计,其包括50%~70%的光敏树脂和30%~50%的粉体材料;

  其中,所述的粉体材料包括碳化硅粉体和酚醛树脂粉体;所述的光敏树脂包括单官能团单体、双官能团单体、三官能团单体、光引发剂、附着力促进剂和高分子型分散剂。

  本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。

  优选的,前述的浆料,其中所述的粉体材料中,酚醛树脂粉体占粉体材料总质量的6%~12%。

  优选的,前述的浆料,其中以质量百分含量计,所述的碳化硅粉体由中位粒径30.0μm~50.0μm的碳化硅粉与中位粒径3μm~5μm的碳化硅粉两级复配而成。

  优选的,前述的浆料,其中所述的单官能团单体选自丙烯酸吗啉 ACMO、丙烯酸羟乙酯HEA和丙烯酸苯氧基乙酯2-PHEA中的至少一种;或者,所述的双官能团单体为1,6己二醇二丙烯酸酯HDDA;所述的三官能团单体选自六乙氧基化三羟甲基丙烷三丙烯酸酯TMP(EO)6TA和三羟甲基丙烷三丙烯酸酯TMPTA中的至少一种。

  优选的,前述的浆料,其中所述的高分子型分散剂选自氨基酸酯共聚物;以质量百分含量计,其占粉体材料总质量的3%~8%。

  优选的,前述的浆料,其中所述的附着力促进剂选自2-羟乙基甲基丙烯酸酯磷酸酯、多官能度酸性丙烯酸酯和丙烯酸酯磷酸酯中的至少一种;以质量百分含量计,其占粉体材料总质量的3%~5%。

  本发明的目的及解决其技术问题还采用以下的技术方案来实现。依据本发明提出的一种多孔碳/碳化硅坯体的制备方法,其包括以下步骤:配制光敏树脂基碳源/碳化硅陶瓷浆料,成型,真空素烧。

  本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。

  优选的,前述的方法,其中所述的成型为光固化3D打印;或者,所述的真空素烧的温度为800℃~1200℃,其温度制度如下:以2.0℃~3.0℃/min 的升温速率,从室温升温至800℃-1200℃,保温30min~60min;随炉自然冷却至室温。

  优选的,前述的方法,其中其包括以下步骤:将前述的多孔碳/碳化硅坯体置于真空反应烧结炉中,添加坯体质量0.5~0.7倍的硅颗粒;以5.0~7.0℃/min的升温速率升温至1500℃-1600℃,保温30~60min;再经过随炉冷却至室温,得到反应烧结碳化硅陶瓷结构件。

  本发明的目的及解决其技术问题还采用以下的技术方案来实现。依据本发明提出的一种根据前述的方法制备的反应烧结碳化硅结构件,其密度≥2.7g/cm3、抗弯强度≥270.0MPa。

  借由上述技术方案,本发明提出的一种光敏树脂基碳源/碳化硅陶瓷浆料及坯体制备方法、反应烧结碳化硅结构件及其制备方法至少具有下列优点:

  1、本发明提出的光敏树脂基碳源/碳化硅陶瓷浆料,其采用三组分的光敏树脂作为分散介质,该树脂具有低黏度、高活性和高光固化精度的特点,既兼顾了树脂的光固化性能,又兼顾了树脂的流动性能,为制备低黏度、高固相、高固化速率和高固化精度的光敏树脂基碳源/碳化硅陶瓷浆料打下了坚实的基础;

  2、本发明提出的光敏树脂基碳源/碳化硅陶瓷浆料,其在陶瓷浆料中特别引入了高残炭率的酚醛树脂粉体,提高了多孔碳/碳化硅坯体的含碳率,使制备出高致密度、高强度的反应烧结碳化硅成为可能;

  3、本发明提出的光敏树脂基碳源/碳化硅陶瓷浆料,其在陶瓷浆料中添加高分子型分散剂,使得粉体材料的添加量提高,而且粉体材料能够在树脂中均匀分散,还不会明显增加陶瓷浆料的黏度,一方面提高了多孔碳/碳化硅坯体的含碳率,制备出高致密度、高强度的反应烧结碳化硅;另一方面,提高固相含量使光固化成型的收缩率极小,进一步提高了坯体的尺寸精度;

  4、本发明提出的制备方法,通过将光固化成型工艺和反应烧结碳化硅的工艺相结合,一方面是3D打印的成型尺寸精度很高,同时所述的陶瓷浆料的固相含量高,液相固化时形成交联网络结构,可以最大程度地减少浆料的固化收缩;另一方面,反应烧结具有烧结收缩小和结构致密等优点,可实现复杂形状碳化硅样品的近净尺寸烧结;本发明的技术方案通过两种工艺的结合,制备出了致密、复杂结构和高精度的碳化硅结构件,在复杂结构、致密碳化硅的高精密制造方面具有一定的应用前景。

  上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。

  附图说明

  图1是本发明反应烧结碳化硅结构件的工艺流程的示意图。

  具体实施方式

  为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种光敏树脂基碳源 /碳化硅陶瓷浆料及坯体制备方法、反应烧结碳化硅结构件及其制备方法其具体实施方式、结构、特征及其功效,详细说明如后。

  本发明提出一种光敏树脂基碳源/碳化硅陶瓷浆料,以体积百分含量计,其包括50%~70%的光敏树脂和30%~50%的粉体材料;其中,所述的粉体材料包括碳化硅粉体和酚醛树脂粉体;所述的光敏树脂包括单官能团单体、双官能团单体、三官能团单体、光引发剂、附着力促进剂和高分子型分散剂。

  上述的光敏树脂和粉体材料的比例是体积比。为了实验室计量方便,本发明实施例中的原料计量均以质量计量,经过换算,所述的浆料包括 25%~45%的光敏树脂和55%~75%的粉体材料。

  本发明的技术方案是以碳化硅粉体作为原料,以酚醛树脂粉体作为碳源,以光敏树脂作为分散介质,采用高分子型分散剂将粉体材料均匀地分散于分散介质中;然后,在室温下机械球磨,得到光敏树脂基碳源/碳化硅陶瓷浆料;将其真空素烧,得到多孔碳/碳化硅坯体;所述的多孔碳/碳化硅坯体通过高温真空渗硅将其制备成高精度的、复杂结构的碳化硅结构件。

  单体是一种含有可聚合官能团的有机小分子,在紫外光(ultraviolet light,简称UV)固化陶瓷浆料中是一个重要的组成,它不仅具有稀释和调节体系黏度的作用,还能参与光固化过程,影响浆料的光固化速率、光固化精度及固化坯体的强度、硬度等性能,因此单体的选择和配比非常重要,是制备低黏度、高固相、高固化速率和高固化精度光敏树脂基陶瓷浆料的重要环节。

  所述的光敏树脂采用三组分树脂,即采用单官能团单体、双官能团单体和三官能团的单体,按照一定的体积比,配制出低黏度、高反应活性和高固化精度的光敏树脂,即兼顾了树脂的光固化性能,又兼顾了树脂的流动性能,为制备低黏度、高固相、高固化速率和高固化精度的光敏树脂基碳源/碳化硅陶瓷浆料的打下了坚实的基础。

  优选的,以质量份计,所述的光敏树脂中包括单官能团单体3份、双官能团单体5份和三官能团单体2份。

  优选的,所述的光敏树脂中还包括光引发剂双(2,4,6-三甲基苯甲酰基)苯基氧化膦BAPO;以质量百分含量计,其占上述三种单体总质量的 3%~5%。

  在陶瓷浆料中引入酚醛树脂粉体,是由于酚醛树脂粉体的残炭率比较高,通过其高残炭率提高多孔碳/碳化硅坯体的含碳率,从而制备出高致密度、高强度的反应烧结碳化硅。

  在陶瓷浆料的光固化成型过程中,首先需要将粉体材料均匀地分散在光敏树脂中,然后在光照条件下将粉体颗粒原位固化在交联固化的高分子网络中;但是,所述的碳化硅粉体和酚醛树脂粉体是极性的,而光敏树脂大多是非极性的,为了制备高固相含量、低黏度的浆料,必须解决碳化硅粉体和碳源粉体在光敏树脂中的分散问题。本发明优选了高分子型分散剂,其对于碳化硅粉体材料、以及酚醛树脂粉体材料在光敏树脂中的分散具有很好的效果,实现了酚醛树脂粉体及碳化硅粉体在陶瓷浆料中的均匀分散性。

  优选的,所述的粉体材料中,酚醛树脂粉体占粉体材料总质量的 6%~12%。

  碳化硅陶瓷的强度和其中的残炭率具有较大的关系,但是现有技术中并没有在碳化硅陶瓷中特别引入碳源的报道,而是把光敏树脂作为碳源,但这种方法制备的多孔碳/碳化硅坯体的碳含量较低,一般光敏树脂的残炭率只有7wt.%左右,很难实现陶瓷坯体以及结构件的高强度和高致密度。一般来讲,现有技术制备的反应烧结碳化硅结构件的密度≥80%、弯曲强度≥100MPa。而本发明的技术方案,在陶瓷浆料中特别引入了残炭率高达50wt.%的碳源——酚醛树脂粉体,并实现了酚醛树脂粉体在陶瓷浆料中的均匀分散,提高了多孔碳/碳化硅坯体的含碳率,得到了高致密度、高强度反应烧结碳化硅,其密度≥2.7g/cm3、抗弯强度≥270.0MPa。

  优选的,以质量百分含量计,所述的碳化硅粉体由中位粒径 30.0μm~50.0μm的碳化硅粉与中位粒径3μm~5μm的碳化硅粉两级复配而成。

  所述的碳化硅粉体,通过两种不同粒径的碳化硅粉体进行级配使用,可以降低陶瓷浆料的黏度,能够进一步提高浆料中的固相含量。此处所述的固相含量是指浆料中的粉体材料的体积含量。

  优选的,所述的碳化硅粉体由中位粒径为40.0μm的碳化硅粉与中位粒径为3.8μm的碳化硅粉两级复配而成。所述的中位粒径为3.8μm的碳化硅牌号为F1200,中位粒径为40.0μm的碳化硅牌号为F240。

  优选的,所述的碳化硅粉体由40%碳化硅F240与60%碳化硅F1200 组成。

  优选的,所述的单官能团单体选自丙烯酸吗啉ACMO、丙烯酸羟乙酯 HEA和丙烯酸苯氧基乙酯2-PHEA中的至少一种;或者,所述的双官能团单体为1,6己二醇二丙烯酸酯HDDA;或者,所述的三官能团单体选自六乙氧基化三羟甲基丙烷三丙烯酸酯TMP(EO)6TA和三羟甲基丙烷三丙烯酸酯TMPTA中的至少一种。

  优选的,所述的高分子型分散剂选自氨基酸酯共聚物;以质量百分含量计,其占粉体材料总质量的3%~8%。

  现有技术的文献记载中,所能制备的光敏树脂基碳化硅浆料的固相含量基本在40vol.%-50vol.%,固相含量继续提高会有很大的困难,如,当其在固相含量达55vol.%时,浆料的黏度值高达12000mPa.s(剪切速率约22.00 s-1),浆料的黏度极高,流动性很差。而本发明的技术方案,采用了高分子型分散剂,即氨基酸酯共聚物,并优选其最佳的添加量;使用此技术方案制备出的光敏树脂基碳化硅浆料的固相含量能够高达55vol.%,且此时其黏度值仅仅为6120mPa.s(剪切速率22.41s-1),说明所述的的浆料黏度低,具有良好的流动性。

  优选的,所述的高分子型分散剂为氨基酸酯共聚物4200。

  优选的,所述的浆料中还包括附着力促进剂,其选自2-羟乙基甲基丙烯酸酯磷酸酯、多官能度酸性丙烯酸酯和丙烯酸酯磷酸酯中的至少一种;以质量百分含量计,其占粉体材料总质量的3%~5%。

  本发明还提出一种多孔碳/碳化硅坯体的制备方法,如附图1所示,其包括以下步骤:配制光敏树脂基碳源/碳化硅陶瓷浆料,成型,真空素烧。

  所述的浆料配制时,首先按配方称量三种单体,混合,再加入计量的光引发剂、附着力促进剂和粉体分散剂,在室温下磁力搅拌20min~40min,得到光敏树脂;然后,以两种不同中位径的碳化硅粉体为原料两级复配,以酚醛树脂粉体为碳源,采用光敏树脂为分散介质,以氧化锆球为球磨介质,在室温下机械球磨6h~12h小时,得到固相体积含量为30%~50%的光敏树脂基碳源/碳化硅陶瓷浆料;最后将所述的浆料成型、烧结,得到多孔碳/碳化硅坯体。

  优选的,所述的成型为光固化3D打印;将所述的陶瓷浆料置于光固化成型设备中打印成型,可以得到尺寸精度高、形状结构复杂的碳源/碳化硅坯体。

  所述的真空素烧的温度为800℃~1200℃,其温度制度如下:以2.0℃~3.0℃/min的升温速率,从室温升温至800℃-1200℃,保温 30min~60min;随炉自然冷却至室温。

  优选的,其包括以下步骤:将前述的多孔碳/碳化硅坯体置于真空反应烧结炉中,添加坯体质量0.5~0.7倍的硅颗粒;以5.0~7.0℃/min的升温速率升温至1500℃-1600℃,保温30~60min;再经过随炉冷却至室温,得到反应烧结碳化硅陶瓷结构件。

  本发明通过将光固化成型工艺和反应烧结碳化硅的工艺相结合,一方面是光固化3D打印成型的坯体尺寸精度很高,同时所述的陶瓷浆料的固相含量高,浆料固化时可以最大程度地减少浆料的固化收缩;另一方面,反应烧结具有烧结收缩小和结构致密等优点,可实现复杂形状碳化硅样品的近净尺寸烧结。本发明的技术方案,通过两种工艺的结合,制备出了致密、复杂结构和高精度的碳化硅结构件,在复杂结构、致密碳化硅的高精密制造方面具有一定的应用前景。

  本发明还提出一种根据前述的方法制备的反应烧结碳化硅结构件,其密度≥2.7g/cm3、抗弯强度≥270.0MPa。

  下面通过更具体的实施例作进一步说明。

  实施例1:

  1)制备80ml固相含量30vol.%的光敏树脂基碳源/碳化硅浆料:添加1, 6己二醇二丙烯酸酯HDDA、丙烯酸吗啉ACMO和六乙氧基化三羟甲基丙烷三丙烯酸酯TMP(EO)6TA各25.88g、15.51g和10.34g,添加光引发剂双 (2,4,6-三甲基苯甲酰基)苯基氧化膦BAPO、附着力促进剂2-羟乙基甲基丙烯酸酯磷酸酯和氨基酸酯共聚物4200各1.55g、2.16g和2.16g,在室温下磁力搅拌20分钟,得到光敏树脂;添加酚醛树脂粉体、碳化硅粉F1200 和碳化硅粉F240各5.75g、26.47g和39.70g,以氧化锆球为球磨介质,在室温下机械球磨6小时,得到光敏树脂基碳源/碳化硅浆料;

  2)多孔碳/碳化硅坯体的制备:将步骤1)制备的浆料在光固化成型设备上打印成型,得到碳源/碳化硅坯体,将坯体置于真空烧结炉中,以2℃/min 的升温速率,从室温升至800℃,在800℃下保温30分钟,然后随炉自然冷却至室温,得到多孔碳/碳化硅坯体;

  3)反应烧结碳化硅的制备:将步骤2)得到的多孔碳/碳化硅坯体置于真空反应烧结炉中,添加坯体质量0.5倍的硅颗粒,以5.0℃/min的升温速率升温至1500℃,保温30min,然后随炉冷却至室温,得到致密的反应烧结碳化硅陶瓷结构件。

  通过本领域常规检验方法检测,本实施例制备的反应烧结碳化硅陶瓷结构件的密度为2.72g/cm3,抗弯强度为273MPa。

  实施例2:

  1)制备80ml固相含量50vol.%的光敏树脂基碳源/碳化硅浆料:添加1, 6己二醇二丙烯酸酯HDDA、丙烯酸羟乙酯HEA和三羟甲基丙烷三丙烯酸酯TMPTA各16.40g、9.84g和6.56g,添加光引发剂双(2,4,6-三甲基苯甲酰基)苯基氧化膦BAPO、附着力促进剂多官能度酸性丙烯酸酯和氨基酸酯共聚物4200各0.98g、3.60g和3.60g,在室温下磁力搅拌40分钟,得到光敏树脂;添加酚醛树脂粉体、碳化硅粉F1200和碳化硅粉F240各 7.04g、44.12g和66.17g,以氧化锆球为球磨介质,在室温下机械球磨12小时,得到光敏树脂基碳源/碳化硅浆料;

  2)多孔碳/碳化硅坯体的制备:将步骤1)制备的浆料在光固化成型设备上打印成型,得到碳源/碳化硅坯体,将坯体置于真空烧结炉中,以3℃/min 的升温速率,从室温升至1200℃,在1200℃下保温60分钟,然后随炉自然冷却至室温,得到多孔碳/碳化硅坯体;

  3)反应烧结碳化硅的制备:将步骤2)得到的多孔碳/碳化硅坯体置于真空反应烧结炉中,添加坯体质量0.7倍的硅颗粒,以7.0℃/min的升温速率升温至1600℃,保温60min,然后随炉冷却至室温,得到致密的反应烧结碳化硅陶瓷结构件。

  通过本领域常规检验方法检测,本实施例制备的反应烧结碳化硅陶瓷结构件的密度为2.85g/cm3,抗弯强度为293MPa。

  实施例3:

  1)制备80ml固相含量40vol.%的光敏树脂基碳源/碳化硅浆料:添加1, 6己二醇二丙烯酸酯HDDA、丙烯酸苯氧基乙酯2-PHEA和六乙氧基化三羟甲基丙烷三丙烯酸酯TMP(EO)6TA各17.97g、10.78g和7.19g,添加光引发剂双(2,4,6-三甲基苯甲酰基)苯基氧化膦BAPO、附着力促进剂丙烯酸酯磷酸酯和氨基酸酯共聚物4200各1.80g、4.64g和7.43g,在室温下磁力搅拌40分钟,得到光敏树脂;添加酚醛树脂粉体、碳化硅粉F1200和碳化硅粉F240各11.14g、32.67g和49.01g,以氧化锆球为球磨介质,在室温下机械球磨8小时,得到光敏树脂基碳源/碳化硅浆料;

  2)多孔碳/碳化硅坯体的制备:将步骤1)制备的浆料在光固化成型设备上打印成型,得到碳源/碳化硅坯体,将坯体置于真空烧结炉中,以 2.5℃/min的升温速率,从室温升至1000℃;在1000℃下保温45分钟,然后随炉自然冷却至室温,得到多孔碳/碳化硅坯体;

  3)反应烧结碳化硅的制备:将步骤2)得到的多孔碳/碳化硅坯体置于真空反应烧结炉中,添加坯体质量0.6倍的硅颗粒,以6.0℃/min的升温速率升温至1550℃,保温45min,然后随炉冷却至室温,得到致密的反应烧结碳化硅陶瓷结构件。

  通过本领域常规检验方法检测,本实施例制备的反应烧结碳化硅陶瓷结构件的密度为2.79g/cm3,抗弯强度为276MPa。

  本发明权利要求和/或说明书中的技术特征可以进行组合,其组合方式不限于权利要求中通过引用关系得到的组合。通过权利要求和/或说明书中的技术特征进行组合得到的技术方案,也是本发明的保护范围。

  以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

《光敏树脂基碳源/碳化硅陶瓷浆料、制备多孔碳/碳化硅坯体的方法、结构件及制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)