欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 烧制二次电池活性材料的匣钵及利用该匣钵制造二次电池活性材料的方法独创技术14992字

烧制二次电池活性材料的匣钵及利用该匣钵制造二次电池活性材料的方法

2021-02-01 18:23:34

烧制二次电池活性材料的匣钵及利用该匣钵制造二次电池活性材料的方法

  技术领域

  本公开涉及用于烧制二次电池活性材料的匣钵以及用于利用该匣钵制造二次电池活性材料的方法。

  背景技术

  近年来,随着诸如移动电话、笔记本电脑等的紧凑型电子设备的迅速扩展、以及车辆电池的市场的扩展,对非水性电解质二次电池、特别是锂二次电池的需求迅速增长。

  由于锂二次电池具有高能量密度、优异的输出特性并且锂二次电池可以被制成为轻质的,因此锂二次电池被广泛用作移动通信设备、混合动力电动车辆、家用电器用的能量存储装置、或类似物。因此,在正极活性材料——锂二次电池的电极材料——的工业生产中,需要以一定的品质来批量生产高品质的锂二次电池的电极材料。

  锂二次电池的核心材料被分类为正极、负极、电解质和隔膜。市场上可获得的锂二次电池的正极材料可以包括LiCoO2或者镍钴锰(NCM)基的正极活性材料。这种正极活性材料可以通过将包含化合物和过渡金属化合物的原料送入到作为烧制容器的匣钵中并且根据原料的类型以温度范围在400℃到1100℃中的一温度对该原料进行烧制来制备。

  作为与用于对烧制过程期间所使用的二次电池用活性材料进行烧制的匣钵有关的相关文献,可以公开专利文献1至3。专利文献1公开了通过限制待送入到烧制炉中的原料的组成、烧制期间的温度范围、烧制时间等来制造锂二次电池用的正极材料的方法,并且专利文献2公开了在锂镍复合氧化物的制造方法中烧制时间与烧制原料的填充量之间的关系。另外,专利文献3公开了用于通过在以氧化铝为主要原料所形成的匣钵的表面上涂覆氧化锆来减少被烧制物体的特性变化的技术。

  同时,在烧制过程中,产生了二氧化碳作为反应副产物,并且特别地,匣钵中存留的二氧化碳可以与正极活性材料的表面上的氧化锂反应而形成碳酸锂,从而引起比如降低电池容量的问题。然而,专利文献1至3涉及烧制过程的条件,并且存在无法解决由于烧制过程中产生为反应副产物的二氧化碳而导致的电池性能劣化的问题。

  [现有技术文献]

  (专利文献1)日本注册专利No.4592931

  (专利文献2)日本注册专利No.5534657

  (专利文献3)韩国公开专利No.10-1999-0049188

  发明内容

  技术问题

  本公开的一方面在于提供一种具有下述结构的用于烧制二次电池活性材料的匣钵:该结构能够在烧制过程中将气氛气体顺畅地分布在匣钵中并且还将作为副产物产生的二氧化碳顺畅地排出。

  另外,本公开的一方面在于提供一种用于利用该匣钵制造二次电池用活性材料的方法。

  技术方案

  根据本公开的一方面,在用于对包含二次电池用活性材料的被烧制物体进行烧制的匣钵中,该匣钵包括凹口部分,该凹口部分从匣钵的侧壁的上部凹进以使该侧壁的一部分敞开,其中该凹口部分的面积与该侧壁的面积的比率为30%至70%,并且匣钵的侧壁与匣钵的下表面接触处的边缘由圆化部分构成。

  圆化部分的曲率半径可以大于等于25mm。

  凹口部分距匣钵的上表面的深度可以为60%至90%。

  匣钵可以包括至少一对相对的侧壁,并且凹口部分可以形成于所述至少一对相对的侧壁上。

  在匣钵的下表面上可以形成有通孔。

  匣钵还可以设置有盖,该盖用于覆盖敞开以允许被烧制物体的进和出的上表面。

  盖可以形成有通孔。

  匣钵可以由选自莫来石(3Al2O32SiO2)、堇青石((Mg,Fe+3)2Al4Si5O18)、尖晶石(MgAl2O4)以及锆石(ZrSiO4)中的一者或更多者制成。

  根据本公开的另一方面,提供了用于制造二次电池用活性材料的方法,该方法包括以下操作:将原料装载到匣钵中并将该原料送入到烧制炉中并然后进行烧制;以及在该烧制之后将匣钵中的原料回收,并且进行冷却及粉碎以制备二次电池用活性材料。

  待装载到匣钵中的原料的尺寸通过对粉末进行模制而被增大。

  所述烧制可以在氧气气氛或惰性气体气氛中执行。

  在烧制炉中可以布置有两个或更多个匣钵。

  两个或更多个匣钵可以在烧制炉中堆叠成两层或更多层并且然后进行烧制。

  有利效果

  根据本公开,作为正极活性材料烧制过程期间所产生的反应副产物的二氧化碳可以从匣钵顺畅地排出,并且二氧化碳的这种顺畅排出可以降低正极活性材料的残留锂浓度,并且因此可以提高正极活性材料浆料的分散性且还提高电池的容量。

  附图说明

  图1是图示了根据本公开的一个实施方案的匣钵的示意图。

  图2是图示了根据本公开的一个实施方案的匣钵的内部的示意图。

  具体实施方式

  在下文中,将参考各种实施方案对本公开的优选实施方案进行描述。然而,本公开的实施方案可以以各种其他形式进行修改,并且本公开的范围不限于下面所描述的实施方案。

  本公开涉及用于烧制二次电池活性材料的匣钵以及用于利用该匣钵制造二次电池活性材料的方法。更具体地,本公开提供了一种具有下述结构的匣钵:该结构可以将气氛气体从外部顺畅地分布在匣钵中并且还将作为烧制过程期间所产生的副产物的二氧化碳顺畅地排出。

  一般而言,二次电池正极活性材料是通过在高温烧制炉中对原料进行烧制而制造的,并且在这种情况下,原料被装载到匣钵中并且被送入烧制炉中。在这种情况下,为了通过烧制而获得均匀品质的正极活性材料,气氛气体流入匣钵中应当顺畅地进行,并且还需要将二氧化碳排出而不使二氧化碳保留在匣钵内。

  为此,根据本公开的一方面,在用于对包含二次电池用活性材料的被烧制物体进行烧制的匣钵中,该匣钵包括凹口部分,该凹口部分从匣钵的侧壁的上部凹进以使该侧壁的一部分敞开,其中该凹口部分的面积与该侧壁的面积的比率为30%至70%,并且匣钵的侧壁与匣钵的下表面接触处的边缘由圆化部分构成。

  现有技术中通常所使用的匣钵具有敞开的上表面,并且形成于该匣钵的侧壁上的凹口部分的面积为约0至10%。当利用这种匣钵进行烧制时,气氛气体主要被引入穿过匣钵的上表面,并且在这种情况下,气氛气体主要与位于装载于匣钵中的原料的上层部分中的原料相接触,并且与位于匣钵的较深部分、比如底表面中的原料的接触概率相对较低,使得难以获得均匀的烧制品质。

  然而,如本公开中那样,通过增大形成于侧壁上的凹口部分的面积,气氛气体可以通过凹口部分供给到匣钵中,并且因此,气氛气体被均匀地供给至装载于匣钵中的正极活性材料的原料,从而获得更均匀的烧制品质。更具体地,尽管烧制炉中的气氛气体、特别是氧气通过形成于匣钵的侧壁上的凹口部分流动到匣钵中并上升至匣钵的上部,但是可以通过接触装载于匣钵中的原料来制造均质的烧制产品。

  此外,即使在流向匣钵的侧表面的气氛气体的流动期间,也可以将气氛气体引入到匣钵中,以及烧制期间所产生的副产物比如二氧化碳、水蒸气也可以从匣钵顺畅地排出。

  当二氧化碳存留在匣钵中时,可能引起以下问题:在烧制之后的降低温度过程期间在正极活性材料的表面上形成氧化锂和碳酸锂,并且在正极活性材料的涂覆过程中降低了浆料的分散性且降低了电池的容量。然而,如本公开中那样,当侧壁的凹口部分的面积为30%或更大时,由于气氛气体通过凹口部分的流入而导致的气体流可以抑制二氧化碳或水蒸气集中在防火壁的内侧底部上。

  优选的是,形成于匣钵的侧壁上的凹口部分的面积相对于匣钵的侧壁的面积的比率为30%至70%。该比率可以根据装载于匣钵中的被烧制材料的粒径进行调节,但是就作为反应气体的氧气或空气的顺畅供给以及作为反应产物的二氧化碳和水蒸气的顺畅排出而言,该比率优选地为30%或更大,并且此外,当烧制期间防止烧制材料的损失或者以两个或更多个台级(stage)装载匣钵时,就对位于其较低台级的匣钵进行支承而言,该比率优选地为70%或更小。

  凹口部分的面积的增大可以通过对凹口部分形成于匣钵的侧壁上所处的高度进行调整来实现。更具体地,凹口部分距匣钵的上表面的深度可以为60%至90%。当距匣钵的上表面的深度低于90%时,由于匣钵的粉末装载量可能减少并且生产率可能降低,因此优选的是,凹口部分距匣钵的上表面的深度为60%至90%。换句话说,凹口部分可以从对应于从匣钵的下表面起的总高度的10%至40%的位置形成。

  如上面所描述的,当凹口部分形成于彼此面对的侧壁部分中时,通过使在烧制期间在匣钵中的烧制气氛均匀可以产生更均质的烧制产物。另外,凹口部分的形状可以形成为各种形状比如矩形、梯形等。

  同时,在根据本公开的一个实施方案的匣钵中,匣钵的侧壁与下表面接触处的边缘可以由圆化部分、即弯曲形状构成,并且优选的是,该圆化部分的曲率半径为25mm或更大。因此,当该曲率半径大于等于25mm时,可以抑制烧制反应期间所产生的二氧化碳或水蒸气集中在匣钵的内边缘处。随着该曲率半径的增加,死区的体积减小,使得抑制了二氧化碳或水蒸气的集中。

  匣钵没有特别限制,但是匣钵可以是莫来石(3Al2O32SiO2)、堇青石((Mg,Fe+3)2Al4Si5O18)、尖晶石(MgAl2O4)、锆石(ZrSiO4)等,但如上述各者中的两者或更多者的组合,匣钵可以由通常用作匣钵的材料的材料形成。

  同时,匣钵可以根据需要以具有敞开的上表面的形式设置在烧制炉中,并且匣钵还可以通过用盖覆盖该匣钵的上表面而在烧制炉中经受烧制过程。在这种情况下,还可以在该盖上形成用于气体流动的通孔。通过如上面所描述的将盖进行覆盖,可以抑制异物流入到匣钵中,并且气体流动可以通过在匣钵的下表面上形成通孔并在盖上形成通孔来实现。

  作为用于制造活性材料的方法,除了利用由本公开所提供的匣钵之外且不特别限于此,用于制造活性材料的方法可以普遍应用。用于制造活性材料的方法包括以下操作:将原料装载到根据本公开的匣钵中并将原料送入到烧制炉中并然后进行烧制;以及在该烧制之后将匣钵中的原料回收,并且进行冷却及粉碎以制备二次电池用活性材料。在这种情况下,烧制可以在氧气气氛或惰性气体气氛中执行。

  在这种情况下,原料可以以粉末形式装载到匣钵中,并且可以通过增大该粉末形式的原料的尺寸而将原料装载到匣钵中。

  此外,设置于烧制炉中的匣钵可以是一个,并且可以是两个或更多个。在这种情况下,匣钵可以以多个匣钵的单层方式布置,并且可以通过将两个或更多个匣钵以两层或更多层的方式进行堆叠来烧制。在本公开的匣钵中,在匣钵的下部中形成有通孔,使得即使堆叠了两层或更多层的匣钵,被引入到形成于下匣钵的底部上的通孔和下匣钵的侧壁上的凹口部分中的气氛气体也可以被引入穿过形成于上匣钵的底部上的通孔和上侧壁的凹口部分。

  发明的实施方式

  实施例

  在下文中,通过实施例更详细地描述本公开。以下实施例示出了本公开的实施方案,并且本公开不限于此。

  实施例1

  在下述匣钵的侧壁上形成有高度为35mm的凹口部分:在该匣钵中,匣钵的侧壁的总高度为120mm。该侧壁的总面积为396cm2,并且该凹口部分的面积相当于212cm2。另外,匣钵的下表面的侧壁的圆化部分的曲率半径被设定为25mm。

  用于制备正极活性材料的原料粉末(Li2CO3+Ni0.6Co0.2Co0.2(OH)2)在匣钵中被模制成直径为50mm的球形形状,并且然后5kg的模制体被填入并设置在烧制炉中。空气作为含氧气体被注入烧制炉中并且进行烧制。

  在烧制之后,匣钵被从烧制炉中取出并且被冷却,以获得正极活性材料。

  对由此所获得的正极活性材料的残留锂量和纽扣单电池特性进行测量,并且其结果被示出在表1中。

  比较例1

  除了在匣钵的侧壁上形成有高度为10mm的凹口部分之外,通过以与实施例1中的方式相同的方式进行烧制和冷却来制备正极活性材料。

  对所制备的正极活性材料的残留锂量和纽扣单电池特性进行测量,并且其结果被示出在表1中。

  比较例2

  除了匣钵的侧壁和下表面的的圆化部分曲率半径为15mm之外,通过以与实施例1中的方式相同的方式进行烧制和冷却来制备正极活性材料。

  对所制备的正极活性材料的残留锂量和纽扣单电池特性进行测量,并且其结果被示出在表1中。

  [表1]

  

  如从表1可以看出的,可以看到的是,在实施例1的情况下,碳酸锂的残留量与比较例1相比减少了多于60%,碳酸锂的残留量与比较例2相比减少了多于30%。此外,可以看到的是,与比较例1和比较例2相比,在实施例1中通过提高初始放电容量、初始充电和放电效率以及循环寿命而改善了纽扣单电池特性。

  尽管上面已经示出并描述了实例实施方案,但是对于本领域的技术人员将明显的是,在不脱离由所附权利要求所限定的本发明构思的范围的情况下,可以作出改型和变型。

  [附图标记的说明]

  100:匣钵

  120:上表面

  140:凹口部分

  160:下表面

  180:圆化部分

《烧制二次电池活性材料的匣钵及利用该匣钵制造二次电池活性材料的方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)