欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种复合多孔碳膜的制备工艺及电容器独创技术25655字

一种复合多孔碳膜的制备工艺及电容器

2021-03-25 16:06:53

一种复合多孔碳膜的制备工艺及电容器

  技术领域

  本发明涉及一种碳膜,具体涉及一种复合多孔碳膜的制备工艺,该碳膜可以应用在电容器上;属于新材料技术领域

  背景技术

  纳米结构的碳素材料具有低比重、导电性良好、比表面积高、易于表面改性等诸多优点,因而得到了广泛而深入的研究,并在水处理、燃料电池、传感器等众多热门行业中得到应用。目前大部分碳素材料都是以粉末形态存在的,由于个体纳米多孔碳粒子的取向容易改变,会影响通过纳米孔的物质传输,因而产品性能的重现性差,这就大大限制了碳素材料的应用范围。

  随着技术的发展,近几年开发出了一些制造块状(或连续体)纳米多孔碳材料的新技术,比如碳凝胶、碳块、碳布、碳膜等,其中,纳米多孔碳膜可以经由硬模板或软模板的方法制备得到,也可以通过化学或物理气相沉积法制得,但是制备工艺或多或少存在原料昂贵、机械强度低、开孔率低、孔取向不可控制等问题,难以实现工业化大批量应用。

  电容器件是由两个电极及其间的介质材料构成,通常是利用电解液在两块极板之间的极化与去极化而实现电能的充放循环。高比表面积的电极材料可以提高电容器的比容量,而电解液的选择则根据用途和用户的需求进行决定。常规的高比表面积或高电化学活性电极材料包括:活性炭、纳米多孔碳(粉体)、有序介孔碳、多孔镍、过渡金属氧化物及导电聚合物等。正如前面所述,这些材料大多为粉末状,需要使用粘结剂等技术进行加工处理,使之成型并粘附到集流板(收集电流的板材)上,这些工艺必然会增加电极材料内部或颗粒之间的接触电阻,阻碍部分离子通道,导致充放电时的内阻损耗加大,在快速充放电时产生大量的废热,对电容有很大的负面影响。另外,颗粒材料会导致电极表面不够平整,影响正负极之间的电场分布,甚至产生内部短路现象,危害极大。因此,正负极之间的隔膜性能尤其重要。

  申请号为PCT/CA2015/000516(WO 2015135069 A1)的国际申请提出一种新型的纳米多孔碳支架(NCS)膜材料,其具有连续的三位孔道结构,可同时有利于电解质和电子的传导,能够实现100%的表面和孔隙利用率,是一种具有较好应用前景的电极材料。但是,这种NCS膜材料需要粘附到一块额外的集流板上来实现收集电流,这必然会增加加工难度,同时会导致内阻增加等负面影响。

  鉴于上述问题,有必要开发一种新的多孔碳膜的制备工艺,解决上述技术问题,使其具有工业化应用的良好前景。

  发明内容

  为解决现有技术的不足,本发明的目的在于提供一种复合多孔碳膜的制备工艺及应用了该复合多孔碳膜的电容器,该复合多孔碳膜至少具有一层多孔碳层,最好还复合有密实碳层,该多孔碳层实质上是一个开放的具有相互连通孔(三维连通)的多孔碳基网络,能够实现高效收集电流,避免常规集流板的腐蚀问题,同时大大降低电容的内阻,从而提高了电容的综合性能。

  为了实现上述目标,本发明采用如下的技术方案:

  本发明首先公开了一种复合多孔碳膜的制备工艺,该工艺包括:

  (1)制备薄膜A:

  a1)形成包含无机材料颗粒、粘接剂a和溶剂的混合浆料;

  b1)在基板上形成一层该混合浆料;

  c1)除去上述混合浆料层中的溶剂,形成膜层;

  d1)从基板上剥离膜层得到薄膜A;

  (2)制备薄膜B

  a2)形成包含碳前驱体颗粒、粘接剂b和溶剂的混合浆料;

  b2)在基板上形成一层该混合浆料;

  c2)除去上述混合浆料层中的溶剂,形成膜层;

  d2)从基板上剥离膜层得到薄膜B;

  (3)将薄膜A与薄膜B复合,形成复合薄膜;

  (4)对所述复合薄膜进行热处理,使薄膜B中的碳前驱体渗入薄膜A中,然后继续升高温度使碳前驱体转化为碳,形成含有碳和无机材料颗粒的复合膜,再从复合膜中除去无机材料,即去除无机物模板,制得复合多孔碳膜。

  在制备薄膜A时,所采用的无机材料颗粒可以是二氧化硅纳米颗粒、二氧化硅气凝胶、氧化镁、氧化钙、氧化硼等氧化物颗粒,也可以是氯化钠、氯化钾等无机盐颗粒,或者是其他在碳前驱体的碳化温度附近不会发生液化或剧烈形变的无机物,也就是说,在碳化过程中无机物模板应能够保持其性能和结构。薄膜A优选采用高温易分解的聚合物(粘接剂a)与无机材料颗粒(纳米或微米级)的混合浆料通过流延工艺形成,也可以用辊压、模压、涂覆等领域内常用的制备膜层材料的工艺方法来制备。这里的溶剂可以采用水,环保可靠,无污染。

  在制备薄膜B时,所采用的碳前驱体颗粒可以是碳水化合物(如蔗糖)、碳氢化合物等含有碳源的有机物,包括但不限于:沥青、醇、聚合物(如酚醛树脂)、低聚物、多环芳族烃(如蒽和萘)、以及它们的组合等,该碳前驱体颗粒在成膜过程应处于固态,适当加热(至液化温度)处理后变成流动态,进一步加热则会发生碳化(转化为碳)并具有比较高的转化率,因此,本发明中优选使用碳转化率达50%以上的中间相沥青作为碳前驱体颗粒。同样地,薄膜B优选采用高温易分解的聚合物(粘结剂b)与碳前驱体颗粒(纳米或微米级)的混合浆料通过流延工艺形成,也可以用辊压、模压、涂覆等领域内常用的制备膜层材料的工艺方法来制备。

  薄膜A与薄膜B的复合也称为“层叠”,复合后制备的碳膜结构为单侧多孔碳膜A-B(标记为s-NCS)或者双侧多孔碳膜A-B-A(标记为d-NCS),也可以是B-A-B,还可以多层覆合叠加,形成复合膜A-B-A…B-A、复合膜A-B-A…B-A-B、或复合膜B-A-B…A-B,这些多层复合膜经过多步类似于s-NCS和d-NCS的加工过程,最后形成多层多孔碳膜(标记为m-NCS)。另外,我们也可以制备像A-A…A-B、A-B-B…B-A、或其它组合形式的复合膜,这些复合膜也可以进一步处理形成多孔碳膜,它们和单侧、双侧、以及多层多孔碳膜的整体结构类似,这些结构的复合膜也落入本发明的保护范围,制备方法与前述的s-NCS和d-NCS相类似,故本发明不对它们作单列申明。

  上述的不同结构的碳膜(s-、d-、m-NCS)至少含有一层多孔碳和一层密实碳,多孔碳层是由薄膜A衍生出来的,而密实碳层是由薄膜B遗留而成的。碳膜的总厚度为1~1000μm(微米)可控,必要时甚至也可以制备厚度在100mm上下的板式复合多孔碳材料,多孔碳层和密实碳层的厚度均可根据需要进行调整(主要通过调节薄膜A和薄膜B的厚度来实现)。其中,密实碳层具备阻隔流体的重要功能,当用作电容内的单极板或双极板时,密实碳层能够有效阻止电解液从一侧进入另外一侧,防止电容器性能下降或受损。

  薄膜A和薄膜B的复合过程可以根据需要在室温或加热或冷却的条件下进行,也可以使用添加剂(如高温可分解胶水)促使二者更好地结合,形成复合膜A-B或A-B-A。将复合膜在惰性气氛(如氮气或氩气)下升温到碳前驱体的液化温度,使碳前驱体渗透到薄膜A的无机物模板孔隙内。过程中所使用的其它聚合物或粘结剂用于辅助薄膜A或薄膜B的成型,它们应该在碳前驱体液化前分解掉,从而将无机物的孔隙空出,使碳前驱体能够渗入。通常来说,常用的碳前驱体的液化温度低于500℃,因而,在热处理后,继续将复合物在惰性气氛(如氮气或氩气)下进一步升温到500℃以上并保持一段时间使前驱体转化为碳(碳化)。

  也存在这样一种极端可能,薄膜B中的碳前驱体在热处理时完全渗入到薄膜A的孔隙中,最终形成孔洞贯穿膜层的纳米多孔碳膜(NCS),也就是说,复合多孔碳膜仅具有多孔碳层,不存在密实碳层,该特殊情况也落入本申请的保护范围内。

  碳化结束后,冷却到室温,再将无机物模板移除后,形成具有多孔结构的碳膜材料。有的无机物模板可以用酸性或碱性溶液移除,例如:二氧化硅模板可以用氢氟酸水溶液或者氢氧化钠溶液化学溶解移除;有的无机物模板可以在中性液体移除,例如,氯化钠模板可以直接用水溶解掉;有的无机物模板如二氧化钛之类的模板也可以用氯气在高温下移除。

  本发明中的基板并不做特殊限制,但是,优选的基板应当是光滑且/或平整的,在涂覆薄膜之前,可以对基板表面进行预处理。上述工艺制备的复合多孔碳膜还可以进一步在惰性气氛下高温(如Ar,2000℃以上)处理,使其进一步石墨化,以提高其导电性、稳定性、强度等性能。

  作为上述制备工艺的一种替换,薄膜B也可以在预制好的薄膜A上直接成型。例如,用流延法在基板上制备薄膜A后,然后再用流延法直接在薄膜A上制备薄膜B,形成复合膜A-B。当然,也可以以薄膜B为底膜,在其上涂覆薄膜A。以此类推,还可以通过多次交替涂覆,制备A-B-A,B-A-B等多层复合膜。在薄膜A或B上对应地涂覆薄膜B或A的工艺还可以选用除了流延法以外的其他涂覆技术,如丝网印刷、辊涂、喷涂等等,工艺的选择并不会影响最终单侧、双侧或多层多孔碳膜结构(s-、d-、m-NCS)的形成。在这样的工艺中,作为底膜的薄膜A或薄膜B所起到的作用是成膜基材的作用,待固化后,将所有的膜层同时从基板上剥离,进行后续处理形成复合多孔碳膜。

  优选地,前述复合多孔碳膜是自支撑的单侧或双侧纳米多孔碳膜。

  再优选地,前述无机材料为金属氧化物或胶体二氧化硅,形状为球形,平均粒径为1nm~10μm,更优选的尺寸为2nm~100nm。

  更优选地,前述碳前驱体与无机材料的质量比为1/50~5/1,更优选的范围为1/10~1/2。

  更优选地,在步骤(4)中,热处理过程为:将复合薄膜从室温开始加热至50~500℃(具体为碳前驱体的液化温度附近),保持0.1~48h,或者用比较慢的升温速度,使碳前驱体充分(或者部分,在需要的条件下)渗透到薄膜A的孔隙中。更优选地,在步骤(4)中,碳化的含义是指含碳源或碳前驱体形成元素碳的转化过程,具体工艺过程为:将膜从前述的热处理温度开始以0.1~10℃/min的速率加热到500℃~1500℃,使碳前驱体转化为碳。

  再优选地,前述粘接剂a是可热分解的,选自但不限于:聚(乙烯醇缩丁醛-共-乙烯醇-共-乙酸乙烯酯)、聚苯乙烯、聚丙烯酸脂、聚丙烯酰胺、聚乙烯醇(PVA)、以及它们的组合等;优选的粘接剂a是聚乙烯醇(PVA),无机材料颗粒与粘接剂a的质量比为1/10~10/1。

  再优选地,前述粘接剂b也是可热分解的,选自但不限于:聚(乙烯醇缩丁醛-共-乙烯醇-共-乙酸乙烯酯)、聚苯乙烯、聚丙烯酸脂、聚丙烯酰胺、聚乙烯醇(PVA)、聚甲基丙烯酸甲酯、聚苯乙烯、聚氯乙烯以及它们的组合等;优选的粘接剂b是聚乙烯醇(PVA),碳前驱体颗粒与粘接剂b的质量比为1/10~10/1。

  进一步优选地,在制备薄膜A或薄膜B的混合物中,还包含有至少一种表面活性剂,所述表面活性剂是可热分解的,选自聚(环氧乙烷)-聚(氧化丙烯)-聚(环氧乙烷)嵌段共聚物(PEO-PPO-PEO)、聚山梨醇酯80、部分水解的聚乙烯醇(PVA)中一种或多种,且,所述表面活性剂与碳前驱体的质量比为1/100~100/1,更优选的范围是1/10~10/1。

  此外,另外,薄膜A和/或薄膜B中还可以含有一些添加剂以提高其加工性能,包括但不限于增塑剂、润滑剂、脱模剂、增强剂等,添加剂在混合物中的重量百分比小于50%,最好小于10%。添加剂具体可选择:醇、酚、铁化合物、二氧化硅以外的硅化合物、二氧化钛以外的钛化合物、碳纳米管、石墨烯、石墨烯氧化物、碳纳米纤维、碳纤维中的一种或多种。比如:在薄膜A中加入少量的碳前驱体,或者将一些固体添加剂(如碳纳米管、碳纤维、石墨烯等)加入到薄膜A或薄膜B中,这些组分能够优化NCS的力学或电学性能,但是不会影响s-、d-、m-NCS的整体结构形态。

  增塑剂的选择包括但不限于水、聚乙二醇、多元醇、多胺、或它们的组合的化学物,优选为1,3-丙二醇;增塑剂与无机材料的质量比为1/10~10/1。

  根据上述工艺,本发明得到了一种复合多孔碳膜,该碳膜至少同时含有一层密实碳层和一个具有开放的三维连通孔的多孔碳基网络。

  该网络包含的孔的直径为:

  a)在2nm~100nm之间;

  b)在2nm~100nm之间,并且进一步具有直径小于2nm的孔;

  c)在2nm~100nm之间,并且进一步具有直径为0.1μm~100μm之间的孔;

  d)大于100nm且≤100μm。

  基于上述结构特点,本发明的复合多孔碳膜(单侧或双侧)能够作为电极材料的薄膜在电容器件中的予以应用。将电解液(液态或固态)加入到s-NCS或d-NCS膜材料上,然后与含有电解液的隔膜(电介质)复合起来,构成电容。NCS膜材料的表面还可以进行修饰或负载一些活性物质,用于制备赝电容,来进一步提高电容的比容量。

  本发明的有益之处在于:

  (1)本发明的制备工艺得到的复合多孔碳膜至少具有一层密实碳层和一层多孔碳层,密实碳层具有阻隔流体的功能,可以防止气体或液体通过,当用作电容内的单极板或双极板时,密实碳层能够阻止电解液从一侧进入另外一侧,防止电容器性能下降或受损;

  (2)本发明的NCS膜厚度可根据需求灵活设计和调整,能够有效降低电容隔膜厚度,也可以提高其孔隙率和孔径,增大比表面积,提高电容的比容量,避免使用传统工艺的粘结剂从而大大降低了电子和离子的传输阻力,提高其电导性能。其中,s-NCS的密实碳层可以提高电容与外电路的接触面积,从而提高电导;d-NCS的密实碳层的厚度可以降低到1微米以下,这大大降低了双极板的内部电阻,大幅提高双极板的体积利用率,在增加电容的比容量的同时能够降低内阻产生的能耗。这些对电容的性能优化都非常有利;

  (3)复合在纳米多孔碳膜表面的密实碳层,还能够实现高效收集电流的功能,避免常规集流板的腐蚀问题,同时大大降低电容的内阻,从而进一步优化电容的综合性能;

  (4)在制备工艺中,通过使用小尺寸的纳米颗粒模板可以控制孔径,实现比表面积≥600m2/g,实现单电极的比容量120F/g,或体积比容量50F/cm3;

  (5)本发明的复合多孔碳膜可以应用在电容或类似设备上,这类设备都需要密封端面,现有技术的常规工艺是将多孔碳粉或膜材料贴到另外一块密实材料上进行使用,不但增加了工艺难度,还会导致内阻增加。本发明则能简化加工工艺,一次成型出具有密实碳层的复合多孔碳膜,利用本发明的复合多孔碳膜能够生产出厚度为20微米以下的单电容(电压1V以上),或500V/cm以上的串联电容电压,充放电极限电流可以达到100A/cm2以上。特别是可以把电极板(特别是双极板)做得非常薄,节省设备空间,同时降低电阻,提高能效。

  附图说明

  图1是本发明的单侧多孔碳膜制备示意图;

  图2是本发明的双侧多孔碳膜制备示意图;

  图3(a)和图3(b)分别是本发明的单侧和双侧多孔碳膜的特例示意图;

  图4是本发明的单侧多孔碳膜制备电容的示意图;

  图5是本发明的由单侧和双侧多孔碳膜制备电容的示意图。

  具体实施方式

  以下结合附图和具体实施例对本发明作具体的介绍。

  在本发明中,若无特殊说明,所用原料均为市购。

  其中,中间相沥青也称介相沥青,本质上是一种由众多芳香族烃的复杂混合物组成的沥青,其含有各向异性液晶颗粒(碳中间相)。具体到本发明的实施例中,中间相沥青碳前驱体选自萘基沥青、煤基沥青、石油基沥青和基于其他原料的沥青。实施例中的用量仅为实验室用量,具体到工业生产中,可根据生产需求对原料用量进行灵活调整。

  实施例1

  如图1所示,本实施例的制备工艺具体过程如下:

  (1)制备薄膜A

  将50g的10wt%聚乙烯醇(PVA、86-89%水解)的水溶液、2g的1,3-丙二醇(PD)、和2g的正丁醇加到球磨罐内。球磨1小时后,再将含有5g 50nm二氧化硅溶胶和2g PD的水相悬浮液加入到球磨罐内。球磨2小时后,分离出浆料(混合悬浮液)并脱泡。用流延法将浆料涂覆到玻璃基板上,刮刀和基板之间的间隙为0.10mm。待水分挥发后,将薄膜从基板上剥离,得到一张新鲜的含有SiO2/PVA/PD的薄膜A。

  (2)制备薄膜B

  将2g的中间相沥青(MP)和4g的正丁醇加到球磨罐内。球磨1小时后,将2g的1,3-丙二醇(PD)和50g的10wt%PVA/水溶液加到球磨罐内。再球磨2小时,分离出浆料(混合悬浮液)并脱泡。用流延法将浆料涂覆到玻璃基板上,刮刀和基板之间的间隙为0.10mm。待水分挥发后,将薄膜从基板上剥离,得到一张新鲜的含有MP/PVA/PD的薄膜B。

  (3)复合

  裁取相同尺寸(如5cm*5cm)的薄膜A和薄膜B,将二者按A-B的模式叠合在一起形成复合膜。

  (4)制备单侧多孔碳膜(s-NCS)

  将复合膜放入氮气气氛炉内,加热到400℃并保温2小时,使中间相沥青渗入到二氧化硅胶体之间的空隙里。再加热到900℃并保温2小时,使沥青完全碳化。冷却后,得到二氧化硅/碳复合膜。将其放入80℃的3mol/L氢氧化钠溶液内并浸泡2天,除去二氧化硅模板(也可以在室温下用氢氟酸洗除二氧化硅模板)。接着,用去离子水清洗薄膜几次直至中性状态,然后将其浸泡在稀盐酸一天除去仍附着在碳表面的Na+离子。再用去离子水清洗几遍后,薄膜置于80℃的烘箱中干燥一夜。由此制得自支撑的单侧纳米多孔薄膜(s-NCS-50,“50”代表相应的二氧化硅溶胶颗粒的尺寸50nm)。

  实施例2

  本实施例的制备工艺具体过程参见图2,薄膜A和薄膜B的制备过程均与实施例1完全相同,区别仅在于步骤(3)复合时,将二者按A-B-A的模式叠合在一起形成复合膜。这样一来,在经过与实施例1相同的步骤(4)后,制得了自支撑的双侧纳米多孔薄膜(d-NCS-50,“50”代表相应的二氧化硅溶胶颗粒的尺寸50nm)。

  实施例3

  (1)制备薄膜A

  将50g的5wt%聚丙烯酸甲酯(PMMA)的氯仿溶液、5g邻苯二甲酸二丁酯(DBP)和2g的正丁醇加到球磨罐内。球磨1小时后,再将5g 500nm氧化铝粉料加入到球磨罐内。球磨2小时后,分离出浆料(混合悬浮液)并脱泡。用流延法将浆料涂覆到玻璃基板上,刮刀和基板之间的间隙为0.10mm。待溶剂挥发后,将薄膜从基板上剥离,得到一张新鲜的含有Al2O3/PMMA/DBP的薄膜A。

  (2)制备薄膜B

  将2g的中间相沥青(MP)和4g的氯仿加到球磨罐内。球磨1小时后,将2g的DBP和50g的5wt%PMMA/氯仿溶液加到球磨罐内。再球磨2小时,分离出浆料(混合悬浮液)并脱泡。用流延法将浆料涂覆到玻璃基板上,刮刀和基板之间的间隙为0.10mm。待溶剂挥发后,将薄膜从基板上剥离,得到一张新鲜的含有MP/PMMA/DBP的薄膜B。

  (3)复合

  裁取相同尺寸(如5cm*5cm)的薄膜A和薄膜B,将二者按A-B或A-B-A的模式叠合在一起形成复合膜。

  (4)制备单侧多孔碳膜(s-/d-NCS)

  将复合膜放入氮气气氛炉内,加热到400℃并保温2小时,使PMMA分解并使中间相沥青渗入到氧化铝颗粒之间的空隙里。再加热到900℃并保温2小时,使沥青完全碳化。冷却后,得到氧化铝/碳复合膜。将其放入80℃的3mol/L氢氧化钠内并浸泡2天,除去氧化铝模板。接着,用去离子水清洗薄膜几次直至中性状态,然后将其浸泡在稀盐酸一天除去仍附着在碳表面的Na+离子。再用去离子水清洗几遍后,薄膜置于80℃的烘箱中干燥一夜。由此制得自支撑的单侧/双侧纳米多孔薄膜(s-/d-NCS-500,“500”代表相应的氧化铝颗粒的尺寸500nm)。

  实施例4

  将实施例1-3所制备的NCS膜分别置于石墨化炉内,通入保护气体氩气,并升温(10℃/min)至2400℃并保温半小时,使这些碳膜石墨化,提高其石墨化程度。

  实施例5

  按实施例3在玻璃基板上制备薄膜A(Al2O3/PMMA/DBP),然后将实施例1中的沥青/PVA悬浮液脱泡后用流延法直接涂覆在薄膜A上,干燥固化后,将复合膜从玻璃上剥离,然后升温印制并碳化、脱除氧化铝模板,制备得到单侧多孔碳膜。

  实施例6

  在薄膜A中加入少量的MP碳前驱体,并在其中加入一些固体添加剂(如碳纳米管、碳纤维、石墨烯等)加入到薄膜A或薄膜B中,这些组分能够优化NCS的力学或电学性能,但是不会影响s-、d-、m-NCS的整体结构形态。

  实施例7

  在该实施例中,薄膜B中的碳素在热处理时完全渗到薄膜A的孔隙中,最终形成孔洞贯穿膜层的纳米多孔碳膜(NCS),不存在密实碳层,如图3(a)和3(b)所示。

  实施例8

  制备单电容

  裁取两块相同尺寸(如1cm*1cm)的实施例1制得的s-NCS-50膜,分别向两块NCS膜的多孔面滴加0.2毫升质量百分比为5%全氟磺酸树脂(PFSA)/异丙醇溶液。待异丙醇挥发后,将二者的多孔面分别粘向浸有PFSA的增强无纺聚四氟乙烯(PTFE)膜的两侧(如图4所示),封装后即可获得一个具有约0.1F的单电容。

  实施例9

  制备串联电容

  裁取两块相同尺寸(如1cm*1cm)的实施例1制得的s-NCS-50膜,以及若干块(如2块)1cm*1cm的实施例2制得的d-NCS-50膜,分别向每块NCS膜的多孔面滴加0.2毫升质量百分比为5%全氟磺酸树脂(PFSA)/异丙醇溶液。待异丙醇挥发后,将它们的多孔侧分别粘向浸有PFSA的增强无纺聚四氟乙烯(PTFE)膜的两侧,其中两个s-NCS-50膜放在两端。封装后即可获得一个具有额定电压3V的串联电容,如图5所示。

  实施例10

  在NCS膜材料的表面进行修饰或负载一些活性物质(如MnO2,Ru2O3等),用于制备赝电容,来进一步提高电容的比容量。

  通过对各实施例1~实施例7的产品进行电镜检测,发现本发明的制备工艺得到的复合多孔碳膜是自支撑结构的,其表面至少具有一层多孔碳层,该多孔碳层实质上是一个开放的具有相互连通孔(三维连通)的多孔碳基网络,能够增大比表面积,提高电容的比容量,从而大大降低了离子的传输阻力,提高其电导性能;另外,该复合多孔碳膜最好还具有一层密实碳层,该密实碳层具有阻隔流体的功能,可以防止气体或液体通过,当用作电容内的单极板或双极板时,密实碳层能够阻止电解液从一侧进入另外一侧,防止电容器性能下降或受损。

  本发明的复合多孔碳膜可以应用在电容或类似设备上,这类设备都需要密封端面,现有技术的常规工艺是将多孔碳粉或膜材料贴到另外一块密实材料上进行使用,不但增加了工艺难度,还会导致内阻增加。本发明则能简化加工工艺,可以一次成型出具有密实碳层的复合多孔碳膜,利用本发明的复合多孔碳膜能够生产出厚度为20微米以下的单电容(电压1V以上),或500V/cm以上的串联电容电压,充放电极限电流可以达到100A/cm2以上。特别是可以把电极板(特别是双极板)做得非常薄,节省设备空间,同时降低电阻,提高能效,具有良好的经济效益和社会效益。

  以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

《一种复合多孔碳膜的制备工艺及电容器.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)