欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 晶粒级配的氧化锆增韧氧化铝陶瓷基板及其制备工艺独创技术18394字

晶粒级配的氧化锆增韧氧化铝陶瓷基板及其制备工艺

2021-02-15 03:29:21

晶粒级配的氧化锆增韧氧化铝陶瓷基板及其制备工艺

  技术领域

  本发明属于电子陶瓷基板制备技术领域,涉及一种高抗弯强度、高断裂韧性以及电学性能优良的氧化锆增韧氧化铝(ZTA)陶瓷基板,具体涉及一种既能保证ZrO2作为增韧相的作用,又不至于产生漏电流的问题,同时还能满足ZTA陶瓷覆铜基板和发热元件对力学与电学性能要求的晶粒级配的氧化锆增韧氧化铝陶瓷基板及其制备工艺。

  背景技术

  氧化锆增韧氧化铝(ZTA,Zirconia Toughened Alumina)陶瓷是以Al2O3为基体,部分稳定ZrO2为增韧相的一种复相陶瓷材料。ZTA陶瓷的机械性能介于Al2O3陶瓷和ZrO2陶瓷之间,既保留了Al2O3陶瓷高硬度和耐磨的特性,又有ZrO2陶瓷断裂韧性好和抗弯强度高的优点,且价格低于ZrO2陶瓷。氧化锆增韧氧化铝的主要机制是:由于ZrO2的热膨胀系数大于氧化铝,而且ZrO2的烧结温度低于Al2O3,所以ZrO2晶粒烧结完成以后处于张应力状态,有利于ZrO2四方相向单斜相产生马氏体相变,相变晶粒的剪切应力和体积膨胀对基体产生压应变,使裂纹扩展需要更大的能力,从而增加了ZTA陶瓷基体的韧性。由于ZTA陶瓷具有优良的散热性、绝缘性、抗热震性和机械强度,因此,ZTA陶瓷敷铜基板和发热元件在压力传感器、IGBT封装、DC~AC逆变器以及电子烟等领域中有广泛的应用。

  普通的DBC覆铜板,以氧化铝陶瓷基板为载体,抗弯强度为380 Mpa左右。铜金属层厚度在300 μm时,55 ℃ ~ 150 ℃的温度循环次数在 50次左右。将ZTA 陶瓷基板用于DBC电路板时,由于其抗弯强度达到750 Mpa以上,比96%氧化铝陶瓷基板高一倍,铜金属层厚度在100 ~ 500 μm,可承受更高的载流容量。以铜厚300 μm为例,55 ℃ ~ 150 ℃温度循环次数超过200次。将ZTA陶瓷应用于发热元件时,能够比96%氧化铝陶瓷发热元件承受三倍以上的启动功率。

  然而,ZrO2在ZTA陶瓷中作为增韧相的同时,也是导电相。当ZrO2含量超过一定量时,ZTA陶瓷敷铜电路板会出现漏电流,发热元件会发生击穿的现象。陶瓷材料的宏观性能是由材料的组成和显微结构决定的,因此,可以通过设计陶瓷的成分和晶粒结构来制造一种满足使用要求的材料。如何制备一种氧化锆增韧氧化铝陶瓷基板来既能保证ZrO2作为增韧相的作用,又不至于产生漏电流的问题,同时又能满足ZTA陶瓷覆铜基板和发热元件对力学与电学性能的要求是急需解决的技术问题。

  发明内容

  本发明的目的在于克服现有技术中存在的不足而提供一种根据威尔~弗兰模型和立方堆积排列原理分别推导出ZTA陶瓷中ZrO2体积分数的公式,由公式计算出合理的ZrO2的含量以及ZrO2与Al2O3晶粒的最佳粒径之比的晶粒级配的氧化锆增韧氧化铝陶瓷基板及其制备工艺,其制备工艺采用流延成型工艺和常压烧结方法进行。

  本发明的目的是这样实现的:

  一种晶粒级氧化锆增韧氧化铝陶瓷基板,采用氧化铝粉为主相材料,氧化锆粉为第二相材料,镁铝尖晶石粉为烧结助剂,选用无水乙醇和丁酮的二元共沸混合物作溶剂,磷酸酯作为分散剂,聚乙烯醇缩丁醛作粘接剂,邻苯二甲酸二丁酯作增塑剂,在氧化铝粉和氧化锆粉中,氧化铝粉的体积百分比含量为82.44%~96.7%,氧化锆粉的体积百分比含量为3.30%~17.56%,镁铝尖晶石粉的添加量占氧化铝粉和氧化锆粉总重量的0.1~4.0%,氧化铝粉、氧化锆粉、镁铝尖晶石粉组成无机粉体,其中无水乙醇和丁酮溶剂的添加量为无机粉体总重量的20~35%,磷酸酯的添加量为无机粉体总重量的0.5~2.0%,聚乙烯缩丁醛的添加量为无机粉体总重量的5~15%,邻苯二甲酸二丁酯的添加量为无机粉体总重量的2~6%。

  进一步的,在氧化锆粉和氧化铝粉组成的无机粉体中,氧化锆粉的最佳体积百分比含量为8.57%,氧化铝粉的最佳体积百分比含量为91.43%。

  进一步的,所述氧化锆粉为3Y氧化锆粉,氧化铝粉为α~氧化铝粉体。

  进一步的,在陶瓷基板的微观结构中氧化铝与氧化锆晶粒的粒径比为2.415~4.444。

  进一步的,在所述无水乙醇和丁酮的二元共沸混合物作溶剂中,无水乙醇和丁酮的重量比是1∶(1~1.2)。

  一种所述晶粒级氧化锆增韧氧化铝陶瓷基板的制备工艺,所述陶瓷基板采用流延成型工艺和常压烧结方法制备,具体步骤如下:

  步骤1)、首先将氧化铝粉、氧化锆粉、镁铝尖晶石粉、溶剂和分散剂按比例加入球磨机,球磨分散24~48小时后,再加入粘接剂和增塑剂二次球磨48小时,

  步骤2)、从球磨机里出料,通过真空脱泡获得粘度为20000~24000mPa·s的流延浆料;在流延机上流延成型,所得流延生坯片经冲压模具切成相应的尺寸形状,在1600℃~1630℃的高温窑炉中无压烧结,高温保温3~6h,最终制备出陶瓷基板样品。

  相对于现有技术,本发明的有益效果是:

  1、本发明以解决开尔文问题的最小化表面能量结构威尔~弗兰模型为依据,按照这个模型推导出来的氧化锆增韧氧化铝(ZTA)陶瓷中,ZrO2的临界体积百分比与Al2O3/ZrO2粒径比的立方成反比的公式,可以成为两相陶瓷材料设计的一个依据。由此得出ZTA陶瓷中氧化锆的体积含量的适合范围3.30%~17.56%,且氧化铝与氧化锆晶粒的粒径比为2.415~4.444。

  2、按照立方排列原理推导出来ZrO2临界体积分数公式,直接计算出ZrO2最佳含量为8.57%,其中ZrO2与Al2O3粒径比为0.414的ZrO2含量为2.86%,粒径比为0.225的ZrO2含量为5.71%,实现颗粒级配下的最密堆积。按照这个模型制备的ZTA陶瓷基板,抗弯强度达到816MPa,600 ℃高温体积电阻率为6.9×1010 Ω•cm,可以同时满足敷铜陶瓷基板和发热元件对ZTA陶瓷基板力学和电学性能的要求。

  3、在氧化铝和氧化锆两相复合材料之中,采用镁铝尖晶石作为烧结助剂,降低烧结温度,拓宽烧结温度范围,节约能源,有利于工业化生产。

  附图说明

  图1为在氧化锆增韧氧化铝陶瓷晶体结构中立方排列八面体间隙局部图。

  图2为在氧化锆增韧氧化铝陶瓷晶体结构中立方排列四面体间隙局部图。

  图3为8% ZrO2含量的氧化锆增韧氧化铝ZTA陶瓷基板表面SEM背散射图。

  图4为13% ZrO2含量的氧化锆增韧氧化铝ZTA陶瓷基板表面SEM背散射图。

  图5为体积百分比8.57% ZrO2含量的氧化锆增韧氧化铝ZTA陶瓷流延生坯SEM背散射图。

  图6为体积百分比8.57% ZrO2含量的氧化锆增韧氧化铝ZTA陶瓷基板表面SEM背散射图。

  图7为本发明的氧化锆增韧氧化铝陶瓷发热片加热60秒时通电试验图。

  图8为本发明的氧化锆增韧氧化铝陶瓷发热片加热60秒冷却后通电试验图。

  图9为本发明的8.57% ZrO2的氧化锆增韧氧化铝陶瓷发热片表面温度随时间的变化曲线图。

  具体实施方式

  下面具体结合实施例对本发明内容作进一步的详细说明,而不会限制本发明权利要求保护的范围。

  实施例1:一种氧化锆掺杂氧化铝陶瓷基板,采用氧化铝粉为主相材料,氧化锆粉为第二相材料,镁铝尖晶石粉为烧结助剂,选用无水乙醇和丁酮的二元共沸混合物作溶剂,磷酸酯作为分散剂,聚乙烯醇缩丁醛作粘接剂,邻苯二甲酸二丁酯作增塑剂。

  具体包括下列配比的原料制备而成:3.30%体积百分比含量的3Y氧化锆粉(粒径0.25μm),96.7%体积百分比含量的α~氧化铝粉(粒径0.7μm),外加3Y氧化锆粉和氧化铝粉总重量的0.1%的镁铝尖晶石粉助熔剂,共同组成无机粉体;并添加无机粉体总重量20%的无水乙醇和丁酮的二元共沸混合物构成的溶剂,添加无机粉体总重量0.5%的作为分散剂的磷酸酯,球磨分散24小时;再加入无机粉体总重量5%的作为粘接剂的聚乙烯醇缩丁醛和无机粉体总重量2%的作为增塑剂的邻苯二甲酸二丁酯,二次球磨48小时;从球磨机里出料,通过真空脱泡获得粘度为20000mPa•s的流延浆料;在流延机上流延成型,所得流延生坯片在1600℃高温烧结,保温时间3小时,制得138×190×0.32mm规格的陶瓷基板。

  实施例2:一种氧化锆掺杂氧化铝陶瓷基板,具体包括下列配比的原料制备而成:8%体积百分比含量的3Y氧化锆粉(粒径0.25μm),92%体积百分比含量的α~氧化铝粉(粒径0.7μm),外加3Y氧化锆粉和氧化铝粉总重量的2%的镁铝尖晶石粉助熔剂,共同组成无机粉体;并添加无机粉体总重量25%的无水乙醇和丁酮的二元共沸混合物构成的溶剂,添加无机粉体总重量1.0%的作为分散剂的磷酸酯,球磨分散32小时;再加入无机粉体总重量8%的作为粘接剂的聚乙烯醇缩丁醛和无机粉体总重量4%的作为增塑剂的邻苯二甲酸二丁酯,二次球磨48小时;从球磨机里出料,通过真空脱泡获得粘度为22000mPa•s的流延浆料;在流延机上流延成型,所得流延生坯片在1610℃高温烧结,保温时间4小时,制得138×190×0.32mm规格的陶瓷基板。

  实施例3:一种氧化锆掺杂氧化铝陶瓷基板,具体包括下列配比的原料制备而成:13%体积百分比含量的3Y氧化锆粉(粒径0.25μm),87%体积百分比含量的α~氧化铝粉(粒径0.7μm),外加3Y氧化锆粉和氧化铝粉总重量的3%的镁铝尖晶石粉助熔剂,共同组成无机粉体;并添加无机粉体总重量30%的无水乙醇和丁酮的二元共沸混合物构成的溶剂,添加无机粉体总重量1.5%的作为分散剂的磷酸酯,球磨分散40小时;再加入无机粉体总重量12%的作为粘接剂的聚乙烯醇缩丁醛和无机粉体总重量5%的作为增塑剂的邻苯二甲酸二丁酯,二次球磨48小时;从球磨机里出料,通过真空脱泡获得粘度为24000mPa•s的流延浆料;在流延机上流延成型,所得流延生坯片在1630℃高温烧结,保温时间5小时,制得138×190×0.32mm规格的陶瓷基板。

  实施例4:一种氧化锆掺杂氧化铝陶瓷基板,具体包括下列配比的原料制备而成:17.56%体积百分比含量的3Y氧化锆粉(粒径0.25μm),82.44%体积百分比含量的α~氧化铝粉(粒径2.0μm),外加3Y氧化锆粉和氧化铝粉总重量的4%的镁铝尖晶石粉助熔剂,共同组成无机粉体;并添加无机粉体总重量35%的无水乙醇和丁酮的二元共沸混合物构成的溶剂,添加无机粉体总重量2.0%的作为分散剂的磷酸酯,球磨分散48小时;再加入无机粉体总重量15%的作为粘接剂的聚乙烯醇缩丁醛和无机粉体总重量6%的作为增塑剂的邻苯二甲酸二丁酯,二次球磨48小时;从球磨机里出料,通过真空脱泡获得粘度为24000mPa•s的流延浆料;在流延机上流延成型,所得流延生坯片在1630℃高温烧结,保温时间6小时,制得138×190×0.32mm规格的陶瓷基板。

  实施例1~4所制备的0.32 mm厚度的ZTA陶瓷基板,测量其相应的力学和电学性能,结果如表1所示。

  表1 氧化锆掺杂氧化铝陶瓷基板的性能

  

  由表1可知,当ZrO2的体积含量在3.3% ~17.56%时,ZTA陶瓷的常温体积电阻率均大于1014Ω•cm,符合厚膜集成电路用陶瓷基板对常温体积电阻率的要求。随着ZrO2体积含量的增加,抗弯强度由545MPa逐渐增大到852 MPa,满足ZTA陶瓷基板对机械强度的要求。

  在本发明的配方中,在ZTA陶瓷中氧化锆的体积百分比含量为3.30%-17.56%,氧化铝的体积百分比含量为82.44%-96.7%,氧化铝与氧化锆晶粒的粒径比为2.415-4.444,本发明选择上述含量比的依据可以参看如图1所示,该图1和图2为立方排列八面体间隙和四面体间隙局部图,其中图1为八面体间隙,图2为四面体间隙。

  如图1、图2所示,在晶体结构中稳定的离子排列是能量最低的状态,立方排列是堆积密度最大的稳定结构,堆积密度达到74vol%。每一层球是立方形式,上一层放在下一层的空隙上,形成密堆结构。每个球有12个最邻近的球,如果每个球匀速长大,填满间隙,那么每个球都会长成十二面体。根据面心立方排列图,每个晶胞中有4个原子,4个八面体间隙和8个四面体间隙。

  根据鲍林第一规则,晶体结构中阳离子周围的阴离子数由两种离子的直径比决定。在ZTA陶瓷生坯中,假设氧化铝和氧化锆颗粒都是球形,按照立方堆积排列,在一个基本单元中,氧化铝颗粒有4个,直径为Da;有4个氧化锆颗粒填入八面体间隙,直径为Dz八,另有8个氧化锆颗粒填入四面体间隙,直径为Dz四。

  按照勾股定理列方程,计算出Dz八/Da=0.414。同理,由4个圆球包围起来的四面体间隙,计算出Dz四/Da=0.225。

  陶瓷粉体具有较高的表面自由能,在高温的作用下,粉体的过剩表面能成为烧结的动力,使粉体长成表面能趋向最小的多面晶体组合。根据最小化表面能量原理,在理想状态下,ZTA陶瓷烧结后,其显微结构应类似于威尔-弗兰模型。按照威尔-弗兰模型,在一个基本单元中,就有2个氧化铝晶粒,6个氧化锆晶粒。假设氧化锆颗粒的体积分数为Vz,那么在ZTA陶瓷中,氧化锆晶粒的体积分数如公式(1)所示:

  (1)

  将公式(1)简化后,可以得到公式(2)如下:

   (2)

  将Dz四/Da=0.225,也就是Da/Dz四=4.444带入式(2)中,得出Vz=3.30%。

  将Dz八/Da=0.414,也就是Da/Dz八=2.415带入式(1),得出Vz=17.56%。

  在ZTA陶瓷中,氧化锆最佳体积百分比含量为8.57%,氧化铝体积百分比含量为91.43%,氧化铝与氧化锆晶粒的粒径比为2.415-4.444。此时,氧化锆对氧化铝有充分的增韧效益,使ZTA达到很好的力学性能;同时,氧化锆晶粒又被氧化铝晶粒充分隔离,使ZTA具有很好的电绝缘性能,特别是高温下的绝缘性能。

  其依据如下:

  按照立方堆积排列,在ZTA陶瓷中,一个基本单元里氧化铝颗粒有4个,直径为Da;有4个氧化锆颗粒填入八面体间隙,直径为Dz八,另有8个氧化锆颗粒填入四面体间隙,直径为Dz四。那么氧化锆晶粒的体积分数为公式(3):

  (3)

  公式(3)简化后,可以得到下面的公式(4):

  (4)

  将Dz四/Da=0.225,Dz八/Da=0.414,带入公式(4),得出Vz=8.57%。

  在本发明的微观结构中:氧化铝与氧化锆晶粒的粒径比为2.415~4.444,其中氧化铝晶体粒径大小为1.5~2.8μm,氧化锆晶体粒径大小为0.6~0.65μm。在图3、4中可以看到不同ZrO2含量的ZTA陶瓷基板表面SEM背散射图,图3为8% ZrO2 的ZTA陶瓷基板表面SEM背散射图,图4为13% ZrO2的ZTA陶瓷基板表面SEM背散射图。

  从图5、6中可以看到,图5、6为体积百分比8.57% ZrO2含量的ZTA生坯和陶瓷基板表面SEM背散射图。图5为8.57% ZrO2含量的ZTA流延生坯SEM背散射图;图6为体积百分比8.57% ZrO2含量的陶瓷基板表面SEM背散射图。从图5可知,ZrO2粉体的平均粒径为0.25 μm;Al2O3粉体添加了两种,一种平均粒径0.7 μm,另一种平均粒径为2.0 μm。图6是生坯中陶瓷粉体通过烧结生长为晶体的ZTA陶瓷基板背散射图像,ZrO2晶粒的粒径为0.65 μm;Al2O3晶粒也有两种尺寸,一种平均粒径为1.55 μm,另一种平均粒径为2.85 μm。ZrO2晶粒与Al2O3晶粒的直径比,基本符合立方堆积圆球与四面体间隙、八面体间隙的直径比。

  应用实例:如图7、8所示,图7、8为 ZTA陶瓷发热片通电试验图,在体积百分比8.57% ZrO2的ZTA流延生坯上,丝网印刷铂金电阻浆料,再覆盖一片同等尺寸的生坯进行叠层,95 ℃温水等静压,然后1600 ℃高温共烧,形成长宽厚为19×4.7×0.38 mm,发热段长度为10.5 mm,平均电阻值为1.25 Ω的高温共烧陶瓷发热元件。在陶瓷元件上施加8 V的电压,通电启动功率为51.2 W,相当于发热片冷启动承受的功率为1508 W/cm3,而普通氧化铝陶瓷发热片启动时承受的功率一般不大于500 W/cm3。ZTA陶瓷发热片2的抗弯强度是普通氧化铝陶瓷发热片的一倍,冷启动能够承受的单位体积功率是普通氧化铝发热片的三倍。将ZTA发热试验片通电60秒钟后,通电试验结果如图7、8所示,图7为体积百分比8.57%ZrO2的ZTA陶瓷发热片2加热60秒时通电试验图,图中虚线框内区域呈红色,图8为体积百分比8.57%ZrO2的ZTA陶瓷发热片2加热60秒冷却后的通电试验图,图中发热丝1之外的区域呈黄色。在图9中可以看到本发明的8.57% ZrO2的氧化锆增韧氧化铝陶瓷发热片表面温度随时间的变化曲线情况。

  将体积百分比8.57% ZrO2的ZTA陶瓷发热片2通电3秒钟,发热片温度就升到536℃,说明ZTA陶瓷发热片2功率大,升温速度快,其温度随时间的变化曲线如图9所示。通电15秒后,发热片表面温度稳定在792 ℃左右,发红的发热丝1之间间隙清晰可见,如图7所示。冷却后,如图8所示,在发热片发热丝1之间没有出现黑点,这说明8.57% ZrO2的ZTA陶瓷发热片2高温体积电阻率满足陶瓷基板绝缘性能的要求。

《晶粒级配的氧化锆增韧氧化铝陶瓷基板及其制备工艺.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)