欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法独创技术19113字

一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法

2021-03-14 23:50:05

一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法

  技术领域

  本发明属于高熵过渡金属碳化物陶瓷材料及其制备领域,特别涉及一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法。

  背景技术

  随着高熵合金的发展,由其发展而来的高熵陶瓷材料也不断发展。其中高熵过渡金属碳化物不仅具有与二元碳化物一致的高硬度(~20GPa)、耐高温、抗烧蚀等特点,还具有比二元碳化物更优异的抗氧化性能、耐摩擦等优异的性能。与二元碳化物相比,高熵碳化物材料由于固溶产生的严重的晶格畸变效应,增大了材料晶格内的缺陷,导致在传热过程中声子散射的程度加重,因此高熵碳化物陶瓷的热导率要远小于二元碳化物陶瓷材料[Yan,Xueliang,et al."(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics withlow thermal conductivity."Journal of the American Ceramic Society 101.10(2018):4486-4491.]。这一特殊的低热导率性能有望在航空、汽车等的隔热结构材料领域有着广阔的应用前景。

  TiC、ZrC、HfC、NbC等碳化物均具有较宽的非化学计量成分范围,其C/Zr的摩尔比可在较宽的范围之间变化。如ZrC0.61-ZrC1.0,在该成分范围内,尽管缺碳型ZrC1-x中存在大量碳空位,但其仍可以保持着与化学计量比ZrC1.0一样的面心立方晶体结构。研究发现,非化学计量比的缺碳型碳化物陶瓷材料的热导率要小于化学计量比碳化物陶瓷材料,且碳含量越低,材料的热导率越低[Wei,Boxin,et al."Densification,mechanical and thermalproperties of ZrC1-x ceramics fabricated by two-step reactive hot pressing ofZrC and ZrH2 powders."Journal of the European Ceramic Society 38.2(2018):411-419.]。如在相同温度下,ZrC1-x的热导率要小于ZrC,HfC0.67的热导率小于HfC0.98。研究表明,通过将一定比例的过渡金属碳化物粉末与相应的金属粉末共混后烧结,即可以得到特定非化学计量比的缺碳型过渡金属碳化物陶瓷[Wang,Xin-Gang,et al.Journal of theEuropean Ceramic Society 31.6(2011):1103-1111.]。

  晶格缺陷通过增大传热过程中的声子散射来降低材料的热导率。高熵化可以有效增大固溶引起的晶格畸变;相比计量比过渡金属碳化物,缺碳碳化物可以增大晶格中的碳空位,降低材料的热导率。由此可见,高熵化和缺碳均可以向体系中引入晶格缺陷,降低材料的热导率。因此通过制备缺碳型高熵过渡金属碳化物陶瓷材料,可以在高熵碳化物陶瓷材料的基础进一步降低材料的热导率,提高材料的应用前景。

  发明内容

  本发明所要解决的技术问题是提供一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法,以克服现有技术中高熵碳化物陶瓷热导率高的缺陷。

  本发明提供了一种缺碳型高熵过渡金属碳化物陶瓷材料,所述陶瓷材料为(AaBbCcDdEeFf)C1-x陶瓷材料,其中A,B,C,D,E,F为过渡金属元素Ti、Zr、Hf、V、Nb、Ta、Cr、Mo或W,其中0.01≤x≤0.3,金属元素的含量范围为0.01≤(a,b,c,d,e,f)≤0.44。

  所述陶瓷材料是由单相高熵碳化物与金属单质或不同金属单质的混合物共混,干燥,然后放电等离子烧结得到;所述金属单质包括金属Ti、Hf、Zr、V、Nb、Ta、Cr、Mo或W。

  本发明还提供一种缺碳型高熵过渡金属碳化物陶瓷材料的制备方法,包括:

  (1)将五种过渡金属氧化物与炭黑或石墨共混,干燥,以无压炉在真空状态下热处理,冷却,得到单相高熵碳化物;

  (2)将步骤(1)中单相高熵碳化物与金属单质或不同金属单质的混合物以摩尔比7:3~99:1共混,干燥,放电等离子烧结,得到缺碳型高熵过渡金属碳化物陶瓷材料,其中金属单质包括金属Ti、Zr、Hf、V、Nb、Ta、Cr、Mo或W。

  所述步骤(1)中五种过渡金属氧化物选自TiO2、ZrO2、HfO2、Ta2O5、Nb2O5、Cr2O3、MoO3、WO3。

  所述步骤(1)中五种过渡金属氧化物与炭黑或石墨按照以下化学反应进展计量配比[Wei,Xiao-Feng,et al."High entropy carbide ceramics from different startingmaterials."Journal of the European Ceramic Society 39.10(2019):2989-2994.]:

  AOx+(x+1)C=xCO(g)+AC。

  所述步骤(1)中无压放电等离子烧结的工艺参数为:以5-20℃/min升温至1500-1800℃,保温30-90分钟。

  所述步骤(1)中不同金属单质的混合物为五种金属单质以摩尔比1:1:1:1:1混合得到。

  所述步骤(1)、(2)中共混的方式为湿法行星球磨,所述湿法行星球磨为:球磨介质为乙醇或丙酮,磨球材质为ZrO2或WC,具体采用湿法滚式球磨工艺,在60~200转/分钟的转速下,将原料球磨混合5-48h,烘干。

  所述步骤(2)中单相高熵碳化物为(A0.2B0.2C0.2D0.2E0.2)C,其中A,B,C,D,E,F为过渡金属元素Ti、Zr、Hf、V、Nb、Ta、Cr、Mo或W。

  所述步骤(2)中单相高熵碳化物与五种金属单质共混,其中五种金属单质之间的摩尔比为1:1:1:1:1。

  所述步骤(2)中放电等离子烧结的工艺参数为:以50-100℃/min的升温速率升温至1700-2300℃,并在30-80MPa的外加压强下,在真空条件下或氩气气氛中,烧结5-30min。

  本发明还提供一种缺碳型高熵过渡金属碳化物陶瓷材料的应用。

  本发明通过过渡金属氧化物与炭黑或者石墨,通过无压工艺制备单相高熵过渡金属碳化物粉末。将所得的不同高熵碳化物粉末研磨、过筛、称量后,与特定比例的特定金属粉末共混、干燥,再用放电等离子体烧结炉烧结,得到具有设计组分的缺碳型高熵碳化物陶瓷材料。

  本发明通过将计量比高熵碳化物粉末与金属粉末共混后,在烧结过程中,加入的金属元素与计量比的高熵碳化物发生化学反应,并最终生成单相的缺碳高熵碳化物陶瓷,最终产物中并没有氧化物或者金属等杂相。

  本发明涉及的缺碳高熵碳化物陶瓷材料的致密度在97%以上,复相陶瓷材料的致密度的计算公式为:致密度=体积密度/理论密度*100%。体积密度的测试方法严格按照国标(GB/T25995-2010精细陶瓷密度和显气孔率试验方法)所述的步骤和方法实施。理论密度依照文献所述的复相陶瓷材料的理论密度计算公式进行计算(田仕,等.致密陶瓷材料密度和气孔率的测试方法[J].理化检验(物理分册)47(2011)476-479)。

  本发明涉及的缺碳型复相陶瓷材料用X射线衍射(XRD,D/max-2550VB+/PC,Japan)表征其相组成;用扫描电子显微镜(MAIA3,TESCAN,Czech Republic)及其背散射电子图像观察其微观形貌;用压痕法测试所得材料的硬度;采用导热分析仪测量材料的热导率(LFA-467,Netzsch,Germany)。压痕法测量材料的维氏硬度严格按照标准GB/T 7997-2014要求的测试方法和步骤实施。

  有益效果

  与传统的碳化物陶瓷材料相比,本发明所制备的缺碳型高熵碳化物陶瓷内部存在大量碳空位和高熵化带来的晶格畸变。这一特征有利于进一步降低材料的热导率。此外,本发明具有制备工艺简单、可操控性强、容易实现规模化等优点。

  附图说明

  图1为实施例1制备的缺碳型缺碳型高熵(Ti0.28Zr0.18Hf0.18Nb0.18Ta0.18)C0.9碳化物陶瓷的XRD衍射峰图谱;

  图2为实施例2制备的缺碳型(Ti0.17Zr0.17Hf0.17Nb0.17Ta0.17W0.15)C0.85高熵陶瓷材料的抛光面的扫描电镜图;

  图3为实施例4制备的缺碳型高熵(Zr0.2Nb0.2Ta0.2Mo0.2W0.2)C0.95陶瓷的XRD衍射峰图谱;

  图4为对比例1制备的缺碳型ZrC0.85陶瓷的断面扫描电镜图。

  具体实施方式

  下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

  本发明主要试剂:金属Ti粉(质量纯度≥99.5%,粉末的粒径为10-35μm,厂家为北京中金研新材料有限公司)、Zr(质量纯度≥99.5%,粉末的粒径为2-45μm,厂家为北京中金研新材料有限公司)、Hf(质量纯度≥99%,粉末的粒径为10-50μm,厂家为北京中金研新材料有限公司)、V(质量纯度≥99%,粉末的粒径为15-45μm,厂家为上海泰坦科技股份有限公司)、Nb(质量纯度≥99.9%,粉末的粒径为20-50μm,厂家为株洲硬质合金集团有限公司)、Ta(质量纯度≥99.8%,粉末的粒径为2-15μm,厂家为株洲硬质合金集团有限公司)、Cr(质量纯度≥99.5%,粉末的粒径为2-45μm,厂家为阿拉丁试剂)、Mo(质量纯度≥99.6%,粉末的粒径为10-45μm,厂家为麦克林试剂)、W(质量纯度≥99.5%,粉末的粒径为0.5-5μm,厂家为株洲硬质合金集团有限公司)。

  TiO2(质量纯度≥99.9%,粉末的粒径~0.1μm,厂家为上海泰坦科技股份有限公司),ZrO2(质量纯度≥99.5%,粉末的粒径~0.2μm,厂家为株洲硬质合金集团有限公司),HfO2(质量纯度≥99.8%,粉末的粒径~0.2μm,厂家为株洲硬质合金集团有限公司),Ta2O5(质量纯度≥99.5%pure粉末的粒径~0.2μm,厂家为株洲硬质合金集团有限公司),Nb2O5(质量纯度≥99.8%,粉末的粒径~0.25μm,厂家为株洲硬质合金集团有限公司),Cr2O3(质量纯度≥99.5%,粉末的粒径~0.5μm,厂家为上海泰坦科技股份有限公司),MoO3(质量纯度≥99.8%,粉末的粒径~0.5μm,厂家为上海泰坦科技股份有限公司),WO3(质量纯度≥99.8%,粉末的粒径~0.15μm,厂家为扬州三和化工有限公司)。所述碳黑粒径≤0.5μm,质量纯度≥99%,厂家为中国中钢集团有限公司;石墨粒径≤10μm,质量纯度≥99%,厂家为中国中钢集团有限公司。

  实施例1

  一种缺碳型(Ti0.28Zr0.18Hf0.18Nb0.18Ta0.18)C0.9陶瓷的制备方法:

  (1)将TiO2粉、ZrO2粉、HfO2粉、Nb2O5粉和Ta2O5粉和碳黑粉末,按2:2:2:1:1:32摩尔比的比例进行配料。以乙醇为球磨介质、ZrO2球为磨球,将称得的混合粉末在滚式球磨机上以200转/分钟的转速进行球磨混合20h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体预压成坯后装入无压炉的石墨模具中,在真空状态下(气压小于50Pa)以10℃/min的升温速率,升温至1700℃,保温60分钟,制备出单相高熵(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C碳化物粉末。将所得的(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C碳化物粉末研磨、过筛备用。

  (2)称取一定量(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C碳化物粉末和金属Ti粉末,高熵碳化物粉末与Ti粉的摩尔比为9:1。以乙醇为球磨介质、ZrO2球为磨球,将称得的混合粉末在滚式球磨机上以180转/分钟的转速进行球磨混合10h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体装入放电等离子烧结的石墨模具中,在真空状态下(气压小于100Pa)以100℃/min的升温速率,升温至1900℃,并在30MPa的外加压强下,保温10分钟,制备缺碳型(Ti0.28Zr0.18Hf0.18Nb0.18Ta0.18)C0.9高熵陶瓷材料。

  经分析:所制备的缺碳型(Ti0.28Zr0.18Hf0.18Nb0.18Ta0.18)C0.9高熵陶瓷材料,其致密度达到99.5%,其XRD衍射峰如图1所示。由图可见,所制备缺碳型(Ti0.28Zr0.18Hf0.18Nb0.18Ta0.18)C0.9高熵陶瓷为单相结构,无氧化物杂相,无金属相。通过导热分析仪测量此缺碳型高熵碳化物陶瓷的室温热导率为5.20±0.91W/m·K,小于计量比高熵碳化物的热导率[Yan,Xueliang,et al."(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropyceramics with low thermal conductivity."Journal ofthe American CeramicSociety 101.10(2018):4486-4491.]。

  实施例2

  一种缺碳型(Ti0.17Zr0.17Hf0.17Nb0.17Ta0.17 W 0.15)C0.85陶瓷的制备方法:

  (1)(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C碳化物粉末的制备方法除球磨的转速改为150转/分钟外,其余均与实施例1相同。

  (2)称取一定量(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C碳化物粉末和金属W粉末,高熵碳化物粉末与W粉的摩尔比为17:3。以乙醇为球磨介质、WC球为磨球,将称得的混合粉末在滚式球磨机上以200转/分钟的转速进行球磨混合10h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体装入放电等离子烧结的石墨模具中,在真空状态下(气压小于50Pa)以80℃/min的升温速率,升温至1950℃,并在50MPa的外加压强下,保温10分钟,制备缺碳型(Ti0.17Zr0.17Hf0.17Nb0.17Ta0.17W0.15)C0.85高熵陶瓷材料。

  经分析:所制备的缺碳型(Ti0.17Zr0.17Hf0.17Nb0.17Ta0.17W0.15)C0.85高熵陶瓷材料,其致密度达到99.2%,其抛光面的扫描电镜图如图2所示。由图可见,所制备缺碳型(Ti0.28Zr0.18Hf0.18Nb0.18Ta0.18)C0.9高熵陶瓷材料内部无明显的气孔存在,且晶粒尺寸分布较均匀。通过导热分析仪测量此缺碳型高熵碳化物陶瓷的室温热导率为4.89±0.86W/m·K,小于计量比高熵碳化物的热导率。

  实施例3

  一种缺碳型高熵(Ti0.2Hf0.2Nb0.2Ta0.2 W0.2)C0.8陶瓷的制备方法:

  将TiO2粉、HfO2粉、Nb2O5粉、Ta2O5粉和WO3粉和碳黑粉末,按2:2:1:1:2:34摩尔比的比例进行配料。球磨过程与烧结过程与实施例1步骤(1)相同,制备出单相高熵(Ti0.2Hf0.2Nb0.2Ta0.2W0.2)C碳化物粉末。将所得的(Ti0.2Hf0.2Nb0.2Ta0.2W0.2)C碳化物粉末研磨、过筛备用。

  称取一定量(Ti0.2Hf0.2Nb0.2Ta0.2W0.2)C碳化物粉末和金属Ti、Hf、Nb、Ta和W粉末,其中五种金属粉末的摩尔比为1:1:1:1:1。高熵碳化物粉末与金属混合粉的摩尔比为8:2。以乙醇为球磨介质、WC球为磨球,将称得的混合粉末在滚式球磨机上以200转/分钟的转速进行球磨混合10h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体装入放电等离子烧结的石墨模具中,在真空状态下(气压小于100Pa)以100℃/min的升温速率,升温至2000℃,并在40MPa的外加压强下,保温10分钟,制备缺碳型高熵(Ti0.2Hf0.2Nb0.2Ta0.2 W0.2)C0.8陶瓷材料。

  经分析:所制备的缺碳型高熵(Ti0.2Hf0.2Nb0.2Ta0.2W0.2)C0.8陶瓷材料,其致密度达到99%以上。通过维氏硬度计在载荷9.8N、保压时间为15秒的条件测试材料的硬度,所得缺碳型(Ti0.2Hf0.2Nb0.2Ta0.2W0.2)C0.8高熵陶瓷材料的维氏硬度为~16.2±2.4GPa,小于计量比高熵(Ti0.2Hf0.2Nb0.2Ta0.2W0.2)C的硬度[Wei,Xiao-Feng,et al."Gradient microstructuredevelopment and grain growth inhibition in high-entropy carbide ceramicsprepared by reactive spark plasma sintering."Journal of the European CeramicSociety 40.4(2020):935-941.]。通过导热分析仪测量此缺碳型高熵碳化物陶瓷的室温热导率为4.95±0.93W/m·K,小于计量比高熵碳化物的热导率。

  实施例4

  一种缺碳型高熵(Zr0.2Nb0.2Ta0.2Mo0.2W0.2)C0.95陶瓷的制备方法:

  将ZrO2粉、Nb2O5粉、Ta2O5粉、MoO3粉和WO3粉和石墨粉末,按2:1:1:2:2:36摩尔比的比例进行配料。球磨过程与实施例1步骤(1)相同。烧结过程除烧结升温至1600℃,保温45分钟外,其余均与实施例1步骤(1)相同。制备出单相高熵(Zr0.2Nb0.2Ta0.2Mo0.2W0.2)C碳化物粉末。将所得的(Zr0.2Nb0.2Ta0.2Mo0.2W0.2)C碳化物粉末研磨、过筛备用。

  称取一定量(Zr0.2Nb0.2Ta0.2Mo0.2W0.2)C碳化物粉末和和金属Zr、Nb、Ta、Mo和W粉末,其中五种金属粉末的摩尔比为1:1:1:1:1。高熵碳化物粉末与金属混合粉的摩尔比为19:1。以乙醇为球磨介质、ZrO2球为磨球,将称得的混合粉末在滚式球磨机上以200转/分钟的转速进行球磨混合10h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体装入放电等离子烧结的石墨模具中,在真空状态下(气压小于80Pa)以100℃/min的升温速率,升温至1800℃,并在50MPa的外加压强下,保温10分钟,制备缺碳型(Zr0.2Nb0.2Ta0.2Mo0.2W0.2)C0.95高熵陶瓷材料。

  经分析:所制备的缺碳型高熵(Zr0.2Nb0.2Ta0.2Mo0.2W0.2)C0.95陶瓷材料,其致密度达到98.9%以上,其XRD衍射峰如图3所示。由图可见,所制备缺碳型高熵(Zr0.2Nb0.2Ta0.2Mo0.2W0.2)C0.95陶瓷材料为单相结构,无氧化物杂相,无金属相。通过导热分析仪测量此缺碳型高熵碳化物陶瓷的室温热导率为5.47±0.71W/m·K,小于计量比高熵碳化物的热导率。

  对比例1

  一种缺碳型ZrC0.85陶瓷的制备方法:

  将ZrO2粉和石墨粉末,按1:3摩尔比的比例进行配料。球磨过程与实施例1步骤(1)相同。烧结过程除烧结升温至1600℃,保温50分钟外,其余均与实施例1步骤(1)相同。制备出单相碳化锆粉末。将所得的碳化锆粉末研磨、过筛备用。

  称取一定量ZrC粉末和金属Zr粉末,其中ZrC粉末与金属Zr的摩尔比为17:3。以乙醇为球磨介质、ZrO2球为磨球,将称得的混合粉末在滚式球磨机上以200转/分钟的转速进行球磨混合10h。球磨结束后经旋转蒸发出去乙醇,后于烘箱中进行烘干,得到干燥的成分均匀的混合粉末;将所得的成分均匀的混合粉体装入放电等离子烧结的石墨模具中,在真空状态下(气压小于80Pa)以100℃/min的升温速率,升温至1900℃,并在50MPa的外加压强下,保温10分钟,制备缺碳型ZrC0.85陶瓷材料。

  经分析:所制备的缺碳型ZrC0.85陶瓷材料,其致密度达到98%以上,其断面扫描电镜图片如图4所示。由图可见,所制备缺碳型ZrC0.85陶瓷材料晶粒尺寸较大,且有少量闭气孔存在于晶界上。通过导热分析仪测量此缺碳型ZrC0.85陶瓷材料的室温热导率18.85±0.91W/m·K,小于计量比碳化锆陶瓷的热导率,但是高于所制备的缺碳型高熵碳化物陶瓷材料的热导率。

《一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)