欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种微波烧结用的保温装置及氧化锌压敏陶瓷微波烧成的方法独创技术18863字

一种微波烧结用的保温装置及氧化锌压敏陶瓷微波烧成的方法

2021-02-23 14:30:08

一种微波烧结用的保温装置及氧化锌压敏陶瓷微波烧成的方法

  技术领域

  本发明属于电子陶瓷技术领域,具体涉及一种微波烧结用的保温装置及氧化锌压敏陶瓷微波烧成的方法。

  背景技术

  氧化锌压敏陶瓷是在氧化锌粉末中掺入少量的氧化铋(Bi2O3)、氧化钴(Co2O3)、碳酸锰(MnCO3)、三氧化二锑(Sb2O3)、二氧化钛(TiO2)、三氧化铬(Cr2O3)、三氧化二镍(Ni2O3)等多种氧化物改性的精细电子陶瓷元件;它具有造价低廉,非线性伏安特性优良,响应时间快、漏电流小、通流容量大和卓越的浪涌吸收能力等优点,被广泛用作瞬态浪涌抑制器,保护电子电路免受异常过电压的损坏。

  烧结,是指把粉状物料转变为致密体。一般来说,粉体经过成型后,通过烧结得到的致密体是一种多晶材料,其显微结构由晶体、玻璃体和气孔组成。烧结过程直接影响显微结构中的晶粒尺寸、气孔尺寸及晶界形状和分布,进而影响材料的性能。

  目前,氧化锌压敏陶瓷基本上是按照传统陶瓷的工艺方法制备,即采用以外部发热体为发热源的梭式窑或隧道窑烧结压敏陶瓷片。由于是外部间接加热,很大一部分热能损耗在发热体、空气、耐火材料、保温材料中,只有小部分被产品利用,因此,传统的烧成工艺不但浪费能量,而且还导致配方中的氧化铋、氧化锑等低熔点氧化物大量挥发,引起反致密现象,并削弱了产品的电性能。

  微波烧结技术是利用物质与电磁场相互作用过程产生的热量使材料整体加热至烧结温度而实现致密化的技术,具有整体加热、降低烧结温度、改善材料性能的优点。但由于不同介质吸收微波能力不同,微波烧结具有选择性加热的特点,因此如果样品均匀性不好,就会无法实现整体加热而导致烧成后的陶瓷片变形或颜色不均匀(徐东等.微波烧结氧化锌压敏陶瓷的研究进展[J].电瓷避雷器,2007,5(219):25-30.)。

  大部分微波烧结炉,采用的是红外测温的方式,这种方式也存在一些测温不准确、测温孔散热较大的问题,有很多红外测温仪光斑过大,经常没有对准好物料测温,使测温不准确,一般情况下当温度升到1000℃时,红外测温孔的位置温度低20-50℃(戴苏明等.红外测温误差的来源与分析[J].苏州丝绸工学院学报,2000,20(1):25-29.)。

  发明内容

  为了克服现有技术存在的上述不足,本发明的目的是提供一种微波烧结用的保温装置及氧化锌压敏陶瓷微波烧成的方法。

  本发明的主要目的在于提供一种氧化锌压敏陶瓷微波烧成的方法。该方法能有效缩短烧成温度和烧成时间,并使产品达到良好的性能。

  本发明的目的至少通过如下技术方案之一实现。

  本发明提供了一种微波烧结用的保温装置、一种微波烧结测温方法和一种微波烧结氧化锌压敏陶瓷的制备方法。

  一种微波烧结用的保温装置。该装置由圆柱形匣体、两个端盖和两个坩埚组成。所述的圆柱形匣体由多晶莫来石耐火多孔材料制成;所述的两个端盖内表面各涂有一层吸波的碳化硅涂层,其中上端盖开有小孔;所述的两个坩埚为熔融石英坩埚,上下堆叠在一起,高度较矮的坩埚置于下方。陶瓷片生坯置于所述高度较矮的坩埚内,粉体置于所述的上方坩埚,所述的粉体为压制陶瓷片生坯用的粉体。

  一种微波烧结的测温方法。利用微波烧结整体加热的特点,由于陶瓷和粉体的吸波性能是一样的,当所述的高度较矮的坩埚的陶瓷片生坯达到某个温度的时候,上面的坩埚的粉体也会达到相同的温度,粉体的温度可以通过热电偶测量,进而达到控温的目的。

  本发明提供的一种微波烧结用的保温装置,包括:匣体、高坩埚、矮坩埚、压制陶瓷片生坯用的粉体、端盖及热电偶;所述高坩埚叠放在矮坩埚的上面;所述匣体内部的顶面及底面均设置有端盖;所述热电偶与高坩埚连接;所述压制陶瓷片生坯用的粉体放置在高坩埚内。

  进一步地,所述端盖包括上端盖及下端盖;所述上端盖设置在匣体内部的顶面;所述上端盖设有开孔,所述热电偶从上端盖的开孔伸入匣体内。

  进一步地,所述匣体为圆柱形匣体;所述匣体的材质为多晶莫来石耐火多孔材料,所述压制陶瓷片生坯用的粉体为氧化锌、氧化铋、四氧化三钴、碳酸锰、氧化锑、三氧化二镍、二氧化钛的混合物;所述热电偶的插在压制陶瓷片生坯用的粉体中;所述端盖的表面涂覆有一层碳化硅涂层。

  优选地,所述氧化锌、氧化铋、四氧化三钴、碳酸锰、氧化锑、三氧化二镍和二氧化钛的质量比为100:2-5:1-2:0.5-1:0.1-0.3:0.3-0.7:0.2-0.9。

  本发明提供一种利用上述微波烧结用的保温装置进行微波烧结氧化锌压敏陶瓷的方法,包括如下步骤:

  (1)将氧化锌、氧化铋、四氧化三钴、碳酸锰、氧化锑、三氧化二镍、二氧化钛、九水硝酸铝溶液及分散剂混合,得到混合粉料;

  (2)将步骤(1)所述混合粉料加入球磨罐中,然后加入适量水,放进行星式球磨机中球磨均匀,得到氧化锌压敏陶瓷浆料;

  (3)将步骤(2)所述氧化锌压敏陶瓷浆料在烘箱中烘干后,研磨成陶瓷粉末(氧化锌压敏陶瓷干粉),然后加入粘合剂造粒,压片成型,进行加热处理,得到陶瓷片生坯;

  (4)将步骤(3)所述陶瓷片生坯放入所述微波烧结用的保温装置中,然后将保温装置升温进行微波烧结处理,冷却至室温,得到所述氧化锌压敏陶瓷(氧化锌压敏电阻陶瓷片)。

  进一步地,步骤(1)中,按照质量份数计,所述混合粉料包括:

  

  

  进一步地,步骤(1)所述九水硝酸铝溶液是由九水硝酸铝与水混合均匀得到的溶液;所述九水硝酸铝与水的质量比为1:225-275;所述分散剂为十二烷基醋酸铵;所述氧化锌的粒径为0.45-0.55μm。

  优选地,步骤(1)所述氧化锌由间接法制造得到的,所述氧化锌的颗粒形状为近球形。

  优选地,所述九水硝酸铝与水的质量比为1:250。

  进一步地,步骤(2)所述混合粉料与水的质量比为100:500-700。

  进一步地,步骤(3)所述烘干的温度为110-130℃。

  进一步地,步骤(3)所述粘合剂为聚乙烯醇水溶液;所述聚乙烯醇水溶液的质量百分比浓度为5%;所述粘合剂与陶瓷粉末的质量比为0.5-1.5:100;步骤(3)所述加热处理的温度为550-650℃,加热处理的时间为0.8-1.2h。

  优选地,所述粘合剂与陶瓷粉末的质量比为1:100;步骤(3)所述加热处理的温度为600℃,加热处理的时间为1h。

  进一步地,步骤(4)所述微波烧结处理的温度为950℃-1100℃;微波烧结处理的时间为40-60min;在保温装置温度达800℃前,升温的速率为10-20℃/min;在保温装置温度达800℃后,升温速率为2-5℃/min。

  进一步地,步骤(4)中,进行微波烧结处理后,保温装置按2-10℃/min的冷却速率先从微波烧结处理的温度降温至500-700℃,然后随着炉冷却至室温。

  本发明公开的一种氧化锌压敏陶瓷微波烧成的方法。该方法包括:将氧化锌、氧化铋、四氧化三钴、碳酸锰、氧化锑、三氧化二镍、二氧化钛、九水硝酸铝溶液及分散剂等原料混合经一系列工序压敏陶瓷生坯,将压敏陶瓷生坯放入本发明提供的保温装置中,保温装置放入微波烧结炉中并利用本发明提供的测温方法控温烧结成瓷。

  所述的保温装置由用多晶莫来石耐火多孔材料制成圆柱形匣体、两个内表面各涂有一层吸波的碳化硅涂层的端盖和两个熔融石英坩埚组成。采用该种保温装置进行微波烧结,由于减少了材料和周围环境的温差,消除了陶瓷片出现裂纹、变形和颜色不均匀的现象,提高了产品的性能。与传统方法相比,该方法的烧结时间缩短了50%,因此,减少了氧化铋等低熔点物质的挥发和防止晶粒异常长大,从而该方法得到的产品性能比传统方法的好。

  与现有技术相比,本发明具有如下优点和有益效果:

  本发明提供的微波烧结氧化锌压敏陶瓷的方法,降低了烧结温度,缩短烧结时间,降低能耗,提高氧化锌压敏陶瓷的性能;传统烧结最佳温度为1100-1200℃,升温速率为2.5℃/min,保温时间为2h;而本发明所述微波烧结温度比传统烧结低,烧结时间大大地缩短,微波烧结最佳温度范围为950℃-1100℃,800℃前的升温速率为10-20℃/min,800℃后的升温速率为2-5℃/min,保温时间为40-60min;由于烧结温度低和烧结时间短,抑制了氧化铋和氧化锑等低熔点物质的挥发,防止氧化锌晶粒的异常长大,提高了陶瓷片的非线性伏安特性和电压梯度等性能。

  附图说明

  图1为实施例中微波烧结用的保温装置的结构示意图;

  其中:1-圆柱形匣体,2-上端盖,3-下端盖,4-高坩埚,5-矮坩埚,6-碳化硅涂层,7-陶瓷片生坯,8-压制陶瓷片生坯的粉体,9-热电偶;

  图2为陶瓷片生坯排胶工艺的温度曲线图;

  图3为实施例2微波烧结氧化锌压敏陶瓷的温度曲线图;

  图4为实施例3微波烧结氧化锌压敏陶瓷的温度曲线图;

  图5为传统烧结氧化锌压敏陶瓷的温度曲线图。

  具体实施方式

  以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。

  以下实施例及对比例所用到的重量(质量)份数,作为举例,重量单位可以为克、千克等,也可以是本领域常用的任意其他用量。

  实施例1

  实施例1提供一种微波烧结用的保温装置(如图1所示)和一种微波烧结的测温方法。该装置由圆柱形匣体1、上端盖2、下端盖3、高坩埚4和矮坩埚5组成。所述的圆柱形匣体1由多晶莫来石耐火多孔材料制成;所述的两个端盖内表面各涂有一层吸波的碳化硅涂层6,其中上端盖2开有小孔;所述的两个坩埚为熔融石英坩埚,上下堆叠在一起,矮坩埚5置于下方。陶瓷片生坯7置于所述高度较矮的坩埚内,压制陶瓷片生坯的粉体8置于所述的高坩埚4,所述的粉体8为压制陶瓷片生坯用的粉体;所述压制陶瓷片生坯用的粉体为氧化锌、氧化铋、四氧化三钴、碳酸锰、氧化锑、三氧化二镍、二氧化钛的混合物(氧化锌、氧化铋、四氧化三钴、碳酸锰、氧化锑、三氧化二镍和二氧化钛的质量比为100:2-5:1-2:0.5-1:0.1-0.3:0.3-0.7:0.2-0.9)。保温烧结装置的设计思路为:微波加热材料时材料整体被加热,但由于材料的温度和周围环境的温度之间存在较大的温差,因此不可避免地产生材料表面向周期环境的散热,容易造成材料表面温度低于中心温度,与传统热传导加热方式相反的温度梯度。过快的加热速度会增大这种温度梯度,产生的热应力过大会导致陶瓷片开裂,因此设计了如图1的保温装置。当微波加热的时候,由于上端盖2和下端盖3各涂一层吸波的碳化硅涂层6,涂层6将会吸收微波转化热量,从外部加热陶瓷片7,减少陶瓷片7的温度与周围环境的温度之间的温度差,而莫来石耐火多孔材料阻止热量散失,进一步减少陶瓷片7与周围环境之间的温度差,提高陶瓷片烧成的质量。

  微波烧结一般选用红外测温仪测温,而利用红外测温仪进行温度测量的时候,要确保测温仪的发射率设置正确,否则无法得到准确的结果,然而材料的发射率会随温度改变而改变,因此,红外在高温温度区间是测不准的。如果用热电偶直接接触陶瓷片测试其温度,就会因为热电偶与陶瓷片是点接触而无法灵敏精确地测出陶瓷片的温度。为此,实施例提供一种微波烧结的测温方法。如图1所示,利用微波烧结整体加热的特点,由于陶瓷片生坯7和粉体8的吸波性能是一样的,当所述的陶瓷片生坯7达到某个温度的时候,粉体8也会达到相同的温度,粉体8的温度可以通过热电偶9测量,进而达到控温的目的。

  实施例2

  本实施例提供一种微波烧结氧化锌压敏陶瓷的方法,包括以下步骤:

  (1)制备氧化锌压敏陶瓷浆料,各原料的重量份组成如下:

  氧化锌100份,氧化铋4份,四氧化三钴2份,碳酸锰0.75份,氧化锑0.2份,三氧化二镍0.5份,二氧化钛0.55份,九水硝酸铝溶液5份,分散剂5份,将所述物质混合得到混合粉料;所述的氧化锌由间接法制造,平均粒径控制在0.45-0.55μm,颗粒形状为近球形;所述九水硝酸铝溶液按照九水硝酸铝:水=1:250的质量比配制;

  (2)将步骤(1)的混合粉料装入球磨罐并加入适量水(混合粉料与水的质量比为100:600)后放进行星式球磨机球磨均匀得到氧化锌压敏陶瓷浆料;

  (3)将步骤(2)的氧化锌压敏陶瓷浆料置于温度为110℃的烘箱烘干后,研磨得到氧化锌压敏陶瓷干粉,按粘合剂和粉体质量比1:100加入粘合剂(5wt%的聚乙烯醇水溶液),研磨造粒、过100目筛子,压片成型(成型压力为8Mpa,保压1min),在600℃保温1h(具体工艺如图2所示)排出粘合剂得到陶瓷片生坯;

  (4)将步骤(3)得到的陶瓷片生坯置于图1保温装置进行微波烧结。按图3中所示的微波烧结温度曲线来控制微波烧结炉的温度,其中微波烧结温度为1000℃,800℃前的升温速率为15℃/min,800℃后的升温速率为3℃/min,保温时间为40min,然后按照5℃/min的冷却速度将温度从烧结温度降温600℃,最后随炉冷却至室温即得到氧化锌压敏电阻陶瓷片。

  (5)同样,将步骤(3)得到的陶瓷片生坯置于普通的保温装置(端盖无涂层)进行微波烧结作为对比,其他参数与步骤(3)相同。

  (6)对步骤(4)和步骤(5)得到的氧化锌压敏电阻陶瓷片烧银、焊接和包封,得到测试样品,按GB/T 16528-1996《压敏电阻器用氧化锌陶瓷材料》测试性能。测试结果见表1。

  表1实施例2性能对比

  

  从表1可知,使用本发明的保温装置烧结的氧化锌压敏陶瓷样品比普通保温装置烧结的性能要好。这是因为普通保温装置的端盖表面无吸波涂层,使得材料的温度和周围环境的温度之间存在较大的温差,导致产品很容易出现裂纹、变形和颜色不均匀的现象,从而引起产品性能下降。

  实施例3

  本实施例提供一种微波烧结氧化锌压敏陶瓷的方法,包括以下步骤:

  (1)制备氧化锌压敏陶瓷浆料,各原料的重量份组成如下:

  氧化锌100份,氧化铋4份,四氧化三钴2份,碳酸锰0.75份,氧化锑0.2份,三氧化二镍0.5份,二氧化钛0.8份,九水硝酸铝溶液5份,分散剂5份,将上述物质混合得到混合粉料;所述的氧化锌由间接法制造,平均粒径控制在0.45-0.55μm,颗粒形状为近球形;所述九水硝酸铝溶液按照九水硝酸铝:水=1:250的质量比配制;

  (2)将步骤(1)的混合粉料装入球磨罐并加入适量水(混合粉料与水的质量比为100:700)后放进行星式球磨机球磨均匀得到氧化锌压敏陶瓷浆料;

  (3)将步骤(2)的氧化锌压敏陶瓷浆料置于温度为110℃的烘箱烘干后,研磨得到氧化锌压敏陶瓷干粉,按粘合剂和粉体质量比1:100加入粘合剂(5wt%的聚乙烯醇水溶液),研磨造粒、过100目筛子,压片成型(成型压力为8Mpa,保压1min),在600℃保温1h(具体工艺如图2所示)排出粘合剂得到陶瓷片生坯;

  (4)将步骤(3)得到的陶瓷片生坯置于图1保温装置进行微波烧结。按图4中所示的微波烧结温度曲线来控制微波烧结炉的温度,其中微波烧结温度为1000℃,800℃前的升温速率为15℃/min,800℃后的升温速率为5℃/min,保温时间为65min,然后按照5℃/min的冷却速度将温度从烧结温度降温600℃,最后随炉冷却至室温即得到氧化锌压敏电阻陶瓷片。

  (5)同样,将步骤(3)得到的陶瓷片生坯进行传统烧结作为对比。所述传统烧结的过程包括:将陶瓷片生坯置于设置好温度和时间参数的箱式炉中,通过箱式炉中的空气的热对流和硅碳棒的热辐射对样品加热烧结;按图5中所示的传统烧结曲线设置箱式炉的温度和时间参数,其中烧结温度为1000℃,升温速率为2℃/min,保温时间为2h,然后按照5℃/min的冷却速度将温度从烧结温度降温600℃,最后随炉冷却至室温即得到氧化锌压敏电阻陶瓷片。

  (6)对步骤(4)和步骤(5)得到的氧化锌压敏电阻陶瓷片烧银、焊接和包封,得到测试样品,按GB/T 16528-1996《压敏电阻器用氧化锌陶瓷材料》测试性能。测试结果见表2。

  表2实施例3性能对比

  

  从表2的两种烧结工艺的产品性能对比看,两者的性能相差不大。但实施例2使用微波烧结的氧化锌压敏陶瓷电压梯度和非线性系数比传统烧结的大,这是因为微波烧结的时间是传统烧结时间的50%,大大缩短了烧结时间,从而减少了氧化铋的挥发和晶粒的长大。

  以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

《一种微波烧结用的保温装置及氧化锌压敏陶瓷微波烧成的方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)