欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种多晶B<Sub>4</Sub>C—SiC双层复合材料及其制备方法独创技术12354字

一种多晶B<Sub>4</Sub>C—SiC双层复合材料及其制备方法

2021-03-31 19:43:17

4C—SiC双层复合材料及其制备方法附图说明" src="/d/file/p/2020/11-25/23eb38696d98b8b8d40ba31d66c817d6.gif" />

  一种多晶B4C—SiC双层复合材料及其制备方法

  技术领域

  本发明涉及一种多晶B4C—SiC双层复合材料及其制备方法,属于无机非金属材料领域。

  技术背景

  碳化硼分子式为B4C,为灰黑色微粉,是已知最坚硬的三种材料之一(其他两种为金刚石、立方相氮化硼),B4C因具有高硬度、高断裂韧性、密度低以及化学稳定性好的特点,在耐磨材料、陶瓷增强相,尤其在轻质装甲,反应堆中子吸收剂等方面使用;此外,和金刚石、立方氮化硼相比,碳化硼制造容易、成本相对低廉,因而使用更加广泛,在某些地方可以取代价格昂贵的金刚石在磨削、研磨、钻孔等方面的应用;但是,B4C块材作为结构材料高温稳定性较差(在空气环境下、800℃ 以下基本稳定,在更高的温度会氧化形成氧化硼呈气相流失,导致其不稳定),在一定程度上限制了B4C的大规模应用。

  碳化硅(α-SiC)陶瓷的耐化学腐蚀性好、耐磨性能好、摩擦系数小且耐高温,是一类重要的陶瓷材料;碳化硅主要有四大应用领域:1.磨料和切割工具:由于碳化硅的耐用性和低成本,在现代工业加工中作为常用磨料使用;2.结构材料:碳化硅有潜力作为结构材料代替镍高温合金制造涡轮机叶片或喷嘴叶片;3.天文学:碳化硅可作为天文望远镜的镜面材料使用;4.催化剂载体:碳化硅本身的抗氧化性质使其可作为非均相催化剂的载体;碳化硅产量大、易烧结,生产成本低,但多晶碳化硅块材作为结构材料使用时的断裂韧度低,一定程度上限制了碳化硅作为结构材料的应用。

  复合材料是运用先进的材料制备技术,将不同性质的材料组分优化组合而成的新材料,复合材料具有两种或两种以上化学、物理性质不同的材料组分,各组分之间存在明显的界面;复合材料具有结构可设计性,可进行复合结构设计;复合材料不仅保持各组分材料性能的优点,而且通过各组分性能的互补和关联可以获得单一组成材料所不能达到的综合性能;若将多晶B4C与多晶SiC复合在一起得到多晶B4C—SiC双层复合材料,不仅能够具备B4C高硬度、高断裂韧性、密度小的特点,又可兼具SiC成本低、易烧结的优点,但是,目前并未出现制备多晶B4C—SiC双层复合材料的报道。

  发明内容

  本发明的目的在于克服现有技术中存在的缺陷,提供一种利用B4C多晶块体或粉末、SiC多晶块体或粉末为原料,在高温高压条件下制备多晶B4C—SiC双层复合材料的方法。

  为实现上述目的,本发明采用的技术方案是,一种多晶B4C—SiC双层复合材料的制备方法,具体包括以下步骤:

  a、原料处理:用无水乙醇分别处理晶粒尺寸为3 nm-500 μm的SiC多晶块体或粉末、晶粒尺寸为3 nm-500 μm的B4C多晶块体或粉末,废液倒出后,在100-120 ℃条件下进行烘干;干燥后的SiC多晶块体或粉末、B4C多晶块体或粉末中分别加适量的去离子水,分别进行预压成型,把成型样品放入真空干燥箱中真空干燥;

  b、装配烧结单元:将预压成型的原料用金属包裹体进行包裹,避免样品在高温高压下污染;将带有金属包裹体的原料装入高压烧结单元中,将组装好的高压烧结单元放入干燥箱中恒温干燥备用;

  c、高温高压烧结:利用高压设备进行高温高压烧结,达到设定压力后,升温加热,保温一段时间,保温结束后,停止加热,保压一段时间后再开始缓慢降压;

  d、样品处理:取出合成腔体内的样品,去除样品外面包裹的金属包裹体,对内部样品进行打磨、抛光以及酸洗后,得到多晶B4C—SiC双层复合材料。

  优选的,晶粒尺寸为3 nm-500 μm的SiC多晶块体或粉末原料中添加有烧结助剂A,晶粒尺寸为3 nm-500 μm的B4C多晶块体或粉末原料中添加有烧结助剂B。

  优选的,所述烧结助剂A为Fe、Si中的一种或两者的混合物,所述烧结助剂B为B、Si、石墨中的一种或多种。

  优选的,所述高温高压烧结的条件是烧结压力1-25 GPa、烧结温度600-2300 ℃、保温时间20秒-5小时。

  优选的,所述高温高压烧结的条件是烧结压力1-4GPa、烧结温度600-1300 ℃、保温时间20秒-15分钟。

  优选的,制备得到的多晶B4C—SiC双层复合材料的厚度为2-200 mm,其中多晶B4C层厚度为1-199 mm,多晶SiC厚度为1-199mm。

  优选的,所述高压设备是国产六面顶压机。

  本发明具有以下有益效果:

  1、本发明制备的多晶B4C—金刚石双层复合材料,具有多晶金刚石与多晶B4C双层结构,多晶B4C的主相为B4C,多晶SiC层的主相为α-SiC,两层多晶材料结合紧密,相对密度高,气孔率低,晶粒大小均匀分布,具有高温稳定性以及良好的力学性能,如多晶B4C层的高温稳定性为840-950 ℃,高硬度(多晶B4C层的维氏硬度为25-37 GPa,多晶SiC层的硬度为18-28 GPa)、高韧性(多晶SiC层的断裂韧性为2-4 MPa·m1/2,多晶B4C层的断裂韧性为3-6MPa·m1/2)等,既具备B4C高硬度高断裂韧性的特点,又结合了SiC成本低、易烧结的优点,具有广泛的应用前景;

  2、本发明利用高温高压条件制备多晶B4C—SiC双层复合材料,高压可以抑制晶粒在高温条件下异常长大,成功解决了B4C、SiC在高温常压烧结过程中晶粒异常长大的问题;

  3、本发明可利用国产六面顶压机制备多晶B4C—SiC双层复合材料,能够实现大规模的工业化生产,降低生产成本。

  附图说明

  图1为本发明工艺流程图;

  图2为实例1多晶B4C—SiC双层复合材料的扫描电镜分析图;

  图3为实例1多晶B4C—SiC双层复合材料的多晶SiC层扫描电镜分析图;

  图4为实例1多晶B4C—SiC双层复合材料的多晶B4C层扫描电镜分析图;

  图5为实例2多晶B4C—SiC双层复合材料的扫描电镜分析图;

  图6为实例2多晶B4C—SiC双层复合材料的多晶SiC层扫描电镜分析图;

  图7为实例2多晶B4C—SiC双层复合材料的多晶B4C层扫描电镜分析图;

  图8为实例3多晶B4C—SiC双层复合材料的扫描电镜分析图;

  图9为实例3多晶B4C—SiC双层复合材料的多晶SiC层扫描电镜分析图;

  图10为实例3多晶B4C—SiC双层复合材料的多晶B4C层扫描电镜分析图。

  具体实施方式

  下面通过附图和具体实施方式对本发明做进一步说明,有必要在此指出的是本实施例是对于本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述发明的内容做出一些非本质的改进和调整。

  实施例1:

  a、原料处理检测:取纯度为98%、平均晶粒尺寸为1 μm的多晶SiC块材30 g;取纯度为98%、平均晶粒尺寸为7 μm的多晶B4C粉末67 g;多晶SiC块材中加入体积分数为6%的Si作为烧结助剂,用100 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干;多晶B4C粉末中加入体积分数为3%的B作为烧结助剂,用60 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干,烘干后的多晶B4C粉末和多晶SiC块材中分别加60 ml去离子水并分别预压成型,把成型样品在真空干燥箱中干燥;

  b、装配烧结单元:对用来包裹原料的金属包裹体进行处理,打磨并抛光,然后去油、超声波清洗、真空烘干,将预压成型的SiC块材层与B4C块材层贴在一起并用金属包裹体包裹,防止样品在高温高压环境下被污染;将包裹后的试样装入高压装配烧结单元中,将组装好的烧结单元放入干燥箱中在120 ℃恒温作用下干燥备用;

  c、高温高压烧结:利用六面顶压机进行高温高压烧结,达到设定压力5.5GPa后,升温加热,在1600℃的条件下保温15分钟,待保温结束后,停止加热,保压2 min后,再开始缓慢降压;

  d、样品处理:取出合成腔体内的样品,去除样品外面包裹的金属,对合成样品进行打磨、抛光以及酸洗,得到多晶B4C—SiC双层复合材料。

  样品性能检测:制备得到的多晶B4C—SiC双层复合材料的厚度为8 mm,其中多晶B4C层厚度为6 mm,多晶SiC层厚度为2 mm,利用XRD检测样品物相组成,多晶B4C层的主相为B4C,多晶SiC层的主相为α-SiC;SEM检测样品微观形貌,样品致密度高,气孔率低;维氏硬度测试表明多晶B4C层的维氏硬度为35 GPa,多晶SiC层的硬度为25 GPa,多晶SiC层的断裂韧性为3.5 MPa·m1/2,多晶B4C层的断裂韧性为4.3 MPa·m1/2,采用差热分析法检测B4C层的高温稳定性为867 ℃

  实施例2:

  a、原料处理检测:取纯度为98%、平均晶粒尺寸为500 nm的多晶SiC块材44 g;取纯度为99%、平均晶粒尺寸为20 μm的多晶B4C粉末86 g,多晶SiC块材中加入体积分数为2% 的Si作为烧结助剂,用100 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干;多晶B4C粉末用150 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干,烘干后的多晶B4C粉末和多晶SiC块材中分别加80 ml去离子水并分别预压成型,把成型样品在真空干燥箱中干燥;

  b、该步骤与实施例1中的步骤b相同;

  c、高温高压烧结:利用六面顶压机进行高温高压烧结,达到设定压力7 GPa后,升温加热,在1300℃的条件下保温30分钟,待保温结束后,停止加热,保压2 min后,再开始缓慢降压;

  d、该步骤与实施例1中的步骤d相同。

  样品性能检测:制备得到的多晶B4C—SiC双层复合材料的厚度为10 mm,其中多晶B4C层厚度为6 mm,多晶SiC层厚度为4 mm,利用XRD检测样品物相组成,多晶B4C层的主相为B4C,多晶SiC层的主相为α-SiC;SEM检测样品微观形貌,样品致密度高,气孔率低;维氏硬度测试表明多晶B4C层的维氏硬度为37 GPa,多晶SiC层的硬度为26 GPa,多晶SiC层的断裂韧性为3.3 MPa·m1/2,多晶B4C层的断裂韧性为4.9 MPa·m1/2,采用差热分析法检测B4C层的高温稳定性910℃

  实施例3:

  a、原料处理检测:取纯度为99%、平均晶粒尺寸为10 μm的多晶SiC块材115 g,取纯度为99%、平均晶粒尺寸为500 nm的多晶B4C粉末110 g,多晶SiC块材用210 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干;多晶B4C粉末用200 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干,烘干后的多晶B4C粉末和多晶SiC块材中分别加120 ml去离子水并分别预压成型,把成型样品在真空干燥箱中干燥;

  b、该步骤与实施例1中的步骤b相同;

  c、高温高压烧结:利用六面顶压机进行高温高压烧结,达到设定压力4GPa后,升温加热,在1500℃的条件下保温20分钟,待保温结束后,停止加热,保压2 min后,再开始缓慢降压;

  d、该步骤与实施例1中的步骤d相同。

  样品性能检测:制备得到的多晶B4C—SiC双层复合材料的厚度为20 mm,其中多晶B4C层厚度为10 mm,多晶SiC层厚度为10 mm,利用XRD检测样品物相组成,多晶B4C层的主相为B4C,多晶SiC层的主相为α-SiC;SEM检测样品微观形貌,样品致密度高,气孔率低;维氏硬度测试表明多晶B4C层的维氏硬度为34 GPa,多晶SiC层的硬度为27GPa,多晶SiC层的断裂韧性为3.9 MPa·m1/2,多晶B4C层的断裂韧性为5.8 MPa·m1/2,采用差热分析法检测B4C层的高温稳定性为930 ℃。

《一种多晶B<Sub>4</Sub>C—SiC双层复合材料及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)