欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种容温稳定性压电陶瓷材料以及制备方法独创技术22800字

一种容温稳定性压电陶瓷材料以及制备方法

2021-02-07 05:15:29

一种容温稳定性压电陶瓷材料以及制备方法

  技术领域

  本发明属于压电陶瓷的技术领域,具体涉及一种容温稳定性压电陶瓷材料以及制备方法。

  背景技术

  压电陶瓷因其特殊的正逆压电效应,自被发现以来,广泛应用于电声器件,超声换能器,加速度传感器,压电引爆器,声纳,防核护目镜,压电微位移制动器,压电执行器等。随着科技的发展及各行各业对器件的要求越来越高,高性能压电陶瓷被市场强烈需求。特别是汽车领域及工控监测方面,要求压电陶瓷的温度稳定性好,即在-45℃至+125℃范围内,电容随温度的变化系数越小越好,以保证压电器件在苛刻的高低温环境下,仍然具有高的灵敏度。为了达到这一目的,很多的研究机构及企业单位做了大量的研究工作,包括:1.通过掺杂或改性PZT基压电陶瓷配方及工艺,但耗时漫长,难度大,部分日本厂家做到变化范围在±10%以内;2.PZT基压电陶瓷是正容温度系数的陶瓷,在制备好的压电陶瓷成品表面上,用胶水粘合工艺,采用串联的方式,贴上一薄层(0.05-0.1mm)具有补偿特性的负容温度系数的介电陶瓷,此法工艺复杂,且介电陶瓷易碎裂,不易大批量生产;3.将压电陶瓷与一负容温度系数的电容并联,作为补偿电容,这种方式补偿电容占用空间,无法实现结构简单化,对器件的其他的性能会产生影响,也无法实现器件向微型化方向发展。

  目前市面上所有的应用的压电陶瓷,在居里温度以下,压电陶瓷的介电常数(电容)随温度的升高而升高,并且变化量大,同时,在介电陶瓷电容器领域,很多厂家及研究者为了得到温度稳定性好的介电陶瓷,在原有配方的基础上,掺杂一些负容温度系数的SrTiO3,CaTiO3及BaTiO3等,但这些介电组分的介电常数较低,一般为300-2000,无法满足压电陶瓷介电温度补偿的要求。

  发明内容

  发明目的:本发明目的在于针对现有技术的不足,提供一种容温稳定性压电陶瓷材料以及制备方法,本发明采用特殊配方的调配技术,在压电陶瓷本体配方中掺杂介电常数随温度升高而降低的组分,此组分组合作为合成体掺杂到压电陶瓷中,得到了一种综合性能良好,同时在-45℃至+125℃范围内,容温变化控制在-5%至+3%的压电陶瓷振子。

  实现本发明的技术方案是:该压电陶瓷材料的材料组成为:

  xPb(Yb0.5Nb0.5)O3(1-x)Pb(Zr0.49Ti0.51)O3+ywt%Ba1-c-dSrcMgdSnaZrbTi1-a-bO3

  其中,x的取值范围为0.02~0.05,y的取值范围为0.5~3,a的取值范围为0.05~0.15,b的取值范围为0.05~0.1,c的取值范围为0.01~0.05,d的取值范围为0.01~0.05。

  一种制备上述所述的压电陶瓷材料的制备方法,包括以下步骤:

  步骤一,制备Ba1-c-dSrcMgdSnaZrbTi1-a-bO3预烧粉体:

  首先,按化学式Ba1-c-dSrcMgdSnaZrbTi1-a-bO3称取BaCO3、SrCO3、SnO2、Mg2(OH)2CO3、TiO2、ZrO2粉体原料,其中,a的取值范围为0.05~0.15,b的取值范围为0.05~0.1,c的取值范围为0.01~0.05,d的取值范围为0.01~0.05;然后,将称取的粉体原料研磨、预烧、研磨粉碎得到预烧粉体;

  步骤二,配料:

  配料原料包括称取的粉体主料和步骤一得到的预烧粉体;所述粉体主料包括按压电陶瓷主体配方的化学式xPb(Yb0.5Nb0.5)O3(1-x)Pb(Zr0.49Ti0.51)O3称取的PbO2、Yb2O3、Nb2O5、ZrO2、TiO2,其中,x的取值范围为0.02~0.05;所述预烧粉体的称取量占配料原料主体成分质量比的0.5wt%-3wt%;将称取的配料原料研磨、烘干;

  步骤三,合成:将步骤二烘干后的配料原料高温合成制得合成料;

  步骤四,成型及排塑:将步骤三中的合成料进行成型、排塑处理,得到有机物;

  步骤五,烧结:将步骤四中的有机物的坯体烧结,制得陶瓷;

  步骤六,烧银:将步骤五制得的陶瓷进行烧银;

  步骤七,极化:将步骤六的烧银后的陶瓷,在不同的极化条件下进行极化,极化得到压电陶瓷材料。

  进一步地,所述步骤一中,称取的粉体原料BaCO3、SrCO3、SnO2、Mg2(OH)2CO3、TiO2和ZrO2的纯度均为分析纯,将称取的粉体原料在乙醇为分散剂条件下,并在球磨罐中混合球磨6-8h,经烘干得到反应的前驱体;然后将前驱体放入氧化铝坩埚内在1050℃下预烧2h后,再通过球磨罐粉碎6h得到预烧粉体,该操作步骤可以将称取的粉体原料充分研磨并混合均匀,通过预烧得到预烧粉体。

  进一步地,所述步骤二中,称取的PbO2的纯度为化学纯,Yb2O3、Nb2O5、ZrO2、TiO2的纯度为分析纯,将称取的配料原料于球磨罐中混料,球磨罐中的球:粉料:水的重量比为2:1:0.5,球磨时间为6-8h,再将配料原料烘干,该操作步骤中能够使配料原料在球磨罐中充分研磨混合,得到干燥的混合均匀的配料原料。

  进一步地,所述步骤三中,将步骤二烘干后的配料原料放入氧化铝坩埚内振实并压紧,加盖密封,于950-1050℃合成2h,制得合成料。

  进一步地,所述步骤四中,将步骤三的合成料再次球磨、烘干,并加5wt%的聚乙烯醇水溶液进行造粒并压大块坯体,大块坯体陈腐48h后进行碾碎并造粒,造粒过程中的粒子过100目筛子得到筛下料,对得到的筛下料用直径10mm的模具,在8~10MPa的压力下成型得到厚度2.1mm坯体,以3℃/min的速率将坯体升温至200℃,再以1.5℃/min速率从200℃升至400℃,在400℃保温30min后,以5℃/min的速率升至650℃并保温10min,排出有机物,该操作步骤通过对合成料进行成型和排塑处理,得到能够制作陶瓷的成型的有机物。

  进一步地,所述步骤五中,将步骤四排出有机物的坯体采用锆钛酸铅粉料埋烧,在箱式炉中以3℃/min速率升温至1200-1250℃,保温70min,随箱式炉冷却,得到陶瓷。

  进一步地,所述步骤六中,将步骤五烧结好的陶瓷磨至厚度为2mm,采用丝网印刷工艺在其上、下表面印刷银浆,在800℃的温度下保温12min烧银。

  进一步地,所述步骤七中的极化温度为100℃-140℃,极化时间为20min,极化电场为2-3.5KV/mm。

  进一步地,还包括步骤八,步骤八中测试由步骤一至步骤七制备的压电陶瓷材料的压电性能,在室温下静置24h后测试其压电性能,并用数字电桥测试-45℃至+125℃温度范围内压电陶瓷材料的介电常数,并计算变化率。

  采用了上述技术方案,本发明具有以下的有益效果:

  (1)本发明通过在压电陶瓷本体配方中掺杂介电常数随温度升高而降低的组分,该组分采用Ba1-c-dSrcMgdSnaZrbTi1-a-bO3,通过将一定质量比的该组分作为合成体掺杂到压电陶瓷配方中,得到综合性能良好,同时在-45℃至+125℃的温度范围内,容温变化控制在-5%...+3%的压电陶瓷材料,使压电陶瓷材料的介电常数在一定温度范围内的变化幅度减小,保证了压电陶瓷材料在苛刻的高低温环境下,仍然具有较高的灵敏度。

  (2)本发明所述压电陶瓷材料的制备方法,制备方法中所采用的相对介电常数峰值高达13000的Ba1-c-dSrcMgdSnaZrbTi1-a-bO3组分,本发明中制备方法所涉及的Ba1-c-dSrcMgdSnaZrbTi1-a-bO3组分采用传统固相法合成,其制作成本低,易于实现批量生产的容温稳定的压电陶瓷材料,该压电陶瓷材料可广泛应用于汽车传感器用压电陶瓷和流量计用压电陶瓷等领域中。

  (3)本发明中的烧银后的陶瓷通过极化温度为100℃~140℃,极化时间为20min,极化电场为2~3.5KV/mm,极化得到压电陶瓷材料,该极化条件根据陶瓷的材料组成和尺寸大小进行设计,能够使制得的压电陶瓷材料具有最佳的压电性。

  (4)本发明通过在步骤八中测试由步骤一至步骤七制备的压电陶瓷材料的压电性能,在室温下静置24h后测试其压电性能,并用数字电桥测试-45℃至+125℃温度范围内压电陶瓷材料的介电常数,并计算变化率,由测试出来的实验数据来验证最终的成品压电陶瓷材料能否达到最终的预期效果,保证压电陶瓷材料的质量符合使用要求。

  (5)本发明中的步骤一中称取的粉体原料BaCO3、SrCO3、SnO2、Mg2(OH)2CO3、TiO2和ZrO2的纯度均为分析纯,高纯度的粉体原料能够提高预烧粉体的纯度,减少杂质影响。

  具体实施方式

  下面对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。

  一种容温稳定性共烧压电陶瓷材料,该压电陶瓷材料的材料组成为:

  xPb(Yb0.5Nb0.5)O3(1-x)Pb(Zr0.49Ti0.51)O3+ywt%Ba1-c-dSrcMgdSnaZrbTi1-a-bO3

  其中,x的取值范围为0.02~0.05,y的取值范围为0.5~3,a的取值范围为0.05~0.15,b的取值范围为0.05~0.1,c的取值范围为0.01~0.05,d的取值范围为0.01~0.05。

  一种制备上述所述的压电陶瓷材料的方法,包括以下步骤:

  步骤一,制备Ba1-c-dSrcMgdSnaZrbTi1-a-bO3预烧粉体:

  首先,按化学式Ba1-c-dSrcMgdSnaZrbTi1-a-bO3称取分析纯BaCO3、SrCO3、SnO2、Mg2(OH)2CO3、TiO2、ZrO2粉体原料,其中,a的取值范围为0.05~0.15,b的取值范围为0.05~0.1,c的取值范围为0.01~0.05,d的取值范围为0.01~0.05;然后,将称取的上述粉体原料在乙醇分散剂条件下并在球磨罐中混合球磨6-8h,经烘干得到反应的前驱体;然后将前驱体放入氧化铝坩埚内在1050℃下预烧2h后,再通过球磨罐粉碎6h得到预烧粉体,使用高纯度的粉体原料能够减少成品预烧粉体内的杂质,能够更好地发挥其功效;

  步骤二,配料:

  配料原料包括称取的粉体主料和步骤一得到的预烧粉体;所述粉体主料包括按压电陶瓷主体配方的化学式xPb(Yb0.5Nb0.5)O3(1-x)Pb(Zr0.49Ti0.51)O3称取的PbO2、Yb2O3、Nb2O5、ZrO2、TiO2,其中,x的取值范围为0.02~0.05,PbO2的纯度为化学纯,Yb2O3、Nb2O5、ZrO2、TiO2的纯度为分析纯,所述预烧粉体的称取量占配料原料主体成分质量比的0.5wt%-3wt%;将称取的配料原料于球磨罐中混料,球磨罐中的球:粉料:水的重量比为2:1:0.5,球磨时间为6-8h,再将球磨后的配料原料烘干;

  步骤三,合成:

  将步骤二烘干后的原料粉料放入氧化铝坩埚内振实并压紧,加盖密封,于950-1050℃合成2h,制得合成料;

  步骤四,成型及排塑:

  将步骤三的合成料再次球磨、烘干,并加5wt%的聚乙烯醇水溶液进行造粒并压大块坯体,大块坯体陈腐48h后进行碾碎并造粒、过筛,过筛中的粒子过100目筛子得到筛下料,对得到的筛下料用直径10mm的模具,在8-10MPa的压力下成型得到厚度2.1mm坯体,以3℃/min的速率将坯体升温至200℃,再以1.5℃/min速率从200℃升至400℃,在400℃保温30min后,以5℃/min的速率升至650℃并保温10min,排出有机物;

  步骤五,烧结:

  将步骤四排出有机物的坯体采用锆钛酸铅粉料埋烧,在箱式炉中以3℃/min速率升温至1200-1250℃,保温70min,随箱式炉冷却,得到陶瓷;

  步骤六,烧银:

  将步骤五烧结好的陶瓷磨至厚度为2mm,采用丝网印刷工艺在其上、下表面印刷银浆,在800℃的温度下保温12min烧银;

  步骤七,极化:

  将步骤六的烧银后的陶瓷,在不同的极化条件下进行极化,极化得到压电陶瓷材料;极化温度为100℃-140℃,极化时间为20min,极化电场为2-3.5KV/mm;该步骤中的极化条件是根据烧银后的陶瓷的材料组成和尺寸大小进行设计,能够使极化后的压电陶瓷材料具有更加的压电性。

  步骤八,测试压电性能:

  将步骤七极化处理的压电陶瓷材料,于室温下静置24h后测试其压电性能,并用数字电桥测试-45℃至+125℃温度范围内压电陶瓷材料的介电常数,并计算变化率。通过测试压电性能来验证最终成品的压电陶瓷材料是否达到预期效果,进而验证制备成果。

  本发明通过在压电陶瓷本体配方中掺杂介电常数随温度升高而降低的组分,该组分采用Ba1-c-dSrcMgdSnaZrbTi1-a-bO3,通过将一定质量比的该组分作为合成体掺杂到压电陶瓷配方中,得到综合性能良好,同时在-45℃至+125℃的温度范围内,容温变化控制在-5%至+3%的压电陶瓷材料,使压电陶瓷材料的介电常数在一定温度范围内的变化幅度减小,保证了压电陶瓷材料在苛刻的高低温环境下,仍然具有较高的灵敏度。

  以下将通过具体实施例对本发明中的压电陶瓷材料的制备方法进行作进一步说明。

  实施例1:本实施例中所述压电陶瓷材料的组成为:xPb(Yb0.5Nb0.5)O3(1-x)Pb(Zr0.49Ti0.51)O3+ywt%Ba1-c-dSrcMgdSnaZrbTi1-a-bO3,其中,a=0.06,b=0.1,c=0.01,d=0.03,x=0.05,y=3,即该压电陶瓷材料的组成式为:0.05Pb(Yb0.5Nb0.5)O30.95Pb(Zr0.49Ti0.51)O3+3wt%Ba0.96Sr0.01Mg0.03Sn0.06Zr0.1Ti0.84O3;制备该压电陶瓷材料的制备方法包括以下步骤:

  步骤一,制备Ba0.96Sr0.01Mg0.03Sn0.06Zr0.1Ti0.84O3预烧粉体:

  首先,按化学式Ba0.96Sr0.01Mg0.03Sn0.06Zr0.1Ti0.84O3,称取分析纯BaCO3、SrCO3、SnO2、Mg2(OH)2CO3、TiO2、ZrO2粉体原料,然后将上述粉体原料在乙醇为分散剂条件下,在球磨机中混合球磨6-8h,经烘干得到反应的前驱体;然后将前驱体放入氧化铝坩埚内在950℃下预烧2h后,再通过球磨罐粉碎6h得到预烧粉体;

  步骤二,配料:

  配料原料包括称取的粉体主料和步骤一得到的预烧粉体;所述粉体主料包括压电陶瓷主体配方的化学式0.05Pb(Yb0.5Nb0.5)O30.95Pb(Zr0.49Ti0.51)O3称取的PbO2、Yb2O3、Nb2O5、ZrO2、TiO2,其中,PbO2的纯度为化学纯,Yb2O3、Nb2O5、ZrO2、TiO2的纯度为分析纯,,所述预烧粉体的称取量占配料原料主体成分质量比3wt%;将称取的配料原料于球磨罐中混料,球磨罐中的球:粉料:水的重量比为2:1:0.5,球磨时间为6-8h,再将球磨后的配料原料烘干;

  步骤三,合成:

  将步骤二烘干后的配料原料放入氧化铝坩埚内振实并压紧,加盖密封,于1000℃合成2h,制成合成料;

  步骤四,成型及排塑:

  将步骤三的合成料再次球磨、烘干,外加5wt%的聚乙烯醇水溶液进行造粒并压大块坯体,大块坯体陈腐48h后进行碾碎并造粒,造粒过程中的粒子过100目筛子,过筛子后得到筛下料,对得到的筛下料用直径10mm的模具,在8-10MPa的压力下成型得到一定强度的厚度2.1mm坯体;然后以3℃/min的速率将坯体升温至200℃,再以1.5℃/min速率从200℃升至400℃,在400℃保温30min后,以5℃/min的速率升至650℃并保温10min,排出有机物;

  步骤五,烧结:

  将步骤四排出有机物的坯体采用锆钛酸铅粉料埋烧,在箱式炉中以3℃/min速率升温至1220℃,保温70min,随箱式炉冷却,得到陶瓷;

  步骤六,烧银:

  将步骤五烧结好的陶瓷打磨至厚度为2mm,采用丝网印刷工艺在其上、下表面印刷银浆,置于加热炉中,升温至800℃并保温12min烧银,自然冷却至室温;

  步骤七,极化:

  将步骤六的烧银后的陶瓷,在不同的极化条件下进行极化;

  极化温度为100℃~140℃,极化时间为20min,极化电场为2~3.5KV/mm,极化得到压电陶瓷材料;

  步骤八,测试压电性能:

  将步骤七极化处理的压电陶瓷材料,于室温下静置24h后测试其压电性能,并用数字电桥测试-45℃至+125℃温度范围内压电陶瓷的介电常数,并计算变化率;

  该实施例中的制得的压电陶瓷材料的压电性能测试与容温特性的测试变化详见下表1:

  

  表1

  本实施例中以本发明所述压电陶瓷材料的具体的组成式0.05Pb(Yb0.5Nb0.5)O30.95Pb(Zr0.49Ti0.51)O3+3wt%Ba0.96Sr0.01Mg0.03Sn0.06Zr0.1Ti0.84O3为制备目的,并将制备后的压电陶瓷材料中抽取五组进行压电性能测试与容温特性的测试,并得出表1中五组实验数据,从表1中五组实验数据对比得出,在-45℃至+125℃的温度范围内,该压电陶瓷材料的电容温度变化控制在-4.8%至+2.5%之间,压电常数D33变化范围为400~405pC/N,机电耦合系数Kp变化范围为67.9%~69.1%,相对介电常数的变化范围为1801~1820,居里温度的变化范围在339℃~344℃,进一步表明了该压电陶瓷材料的不仅居里温度高、电容温度变化幅度小,而且具有更高地机电耦合系数,本发明所述压电陶瓷材料的综合性能良好,同时在-45℃至+125℃的温度范围内,容温变化控制在-5%至+3%的压电陶瓷材料,使压电陶瓷材料的介电常数在一定温度范围内的变化幅度减小,保证了压电陶瓷材料在苛刻的高低温环境下,仍然具有较高的灵敏度。

  实施例2:本实施例中所述压电陶瓷材料的组成为:xPb(Yb0.5Nb0.5)O3(1-x)Pb(Zr0.49Ti0.51)O3+ywt%Ba1-c-dSrcMgdSnaZrbTi1-a-bO3,其中,a=0.1,b=0.05,c=0.03,d=0.01,x=0.03,y=1.5,即该压电陶瓷材料的组成式为:0.03Pb(Yb0.5Nb0.5)O30.97Pb(Zr0.49Ti0.51)O3+1.5wt%Ba0.96Sr0.03Mg0.01Sn0.1Zr0.05Ti0.95O3;制备该压电陶瓷材料的制备方法包括以下步骤:

  步骤一,制备Ba0.96Sr0.03Mg0.01Sn0.1Zr0.05Ti0.95O3预烧粉体:

  首先,按化学式Ba0.96Sr0.03Mg0.01Sn0.1Zr0.05Ti0.95O3,称取分析纯BaCO3,SrCO3,SnO2,Mg2(OH)2CO3,TiO2,ZrO2粉体原料,然后,将上述粉体原料在乙醇为分散剂条件下,在球磨机中混合球磨6h,经烘干得到反应的前驱体,然后将前驱体的混合粉料放入氧化铝坩埚内在1050℃下预烧2h后球磨粉碎6h得到预烧粉体。

  步骤二,配料:

  配料原料包括称取的粉体主料和步骤一得到的预烧粉体;所述粉体主料包括压电陶瓷主体配方的化学式0.03Pb(Yb0.5Nb0.5)O30.97Pb(Zr0.49Ti0.51)O3称取的PbO2、Yb2O3、Nb2O5、ZrO2、TiO2,其中,PbO2的纯度为化学纯,Yb2O3、Nb2O5、ZrO2、TiO2的纯度为分析纯,所述预烧粉体的称取量占配料原料主体成分质量比1.5wt%;将称取的配料原料于球磨罐中混料,球磨罐中的球:粉料:水的重量比为2:1:0.5,球磨时间为6-8h,再将球磨后的配料原料烘干;

  步骤三,合成:

  将步骤二烘干后的配料原料放入氧化铝坩埚内振实并压紧,加盖密封,于1000℃合成2h,制得合成料;

  步骤四,成型及排塑:

  将步骤三的合成料再次球磨、烘干,外加5wt%的聚乙烯醇水溶液进行造粒并压大块坯体,大块坯体陈腐48h后进行碾碎并造粒,造粒过程中的粒子过100目筛子,过筛子后得到筛下料,对得到的筛下料用直径10mm的模具,在8-10MPa的压力下成型得到一定强度的厚度2.1mm坯体;然后以3℃/min的速率将坯体升温至200℃,再以1.5℃/min速率从200℃升至400℃,在400℃保温30min后,以5℃/min的速率升至650℃并保温10min,排出有机物;

  步骤五,烧结:

  将步骤四排出有机物的坯体采用锆钛酸铅粉料埋烧,在箱式炉中以3℃/min速率升温至1220℃,保温70min,随箱式炉冷却,得到陶瓷;

  步骤六,烧银:

  将步骤五烧结好的陶瓷打磨至厚度为2mm,采用丝网印刷工艺在其上、下表面印刷银浆,置于加热炉中,升温至800℃并保温12min烧银,自然冷却至室温;

  步骤七,极化:

  将步骤六烧银后的陶瓷,在不同的极化条件下进行极化;

  极化温度为100℃~140℃,极化时间为20min,极化电场为2~3.5KV/mm,极化得到压电陶瓷材料;

  步骤八,测试压电性能:

  将步骤七极化处理的压电陶瓷材料,于室温下静置24h后测试其压电性能,并用数字电桥测试-45℃至+125℃温度范围内压电陶瓷的介电常数,并计算变化率;

  该实施例中的制得的压电陶瓷材料的压电性能测试与容温特性的测试变化详见下表2:

  

  表2

  本实施例中以本发明所述压电陶瓷材料的具体的组成式0.03Pb(Yb0.5Nb0.5)O30.97Pb(Zr0.49Ti0.51)O3+1.5wt%Ba0.96Sr0.03Mg0.01Sn0.1Zr0.05Ti0.95O3为制备目的,并将制备后的压电陶瓷材料抽取五组进行压电性能测试与容温特性的测试,并得出表2中的五组实验数据,从表2中五组实验数据得出,在-45℃至+125℃的温度范围内,该压电陶瓷材料的电容温度变化控制在-4.1%至+2.1%之间,压电常数D33变化范围为415~425pC/N,机电耦合系数Kp变化范围为70.1%~71.9%,相对介电常数的变化范围为2129~2227,居里温度的变化范围在313℃~321℃,进一步表明了该压电陶瓷材料的不仅居里温度高、电容温度变化幅度小,而且具有更高地机电耦合系数,本发明所述压电陶瓷材料的综合性能良好,同时在-45℃至+125℃的温度范围内,容温变化控制在-5%至+3%的压电陶瓷材料,使压电陶瓷材料的介电常数在一定温度范围内的变化幅度减小,保证了压电陶瓷材料在苛刻的高低温环境下,仍然具有较高的灵敏度。

  如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上作出各种变化。

《一种容温稳定性压电陶瓷材料以及制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)