欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种用于热风炉缓冲缝的硅质缓冲泥浆独创技术9948字

一种用于热风炉缓冲缝的硅质缓冲泥浆

2021-02-12 06:37:59

一种用于热风炉缓冲缝的硅质缓冲泥浆

  技术领域

  本发明属于材料技术领域,具体涉及一种用于热风炉缓冲缝的硅质缓冲泥浆。

  背景技术

  长期以来,耐火材料膨胀缝的留设,一直困扰着窑炉设计工作者和施工工程人员。究其原因:无机非金属材料制成的耐火炉衬,与金属材料制成的冷却壁、风口、管道连接处,因其材质不同,导致其受热膨胀率不同。为了抵消两种材料在热胀冷缩情况下的膨胀收缩量,保持炉体结构的稳定性与整体性。故在热风炉管道连接处、热风炉炉顶连接管处外层硅质砖处等易产生膨胀区域,填充抵消热胀冷缩用耐火缓冲泥浆。耐火缓冲泥浆在高温负荷下具有一定压缩性,从而可以缓解砌体的热膨胀应力,从而保持砌体的整体性和密封性;同时砌体温度降低产生收缩时,还具有一定的回弹力,减少了砌体间因膨胀不均产生透气现象。但在实际应用中,因膨胀不严或砖体热膨胀产生应力过大,影响窑炉使用寿命的事例很多。

  CN201610742340.0公开了一种用于高炉缓冲缝的碳化硅质缓冲泥浆,采用碳化硅粉、耐火粘土、氧化铝微粉、耐火纤维球、活性二氧化硅微粉,以热固树脂、乙二醇、酒精为结合剂,外加糊精、羧甲基纤维素外加剂;其解决了高炉镶砖之间碳化硅材质砌体热膨胀应力问题,但是其主要应用于碳化硅质材料,不能应用于硅质材料。

  CN201410268835.5公开了一种热风炉系统热态维护用泵送缓冲填料,采用耐火高铝粉,纤维棉,配以符合结合剂采用泵送施工的压入料;其通过压入料方式,降低热风炉炉壳表面温度,但是其主要作用是提高热风炉气密性,是一种在线维护压入料,不能起到缓冲作用。

  CN201610749898.1公开了一种用于高炉缓冲缝的高铝质缓冲泥浆,采用高铝粉、耐火粘土、氧化铝微粉、耐火纤维球、活性二氧化硅微粉,以水玻璃为结合剂,外加糊精、羧甲基纤维素外加剂;其解决了高炉镶砖之间高铝材质砌体热膨胀应力问题,但是其主要应用于高铝质材料,不是应用硅质材料。

  发明内容

  本发明目的在于提供一种用于热风炉缓冲缝的硅质缓冲泥浆,在高温下不产生有毒污染杂质,最终达到自结合效果,且具有热态压缩率能吸收耐火砌体热膨胀应力。

  为达到上述目的,采用技术方案如下:

  一种用于热风炉缓冲缝的硅质缓冲泥浆,其组成安重量份数计如下:

  石英粉30~55份,活性a-Al2O3微粉1~10份,珍珠岩1~10份,耐火纤维球5~30份,二氧化硅微粉1~5份,结合剂20~45份,复合外加剂0.2-1份;

  所述结合剂为硅溶胶;

  所述复合外加剂由六偏磷酸钠、聚羧酸减水剂组成,按重量份数计六偏磷酸钠为0.1~0.5份,聚羧酸减水剂0.1~0.5份。

  按上述方案,所述耐火纤维球为静电成型法聚合形成的松散型硅酸铝纤维球,其Al2O3含量53.0~59.0wt%,SiO2含量39.0~46.0wt%,其直径为3~8mm。

  按上述方案,所述珍珠岩粒度为3-10mm,其Al2O3含量10.0~15.0wt%,SiO2含量68.0~76.0wt%。

  按上述方案,所述石英粉SiO2含量大于99.0%,粒度小于180目。

  按上述方案,所述活性a-Al2O3微粉Al2O3含量大于99.9%,D50=2μm。

  按上述方案,所述二氧化硅微粉SiO2含量为93-97%,Fe2O3含量为0.3-0.5%,Na2O含量为0.22-0.44%,K2O含量为0.12-0.57%,C含量为0.52-0.91%,D50=0.38μm。

  按上述方案,所述硅溶胶中SiO2含量30.0~42.0wt%,Na2O含量≤0.3wt%,pH9.0-11.0。

  按上述方案,所述聚羧酸减水剂为基于聚乙二醇的聚合物类高效减水剂,为两性表面活性剂,对称梳形分子结构,既有大分子链又有短链,分子量大于10000。

  本发明将耐火纤维球引入硅质缓冲泥浆,耐火纤维球不仅具有良好耐高温性能,而且具有很大的可压缩性和回弹性,是缓冲泥浆的缓冲作用来源,所述耐火纤维球为松散型靠静电结合形成,耐火纤维球直径在3~8mm范围内,不是标准的球形,耐火纤维球组成的纤维分散度特别好,通过静电成型法聚合在一起。在使用中,缓冲泥浆中的耐火纤维球变得比较松散,但是仍保持着聚合状态,此时的耐火纤维球内空气孔己充满了溶胶,可以呈悬浮状态,耐火纤维球分散均匀,不存在分区域的聚集或成大团絮状,因此,可以保证缓冲泥浆的整体均一。本发明通过控制耐火纤维球的分散度、调整耐火纤维球的加入量,进而调整缓冲泥浆的热态压缩率的大小,因此可根据客户的不同要求作相应的调整,保证耐火砌体的整体性和密封性。

  本发明的硅质缓冲泥浆采用硅溶胶做结合剂,硅溶胶是一种纳米氧化硅胶体,具有较大的比表面积和较强的吸咐性,带负电荷的羟基以硅氧烷的方式聚集,产生结合力。本发明中加入一定量的活性a-Al2O3微粉,当硅溶胶与a-Al2O3微粉混合时,胶体粒子可吸附在a-Al2O3颗粒表面,同时填充于a-Al2O3颗粒间隙,硅溶胶凝胶化导致纳米粒子表面硅烷醇基团间发生缩合反应,活性a-Al2O3微粉的加入增多,聚合反应加强。在加热升温过程中,活性α-Al2O3可以与硅溶胶反应生成莫来石化,提高本发明硅质缓冲泥浆的中高温性能。

  本发明相对于现有技术的有益效果在于:

  本发明是一种用于热风炉缓冲缝的硅质缓冲泥浆,具有热态压缩率高、施工性能良好的优点,并且现场使用方便,为耐火砌体膨胀缝的留设提供了技术上的保证,使用本发明所述缓冲泥浆可以有效保持砌体的完整性和密封性,从而有效延长热风炉炉衬使用寿命。

  耐火纤维球引入硅质缓冲泥浆,通过与石英粉,珍珠岩桥搭形成内部类似弹簧结构,最终使缓冲泥浆具有热态压缩率,能吸收耐火砌体热膨胀应力。

  通过以硅溶胶做结合剂,保证了硅质泥浆的“纯净度”,材料在高温下不产生有毒,污染杂质,最终达到自结合效果。同时硅溶胶与活性α-Al2O3微粉反应,可提高材料中高温性能。

  具体实施方式

  以下实施例进一步阐释本发明的技术方案,但不作为对本发明保护范围的限制。

  实施方案,所述耐火纤维球为静电成型法聚合形成的松散型硅酸铝纤维球,其Al2O3含量53.0~59.0wt%,SiO2含量39.0~46.0wt%,其直径为3~8mm。

  实施方案,所述珍珠岩粒度为3-10mm,其Al2O3含量10.0~15.0wt%,SiO2含量68.0~76.0wt%。

  实施方案,所述石英粉SiO2含量大于99.0%,粒度小于180目。

  实施方案,所述活性a-Al2O3微粉Al2O3含量大于99.9%,D50=2μm。

  实施方案,所述二氧化硅微粉SiO2含量为93-97%,Fe2O3含量为0.3-0.5%,Na2O含量为0.22-0.44%,K2O含量为0.12-0.57%,C含量为0.52-0.91%,D50=0.38μm。

  实施方案,所述硅溶胶中SiO2含量30.0~42.0wt%,Na2O含量≤0.3wt%,pH%209.0-11.0。

  实施方案,所述聚羧酸减水剂为德国巴斯夫产品FW10,为基于聚乙二醇的聚合物类高效减水剂,为两性表面活性剂,对称梳形分子结构,既有大分子链又有短链,分子量大于10000。

  实施例1~3所述硅质缓冲泥浆的各组分配比见表1。

  表1各组分配比

  

  

  表1中,实施例1的复合外加剂为:六偏磷酸钠0.15重量份,聚羧酸减水剂FW100.15重量份;实施例2的复合外加剂为:六偏磷酸钠0.1重量份,聚羧酸减水剂FW100.2重量份;实施例3的复合外加剂为:六偏磷酸钠0.2重量份,聚羧酸减水剂FW100.1重量份。

  将各组分按重量份称重后,搅拌混合均匀,即得到所述硅质缓冲泥浆。将所述硅质缓冲泥浆用塑料桶包装,运输至施工现场可以直接使用。实施例1~3所述硅质缓冲泥浆的性能检测结果见表2。

  表2硅质缓冲泥浆的性能检测结果

  

  进一步地,本发明通过调整耐火纤维球的加入量,进而调整硅质缓冲泥浆热态压缩率。仅改变耐火纤维球的加入量,其他各组分配比与实施例2相同,对比实验结果如表3所示。

  表3耐火纤维球加入量不同对热态压缩率的影响

  

  进一步地,本发明通过改变活性α-Al2O3微粉的加入量,进而改变常温耐压强度,仅改变活性α-Al2O3微粉的加入量,其他各组分配比不变与实施例2相同,对比实验结果如表4所示。

  表4活性a-Al2O3微粉的加入量不同对常温耐压强度的影响

  

  从表3、表4可以看出:可以通过调整耐火纤维球的加入量,进而调整缓冲泥浆的热态压缩率的大小,可以通过调整活性a-Al2O3微粉的加入量,进而调整常温耐压强度,因此可根据客户的不同要求作相应的调整,保证耐火砌体的整体性和密封性。

  显然,上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

《一种用于热风炉缓冲缝的硅质缓冲泥浆.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)