欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种氧化镁基超高压介质陶瓷及其制备方法独创技术21334字

一种氧化镁基超高压介质陶瓷及其制备方法

2023-02-27 14:35:18

一种氧化镁基超高压介质陶瓷及其制备方法

  技术领域

  本发明涉及一种超高压介质陶瓷及其制备方法,具体涉及一种氧化镁基超高压介质陶瓷及其制备方法,属于绝缘材料技术领域

  背景技术

  绝缘子是指安装在不同电位的导体之间或导体与接地构件之间,同时起到电气绝缘与机械支撑作用的器件,按照绝缘材料的不同大致可分为有机和无机两大类。聚合物通常具有优良的电绝缘、易于成型等特点,但聚合物表面出气率高、热稳定性差、易老化,同时聚合物与金属间力学、热学性能差异较大因而不利于器件的长期服役。

  相比于聚合物,陶瓷材料具有温度稳定性高、抗老化以及优异的耐电晕或电弧烧蚀、耐化学腐蚀的能力(关志成.绝缘子及输变电设备外绝缘[M])。目前的研究主要集中在氧化铝瓷(Journal of the European Ceramic Society30(4):805-817(2010))或长石质瓷,其应用较为成熟,但其材料体系的体击穿强度和表面闪络强度较低,以氧化铝瓷为例,其体击穿强度≤40kV/mm(Journal of the European Ceramic Society35(1):113-123(2015));表面闪络强度≤50kV/cm(Journal of Electroceramics21(1-4):214-217(2008))是限制材料及相关设备、技术发展的主要原因。随着超高压输送电技术、脉冲功率技术的发展,对材料在超高压下的绝缘特性提出了更高的要求。因此,开发新的材料体系以实现超高压绝缘具有重要意义。

  氧化镁是一种典型的宽禁带高绝缘材料(禁带宽度~7.8eV,室温体积电阻率:1011-1013Ω·cm),具有很高的理论耐电强度;同时,氧化镁具有与金属相近的热膨胀系数(铁帽、钢角:11×10-6/℃;氧化镁:13.5×10-6/℃)和优异的热传导性能,是一种极具潜力的高压绝缘介质材料。但氧化镁高的烧结温度所导致的晶粒长大、致密度低是其击穿性能难以提高的关键(Metallurgical and Materials Transactions B44(2):344-353(2013))。研究人员尝试引入多种烧结助剂,发现氧化镁基陶瓷的介电性能都会不同程度地恶化(Journal of the American Ceramic Society41.10(1958):406-409,Journal ofMaterials Research,27(6):915-921(2012))。

  发明内容

  针对氧化镁陶瓷由于烧结温度高而导致的晶粒易长大、致密化困难的问题,本发明的目的在于提供一种氧化镁基超高压介质陶瓷及其制备方法。

  一方面,本发明提供了一种氧化镁基超高压介质陶瓷材料,所述氧化镁基超高压介质陶瓷的化学组成为:(1-x)MgO-xAl2O3,其中,0<x≤0.12,优选0.04≤x≤0.1,x为摩尔百分比,形成了以镁铝尖晶石为第二相且第二相均匀分布于主晶相氧化镁周围的复合结构。

  本发明在氧化镁基体中通过氧化铝掺杂引入第二相“镁铝尖晶石”,构筑了“0-3”型复合结构(即纳米颗粒与块体材料的复合,其中纳米颗粒在基体中起到增强相的作用)。通过预先将Mg源煅烧以提高氧化镁粉体的活性,再引入氧化铝进行烧结,以此形成以镁铝尖晶石为第二相且均匀分布于主晶相氧化镁周围的复合结构。通过均匀分布在主晶相周围的第二相有效抑制了氧化镁晶粒的长大,显著提高了致密度,断裂行为由沿晶断裂演变为穿晶断裂,显著提高了陶瓷的力学强度、耐电强度同时表现出好的表面闪络强度。复合后氧化镁平均晶粒尺寸显著减小到1~5μm(优选1~4μm)。本发明制得的所述氧化镁基超高压介质陶瓷的耐电强度为92.2~126.4kV/mm,表面闪络强度为52.8~78.7kV/cm;优选地,所得氧化镁基超高压介质陶瓷的耐电强度为104.6~126.4kV/mm,表面闪络强度为69.7~78.7kV/cm。

  优选地,本发明通过预先将Mg源经800~1000℃煅烧2~6小时后得到轻烧氧化镁粉体,经冷却后再与氧化铝粉体混合球磨、压制成型、排塑、烧结制得氧化镁基超高压介质陶瓷,以此形成以镁铝尖晶石为第二相且均匀分布于氧化镁主晶相周围的复合结构。氧化镁陶瓷由于烧结温度高而导致晶粒易长大、致密化困难,本发明以Mg源煅烧所得轻烧氧化镁为原料,以提高粉体的烧结活性。

  另一方面,本发明还提供了一种上述氧化镁基超高压介质陶瓷的制备方法,包括:

  将氧化镁粉体和氧化铝粉体按氧化镁超高压基介质陶瓷的化学组成配料并混合,得到原料粉体;

  再将所得原料粉体压制成型,得到坯体;

  将所得坯体经排塑后,在1500~1550℃下烧结处理,得到氧化镁基超高压介质陶瓷。

  本发明通过传统固相法制备(1-x)MgO-xAl2O3陶瓷粉体,经成型、排塑、烧结制备氧化镁基介质陶瓷材料。通过原料粉体优化与组分设计(以煅烧所得碱式碳酸镁为原料增加粉体烧结活性,同时在氧化镁粉体中引入微量氧化铝粉体,烧结过程中氧化镁和氧化铝原位反应生成第二相“镁铝尖晶石”,构筑了“0-3”型复合结构)解决了氧化镁陶瓷高温下晶粒易长大、致密度低等问题,制备了具有高绝缘特性的介质陶瓷(即,有效抑制了高温下氧化镁晶粒的长大,细化晶粒的同时显著提高了致密度)。本发明制备的陶瓷具有超高的耐电强度与表面闪络强度,耐电强度最高可达126.4kV/mm,表面闪络强度最高可达78.7kV/cm,与当前报道的氧化铝瓷相比,耐电强度提高了近两倍,表面闪络强度提高了近一倍,有望应用于超高压绝缘、电真空绝缘等领域。此外,本发明原料便宜,组分及工艺简单,生产成本低。

  较佳地,所述Mg源为碱式碳酸镁、醋酸镁、草酸镁、氢氧化镁、氯化镁中的至少一种。本发明以Mg源煅烧所得轻烧氧化镁为原料,以提高粉体的烧结活性。

  又,较佳地,所述煅烧的温度为800~1000℃,煅烧时间为2~6小时。

  较佳地,在压制成型之前,将原料粉体和粘结剂混合,再经造粒、陈化(即,在所得原料粉体中加入粘结剂,再经造粒、陈化,压制成型得陶瓷素坯)。又,较佳地,所述粘结剂为聚乙烯醇、聚乙烯醇缩丁醛和酚醛树脂中的至少一种;优选地,所述粘结剂的加入量为原料粉体总质量的2~7%。

  较佳地,压制成型后的陶瓷素坯可在200Mpa压力下等静压处理10~20分钟。

  较佳地,所述排塑的温度为600~800℃,时间2~6小时。

  较佳地,所述烧结处理的升温速率不高于4℃/分钟。

  较佳地,所述烧结处理的时间为1~3小时。

  与现有技术相比,本发明对高烧结活性的氧化镁粉体进行少量掺杂,通过调控制备工艺构筑了“0-3”型复合结构获得了细晶粒、高致密、穿晶断裂型氧化镁基超高压介质陶瓷,其耐电强度最高可达126.4kV/mm(Φ7.8mm电极,厚度0.5mm),表面闪络强度最高可达78.7kV/cm(Φ26mm电极,厚度7mm),介电常数介于11~12,同时介电损耗在1Hz~1MHz频率范围内<0.1%,且介电性能具有很好的频率稳定性。在超高压绝缘、电真空技术、脉冲功率技术等领域具有重要的应用价值。本发明制备的超高压绝缘氧化镁基陶瓷在实现细晶粒、致密化烧结的同时保证高的绝缘性能与耐电强度且原料便宜,组分与工艺简单,有望应用于超高压绝缘领域。

  附图说明

  图1为本发明实施例1制备的介质陶瓷的介电常数和介电损耗随频率的变化图;

  图2为本发明实施例2制备的介质陶瓷的介电常数和介电损耗随频率的变化图;

  图3为本发明实施例3制备的介质陶瓷的介电常数和介电损耗随频率的变化图;

  图4为本发明对比例1制备的介质陶瓷的介电常数和介电损耗随频率的变化图;

  图5为本发明对比例2制备的介质陶瓷的介电常数和介电损耗随频率的变化图;

  图6为包含实施例1-3、对比例1-2在内的本发明制备的介质陶瓷的耐电强度的weibull分布图;

  图7为本发明实施例1-3和对比例1-2制备的介质陶瓷的XRD图谱;

  图8为本发明对比例1和实施例3所制备的介质陶瓷的SEM照片,(a)示出对比例1的表面形貌,(b)示出实施例3的表面形貌,(c)示出对比例1的断面形貌,(d)示出实施例3的断面形貌;

  图9中(a)、(b)、(c)、(d)、(e)分别为本发明对比例1、实施例1-3和对比例2介质陶瓷的晶粒尺寸分布图;(f)为本发明氧化镁基介质陶瓷晶粒尺寸变化图;

  图10为本发明实施例2、3所制备的部分样品的样品照片。

  具体实施方式

  以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

  在本公开中,氧化镁基超高压介质陶瓷的组成为:(1-x)MgO-xAl2O3,其中,0<x≤0.12,x为摩尔百分比,并形成以镁铝尖晶石为第二相均匀分布于氧化镁主晶相周围的“0-3”型复合结构。当Al2O3含量过高时会引起第二相的富集,同时由于MgO与MgAl2O4间热膨胀系数的不匹配,从而增加了击穿过程中的热应力,恶化了性能(即,使得耐电强度和表面闪络强度降低)。

  在本发明的实施方式中,设计了(1-x)MgO-xAl2O3组分,其中0<x≤0.12,x为摩尔百分比,优选0.04≤x≤0.1,通过引入第二相“镁铝尖晶石”,采用固相合成工艺,构筑了“0-3”型复合结构以抑制主晶相的长大,利用细晶强化与第二相强化显著提高了氧化镁基陶瓷的耐电性能,使之具有损耗小、介电性能稳定以及高绝缘的特点。较佳地,采用碱式碳酸镁煅烧所得的轻烧氧化镁为原料以提高粉体烧结活性。

  在可选的实施方式中,煅烧Mg源得到轻烧氧化镁(烧结活性高的MgO粉体),将所得轻烧氧化镁和氧化铝原料粉体按(1-x)MgO-xAl2O3对应的化学元素计量比配料进行湿法或干法球磨,湿法球磨浆料烘干后的粉体或干法球磨后的粉体,经过筛、添加粘结剂、造粒、陈化、压制成型、排塑、烧结得到氧化镁基超高压介质陶瓷。以下示例性地说明本发明的氧化镁基超高压介质陶瓷的制备方法。

  将Mg源以不超过3℃/分钟的升温速率加热至800~1000℃并保温2~6小时,得到轻烧氧化镁粉体。Mg源可以使用碱式碳酸镁、醋酸镁、草酸镁、氢氧化镁、氯化镁等,优选为碱式碳酸镁。

  将轻烧氧化镁与氧化铝粉体按照化学计量比(1-x)MgO-xAl2O3配料后进行球磨。其中,球磨的方法可以采用湿法或干法球磨。湿法球磨时采用尼龙罐,按照原料:玛瑙球:无水乙醇=1:(4~6):(1.8~2)或原料:氧化锆球:无水乙醇=1:(6~8):(1.8~2)的质量比球磨24~48小时,所得浆料在60~70℃烘干;干法球磨时采用氧化铝罐,按照原料:氧化铝球=1:(6~8)的质量比球磨12~24小时。球磨后的粉体过筛(例如过40目筛)。

  在原料粉体中加入粘结剂,造粒、陈化、压制成型,得到坯体。粘结剂可以为聚乙烯醇(PVA)、聚乙烯醇缩丁醛(PVB)等,其浓度可以为5~7%,粘结剂的加入量可以为陶瓷粉料重量的5~7%。陈化时间可以为12~24小时。也可以在陈化后过筛(例如过40目筛)。在一个示例中,成型工艺可以为:将制得的粉料进行干压成型,制成直径为13mm的生坯,但不限定于该尺寸,可根据实际需要设定。压制成型的压力可以为1.3~2.0 MPa。对于大尺寸的陶瓷素坯压制成型后可进一步等静压成型,等静压压力可以为150~200Mpa,保压时间可以为10~20分钟。

  将坯体经排塑得到陶瓷素坯。排塑的条件可以为:以不高于2℃/分钟的升温速率升温至600~800℃,保温2~6小时,随炉冷却至室温。通过排塑可以排除有机粘结剂并使陶瓷坯体有一定机械强度。

  将陶瓷素坯进行烧结。烧结温度可以为1500~1550℃,时间可以为1~3小时,升温速率应≤2℃/分钟。可以在氧化铝承烧板上平铺一层烧死氧化镁粉体以避免高温下承烧板中杂质元素的挥发以致污染陶瓷素坯,烧结完成后随炉冷却至室温,获得氧化镁基介质陶瓷材料。

  本发明采用固相法制备工艺,本发明的陶瓷体系其耐电强度可达100kV/mm以上,最高可达130kV/mm;表面闪络强度可60kV/mm以上,最高可达80kV/cm。介电常数介于11~12,同时介电损耗在1Hz~1MHz频率范围内<0.1%,且介电性能具有很好的频率稳定性。在超高压绝缘、电真空技术、脉冲功率技术等领域具有重要的应用价值。

  本发明采用SD-DC200kV直流超高压发生器测得所述氧化镁基介质陶瓷耐电强度为92~126.4kV/mm;采用中国工程物理研究院流体物理研究所研制的多功能绝缘测试系统(测试条件:真空度<5×10-3pa,单脉冲,脉宽5μs,耐受电压测试)测得所述陶瓷的表面闪络强度为52.9~78.7kV/cm;本发明采用Concept40宽频介电和阻抗谱仪测得所述氧化镁基介质陶瓷的介电常数和介电损耗。

  下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

  实施例1

  材料的组成为0.96MgO-0.04Al2O3

  (1)在氧化铝坩埚中装入碱式碳酸镁粉体放置于烧结炉中以2℃/分钟速率加热至900℃,保温4小时后随炉冷却至室温,得轻烧氧化镁粉体;

  (2)以轻烧氧化镁、氧化铝粉体为原料,按照0.96MgO-0.04Al2O3化学计量比配制,称量后的粉体按照原料:玛瑙球:无水乙醇=1:5:1.9的质量比混合球磨48小时,球磨后的浆料置于干燥箱中70℃烘干。烘干后的粉体过40目筛然后加入5wt%的浓度为7%的PVA粘结剂,造粒,压块,陈化24小时;

  (3)陈化后的粉体过40目筛,在1.5MPa压力下压制成直径13mm,厚2mm和直径35mm,厚12mm的陶瓷素坯,然后在200MPa静水压力下等静压处理,保压时间20分钟。成型后的陶瓷素坯在烧结炉中以2℃/分钟的升温速率升温到600℃,保温4h排除有机物;

  (4)在氧化铝承烧板上平铺一层烧死氧化镁粉体,将成型后的陶瓷素坯放在承烧板上,先以1℃/分钟的升温速率升至200℃保温2小时,再以1℃/分钟的升温速率升至800℃保温2小时,接着以2℃/分钟的升温速率升至1200℃保温2小时,最后以2℃/分钟的升温速率升至1520℃保温2小时,随炉冷却至室温,得到陶瓷样品;

  (5)将烧结好的直径10mm的陶瓷样品双面磨至0.5mm厚;直径28mm的陶瓷样品双面磨至7mm厚,外缘磨至直径26mm;样品经超声清洗、烘干、丝网印刷银浆(0.5mm厚陶瓷样品电极直径为7.8mm,7mm厚陶瓷样品电极直径为26mm),再次烘干后以2℃/分钟的升温速率升至750℃并保温30分钟,即得到覆有银电极的介质陶瓷样品。0.5mm厚陶瓷样品用于介电性能及耐压强度测试,7mm厚陶瓷样品用于表面闪络性能测试。采用X射线衍射分析仪(XRD)来确定陶瓷样品的晶体结构和相结构;

  (6)对本实施例1制备的陶瓷样品在1Hz~1MHz频率范围内进行了介电性能分析,其介电常数和介电损耗随频率的变化曲线如图1所示,其耐电强度和表面闪络强度见表1。由图1和表1可知,实施例1制备的介质陶瓷材料介电常数约为11.78,介电损耗小于0.1%,同时介电性能在1Hz~1MHz频率范围内具有很好的频率稳定性。其耐电强度为104.6kV/mm,表面闪络强度为69.71kV/cm。

  实施例2

  介质陶瓷材料组成为:0.92MgO-0.08Al2O3,以碱式碳酸镁、氧化铝粉体为原料,按照与实施例1相同的工艺制备陶瓷,烧结温度为1540℃。其介电常数和介电损耗随频率的变化曲线如图2所示,其耐电强度和表面闪络强度见表1。由图2和表1可知,实施例2制备的介质陶瓷材料介电常数约为11.52,介电损耗小于0.1%,同时介电性能在1Hz~1MHz频率范围内具有很好的频率稳定性。其耐电强度为126.4kV/mm,表面闪络强度为74.3kV/cm。

  实施例3

  介质陶瓷材料组成为:0.9MgO-0.1Al2O3,以碱式碳酸镁、氧化铝粉体为原料,按照与实施例1相同的工艺制备陶瓷,烧结温度为1550℃。其介电常数和介电损耗随频率的变化曲线如图3所示,其耐电强度和表面闪络强度见表1。由图3和表1可知,实施例3制备的介质陶瓷材料介电常数约为11.37,介电损耗小于0.1%,同时介电性能在1Hz~1MHz频率范围内具有很好的频率稳定性。其耐电强度为111.5kV/mm,表面闪络强度为78.7kV/cm。

  对比例1

  介质陶瓷材料组成为:MgO,以碱式碳酸镁为原料,按照与实施例1相同的工艺制备陶瓷,烧结温度为1500℃。其介电常数和介电损耗随频率的变化曲线如图4所示,其耐电强度和表面闪络强度见表1。由图4和表1可知,对比例1制备的介质陶瓷材料介电常数约为11.96,介电损耗小于0.1%,同时介电性能在1Hz~1MHz频率范围内具有很好的频率稳定性。其耐电强度为92.2kV/mm,表面闪络强度为52.8kV/cm。

  对比例2

  介质陶瓷材料组成为:0.86MgO-0.14Al2O3,以碱式碳酸镁为原料,按照与实施例1相同的工艺制备陶瓷,烧结温度为1550℃。其介电常数和介电损耗随频率的变化曲线如图5所示,其耐电强度和表面闪络强度见表1。由图5和表1可知,对比例2制备的介质陶瓷材料介电常数约为11.18,介电损耗小于0.1%,同时介电性能在1Hz~1MHz频率范围内具有很好的频率稳定性。其耐电强度为94.1kV/mm,表面闪络强度为59.4kV/cm。

  表1:实施例1-3和对比例1-2制备的介质陶瓷的介电性能、耐电强度与表面闪络强度:

  

  

  表1为本发明中实施例1-3制备的(1-x)MgO-xAl2O3及对比例1-2制备的氧化镁基介质陶瓷在室温1kHz频率下的介电性能及耐电强度和表面闪络强度,由表可知,相比于氧化镁陶瓷的耐电强度92.2kV/mm和表面闪络强度52.8kV/cm,本发明的氧化镁基介质陶瓷的绝缘性能得到了明显的提高,耐电强度最高达到126.4kV/mm,表面闪络强度最高可达78.7kV/cm。

  图1-5分别对应实施例1-3和对比例1-2介质陶瓷的介电常数和介电损耗在1Hz~1MHz范围内随频率的变化曲线。由图可知,该介质陶瓷在很宽的测试频率范围内具有很好的频率稳定性和非常小的介电损耗。

  图6为对实施例1-3和对比例1-2介质陶瓷耐电强度的weibull分布图。由图可知,实施例1-3、对比例1-2的耐电强度分别为104.6kV/mm、126.4kV/mm、111.5kV/mm、92.2kV/mm和94.1kV/mm。

  图7为实施例1-3和对比例1-2介质陶瓷的XRD图谱,清晰地表明(1-x)MgO-xAl2O3由立方氧化镁相和镁铝尖晶石相组成。在氧化镁基体中引入氧化铝后生成了镁铝尖晶石第二相,随着引入量x的增加,镁铝尖晶石相的衍射强度逐渐增强。

  图8中(a)、(b)分别为对比例1和实施例3所制备的介质陶瓷的表面SEM照片,(c)、(d)分别为对比例1和实施例3所制备的介质陶瓷的断面SEM照片;图9中(a)、(b)、(c)、(d)、(e)分别为对比例1、实施例1-3和对比例2介质陶瓷的晶粒尺寸分布图,(f)为氧化镁基介质陶瓷氧化镁晶粒尺寸变化图,由图可知,通过氧化铝掺杂氧化镁主晶相周围形成了细小而均匀分布的镁铝尖晶石第二相,成功构筑了“0-3”型复合结构,明显抑制了主晶相的长大,同时使得氧化镁晶粒尺寸分布更加均匀,氧化镁的平均晶粒尺寸由对比例1的21.27μm减小到1.5μm左右(实施例1、实施例2以及对比例2所得陶瓷中MgO的平均粒径分别为3.35μm、2.26μm、1.38μm),同时致密度得到了显著提高;介质陶瓷的断裂行为由沿晶断裂变成了穿晶断裂模式,利用细晶强化与第二相强化显著提高了氧化镁基介质陶瓷的力学性能与耐电强度。

《一种氧化镁基超高压介质陶瓷及其制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)