欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 低能耗保温板独创技术12238字

低能耗保温板

2021-01-31 18:16:31

低能耗保温板

  技术领域

  本发明涉及建筑材料技术领域,特别涉及低能耗保温板。

  背景技术

  建筑物隔热保温是节约能源、改善居住环境和使用功能的一个重要方面。建筑能耗在人类整个能源消耗中所占比例一般在30-40%,绝大部分是采暖和空调的能耗,故建筑节能意义重大;当今,全球保温隔热材料正朝着高效、节能、薄层、隔热、防水外护一体化方向发展,在发展新型保温隔热材料及符合结构保温节能技术同时,更强调有针对性使用保温绝热材料,按标准规范设计及施工,努力提高保温效率及降低成本。现有技术中主要存在有无机保温板和有机保温板,有机保温板保温材料性能优越,且具备质轻、保温、隔热性好等优点;无机保温板具备极佳的温度稳定性和化学稳定性,有耐酸碱、耐腐蚀、不开裂、不脱落、稳定性高不老化等优点。但是有机保温材料的防火安全性差,易老化,燃烧时烟雾大、毒性大,而施工过程中时常会出现电焊、明火等情况,因此具备引发火灾的重大隐患;无机保温材料的重量重、强度差,不仅施工过程的难度大、成本高,而且极易损坏。

  发明内容

  本发明的目的在于提供低能耗保温板,已解决现有技术中存在的问题。

  本发明采用的技术方案如下:

  低能耗保温板,由多层结构复合而成,根据使用时室内外的顺序从内之外的结构依次为耐火涂层、保温层、混凝土浇筑层、阻燃隔热层和反光涂层,所述保温层、混凝土浇筑层和阻燃隔热层依次通过粘胶剂粘接,所述保温层包括基板,所述基板内嵌入恒温珠和真空腔;所述保温层(2)采用以下方法制备:在1550℃左右的温度下,将质量比为(20~25):(65~70):(6~8):(4~6)的粉煤灰、玄武岩、大理石、焦炭熔炼纤维化,降温后注入恒温珠和粘合胶,在经过锤制,在锤制过程中间断性注入氮气,形成小型真空腔,再经过高温炉烘干成型。

  优选的,所述恒温珠的制备方法如下:在900~1000℃的温度下,将质量比为(20~35):(30~40):(10~15):(5~8):(10~12):(3~6)的铝、铁、石墨:镍、钨丝、硅混合熔炼成合金片,再将合金片冶炼成空心小球,在成型时在空心球体内注入空心1/2体积的金属镓,之后将合金球密封。

  优选的,所述空心小球的球体直径要求0.6~1CM。

  优选的,所述混凝土浇筑层的制备方法如下:将质量比为(45~50):(15~20):(12~15):(5~8):(2~5):(3~6):(0.1~0.2):(0.2~0.4):(5~7)的珍珠岩矿石、氧化镁、滑石粉、硅烷基粉末、聚乙烯醇、甲酸钙、减水剂、抗裂剂、乳胶粉纤维素研磨均匀混合浇筑而成。

  优选的,所述阻燃隔热层的制备比如下:(85~95):(1~1.5):(1~3):(0.5~1):(3~6)的氧化镁、有机硅阻燃剂、环氧树脂、聚苯乙烯、氢氧化镁;制备成型的过程中均匀注入氮气形成真空腔。

  优选的,所述耐火涂层采用氯化橡胶溶剂型防火性涂料。

  优选的,所述反光涂层为纳米反光材料,其成分质量比为(40~45):(0.9~3):(0.6~1.4):(15~20):(20~30)的无机胶粘剂、分散剂、聚醚型消泡剂、氧化钛粉、氧化硅粉和H2O。

  与现有技术相比,本发明提出的低能耗保温板,具有有机保温板和无机保温板各自的优点保证保温效果降低能耗的同时,还兼顾了在使用过程中的稳固性和轻便性,最内层采用耐火涂层,能够一定程度上预防火灾的发生,保温层的基板本身为具有保温效果的纤维层锤炼而成,在基板中添加了恒温珠,能够有效调整室内的温度,减缓室内外的热量交换,降低室内空调等调节温度的设备的能耗损失,除此之外的真空腔还能在一定程度上起到隔热和隔音的效果;混凝土浇筑层具有的重量保证了板材结构的稳定性,该层中也设置了真空腔,再次起到了隔热和隔音效果,最外层使用纳米反光涂料制成,能够有效的吸收过滤光线,将热量阻挡。

  附图说明

  图1为本发明的结构示意图。

  具体实施方式

  为使本领域技术人员更好的理解本发明的技术方案,下面结合附图和具体实施方式对本发明作详细说明。

  实施例1

  所述保温板采用以下方法制备:首先制备恒温珠:将质量比为20:30:10:5:10:3的铝、铁、石墨:镍、钨丝、硅混合研磨,加入适量石蜡进行真空干燥过筛后进行高精度压丕成高硬度合金,在600℃的温度的真空环境下,进行脱蜡烧结,随着温度的升高至900℃,合金液相化,注入模具,冶炼成空心小球,降温定型,即将成型时在空心球体内注入空心1/2体积的金属镓,之后将合金球密封;保温层方法如下:在1550℃左右的温度下,将质量比为20:65:6:4的粉煤灰、玄武岩、大理石、焦炭熔炼成液态,通过高速离心处理纤维化,形成纤维后适当降温,通过高压喷嘴粘合胶,运动摆锤法来回反复锤制纤维,纤维层逐渐加厚的过程中均匀撒入恒温珠,继续锤制纤维,包裹住恒温珠,在形成较厚纤维层之后,利用高压气枪像纤维层中注入氮气,形成均匀的真空腔,再经过高温炉烘干成型;制备混凝土浇筑层方法如下:将质量比为45:15:12:5:2:3:0.1:0.2:5的珍珠岩矿石、氧化镁、滑石粉、硅烷基粉末、聚乙烯醇、甲酸钙、减水剂、抗裂剂、乳胶粉纤维素研磨均匀,搅拌混合在倒入模具浇筑而成;阻燃隔热层按照以下质量比制备:85:1:1:0.5:3的氧化镁、有机硅阻燃剂、环氧树脂、聚苯乙烯、氢氧化镁,先将固体组分研磨混合均匀,之后加入液体组分搅拌混合,注入模具压制,在常温下等待凝固成型,成型的过程中间歇性均匀通过高压气枪注入氮气形成真空腔,再在120℃温度下烘烤定型;将质量比为40:0.9:0.6:15:20的无机胶粘剂、分散剂、聚醚型消泡剂、氧化钛粉、氧化硅粉和H2O,在70℃下搅拌混合均匀得到纳米反光材料,然后将制得的纳米反光材料均匀涂抹在阻燃隔热层上形成反光涂层;最后采用粘胶剂将混凝土浇筑层3的两面分别与保温层2和阻燃隔热层4粘合,保温层2内层均匀涂抹上氯化橡胶溶剂型防火性涂料,得到成品。

  实施例2

  所述保温板采用以下方法制备:首先制备恒温珠:将质量比为30:35:13:6:11:5的铝、铁、石墨:镍、钨丝、硅混合研磨,加入适量石蜡进行真空干燥过筛后进行高精度压丕成高硬度合金,在600℃的温度的真空环境下,进行脱蜡烧结,随着温度的升高至900℃,合金液相化,注入模具,冶炼成空心小球,降温定型,即将成型时在空心球体内注入空心1/2体积的金属镓,之后将合金球密封;保温层方法如下:在1550℃左右的温度下,将质量比为23:68:7:5的粉煤灰、玄武岩、大理石、焦炭熔炼成液态,通过高速离心处理纤维化,形成纤维后适当降温,通过高压喷嘴粘合胶,运动摆锤法来回反复锤制纤维,纤维层逐渐加厚的过程中均匀撒入恒温珠,继续锤制纤维,包裹住恒温珠,在形成较厚纤维层之后,利用高压气枪像纤维层中注入氮气,形成均匀的真空腔,再经过高温炉烘干成型;制备混凝土浇筑层方法如下:将质量比为48:18:12:7:4:4.5:0.15:0.3:6的珍珠岩矿石、氧化镁、滑石粉、硅烷基粉末、聚乙烯醇、甲酸钙、减水剂、抗裂剂、乳胶粉纤维素研磨均匀,搅拌混合在倒入模具浇筑而成;阻燃隔热层按照以下质量比制备:90:1.2:2:0.8:4.5的氧化镁、有机硅阻燃剂、环氧树脂、聚苯乙烯、氢氧化镁,先将固体组分研磨混合均匀,之后加入液体组分搅拌混合,注入模具压制,在常温下等待凝固成型,成型的过程中间歇性均匀通过高压气枪注入氮气形成真空腔,再在120℃温度下烘烤定型;将质量比为42:2:1.0:18:25的无机胶粘剂、分散剂、聚醚型消泡剂、氧化钛粉、氧化硅粉和H2O,在70℃下搅拌混合均匀得到纳米反光材料,然后将制得的纳米反光材料均匀涂抹在阻燃隔热层上形成反光涂层;最后采用粘胶剂将混凝土浇筑层3的两面分别与保温层2和阻燃隔热层4粘合,保温层2内层均匀涂抹上氯化橡胶溶剂型防火性涂料,得到成品。

  实施例3

  所述保温板采用以下方法制备:首先制备恒温珠:将质量比为35:40:15:8:12:6的铝、铁、石墨:镍、钨丝、硅混合研磨,加入适量石蜡进行真空干燥过筛后进行高精度压丕成高硬度合金,在600℃的温度的真空环境下,进行脱蜡烧结,随着温度的升高至1000℃,合金液相化,注入模具,冶炼成空心小球,降温定型,即将成型时在空心球体内注入空心1/2体积的金属镓,之后将合金球密封;保温层方法如下:在1550℃左右的温度下,将质量比为25:70:8:6的粉煤灰、玄武岩、大理石、焦炭熔炼成液态,通过高速离心处理纤维化,形成纤维后适当降温,通过高压喷嘴粘合胶,运动摆锤法来回反复锤制纤维,纤维层逐渐加厚的过程中均匀撒入恒温珠,继续锤制纤维,包裹住恒温珠,在形成较厚纤维层之后,利用高压气枪像纤维层中注入氮气,形成均匀的真空腔,再经过高温炉烘干成型;制备混凝土浇筑层方法如下:将质量比为50:20:15:8:5:6:0.2:0.4:7的珍珠岩矿石、氧化镁、滑石粉、硅烷基粉末、聚乙烯醇、甲酸钙、减水剂、抗裂剂、乳胶粉纤维素研磨均匀,搅拌混合在倒入模具浇筑而成;阻燃隔热层按照以下质量比制备:95:1.5:3:1:6的氧化镁、有机硅阻燃剂、环氧树脂、聚苯乙烯、氢氧化镁,先将固体组分研磨混合均匀,之后加入液体组分搅拌混合,注入模具压制,在常温下等待凝固成型,成型的过程中间歇性均匀通过高压气枪注入氮气形成真空腔,再在120℃温度下烘烤定型;将质量比为45:3:1.4:20:30的无机胶粘剂、分散剂、聚醚型消泡剂、氧化钛粉、氧化硅粉和H2O,在70℃下搅拌混合均匀得到纳米反光材料,然后将制得的纳米反光材料均匀涂抹在阻燃隔热层上形成反光涂层;最后采用粘胶剂将混凝土浇筑层3的两面分别与保温层2和阻燃隔热层4粘合,保温层2内层均匀涂抹上氯化橡胶溶剂型防火性涂料,得到成品。

  实施例4

  低能耗保温板,由多层结构复合而成,在实施例1得到的成品保温层内层均匀涂抹上耐火涂层,完成所有工序后得到成品。

  实施例5

  与实施例4不同在于,低能耗保温板采用实施例2制得。

  实施例6

  与实施例4不同在于,低能耗保温板采用实施例3制得。

  将实施例4-6进行性能测试,所有对比试验数据如下表所示。

  防火等级的测定:基于GB8624-97进行测定;

  导热系数的测定:基于GB/T 10294进行测定;

  隔音性能的测定:基于GB50118-2010进行测定;

  室内能耗的测定:基于GB/T51161—2016进行测定。

  

  最后需要说明,上述描述仅为本发明的优选实施例,本领域的技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

《低能耗保温板.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)