欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 一种SrCuSi<Sub>4</Sub>O<Sub>10</Sub>-Ca<Sub>3</Sub>(PO<Sub>4独创技术20037字

一种SrCuSi<Sub>4</Sub>O<Sub>10</Sub>-Ca<Sub>3</Sub>(PO<Sub>4

2021-04-25 02:02:26

4O10-Ca3(PO4)2复合生物陶瓷、骨支架及其用途附图说明" src="/d/file/p/2020/11-25/36e83107511e0a256ac86bc6d388b8e8.gif" />

  一种SrCuSi4O10-Ca3(PO4)2复合生物陶瓷、骨支架及其用途

  技术领域

  本发明涉及复合材料技术领域,特别是涉及一种SrCuSi4O10-Ca3(PO4)2复合生物陶瓷、 骨支架及其用途。

  背景技术

  关节软骨是一种半透明的弹性组织,附着在软骨下骨上,骨关节炎是引起关节软骨退化 和损伤的最常见疾病。多年来,人们提出了多种手术治疗方法,如微破裂法和间充质干细胞 植入法来再生软骨,但外源干细胞的继发创伤和低存活率等缺点限制了这些方法的应用。由 于软骨没有血管和淋巴系统,成熟的软骨细胞增殖和迁移能力有限,软骨的再生是一个很大 的挑战,软骨损伤常累及软骨下骨,并发展为骨软骨缺损。现有情况表明,软骨和软骨下骨 同时重建对骨缺损的再生具有重要意义,由于软骨和软骨下骨具有不同的生理功能,如何开 发一种的支架,在生物上满足骨软骨缺损内同时重建软骨和软骨下骨的需要,是目前亟待解 决的问题。

  发明内容

  鉴于以上所述现有技术的缺点,本发明的目的在于提供一种SrCuSi4O10-Ca3(PO4)2复合 生物陶瓷、骨支架及其用途,用于解决现有技术中的问题。

  为实现上述目的及其他相关目的,本发明采用如下技术方案:

  本发明的第一方面,提供一种SrCuSi4O10-Ca3(PO4)2复合生物陶瓷,所述复合生物陶瓷 由原料烧结制成,所述原料包括以下重量份的组分:

  SrCuSi4O10,1wt%~10wt%;

  Ca3(PO4)2,90wt%~99wt%。

  本发明的第二方面,提供第一方面所述的一种SrCuSi4O10-Ca3(PO4)2复合生物陶瓷的制 备方法,包括:将Ca3(PO4)2粉末和SrCuSi4O10粉末均匀混合烧结,获得所述SrCuSi4O10- Ca3(PO4)2复合生物陶瓷。

  本发明的第三方面,提供第一方面所述的一种SrCuSi4O10-Ca3(PO4)2复合生物陶瓷用于 制备骨支架用途。

  本发明的第四方面,提供一种骨支架,所述骨支架的材料为第一方面所述的复合生物陶 瓷。

  本发明的第五方面,提供第四方面所述的一种骨支架的制备方法,包括:使用三维打印技 术将包含有Ca3(PO4)2粉末、SrCuSi4O10粉末和粘合剂的混合浆料打印成预设的骨支架外型, 烧结,获得骨支架。

  本发明的第六方面,提供第四方面所述的骨支架用于制备骨-软骨一体化修复用产品的 用途。

  如上所述,本发明的一种SrCuSi4O10-Ca3(PO4)2复合生物陶瓷、骨支架及其用途,具有 以下有益效果:

  本发明制备了一种含Sr、Cu、Si的复合生物陶瓷,含Sr、Cu、Si离子的生物活性支架有利于重建骨-软骨缺损,恢复软骨与软骨下骨的界面微观结构,保护软骨不发生骨关节炎的 退变,在体内具有骨-软骨一体化修复效果。

  附图说明

  图1a显示为复合陶瓷支架上培养rBMSCs的细胞增殖结果示意图。

  图1b显示为复合陶瓷支架上培养rBMSCs的相关基因Sox-9的表达结果。

  图1c显示为复合陶瓷支架上培养rBMSCs的相关基因Runx2的表达结果。

  图1d显示为复合陶瓷支架上培养rBMSCs 3天后的SEM结果。

  图2a显示为复合陶瓷支架上培养软骨细胞5天后的细胞增殖结果示意图。

  图2b显示为在2%SrCuSi-TCP支架上培养骨细胞3天后的SEM结果。

  图2c显示为在2%SrCuSi-TCP支架上培养骨细胞3天后的荧光共聚焦cLSM结果。

  图3a显示为骨软骨缺损模型中复合支架组的V&G染色结果。

  图3b显示为骨软骨缺损模型中复合支架组的甲苯胺蓝染色结果。

  图3c显示为骨软骨缺损模型中复合支架组直观照片。

  图4显示为SrCuSi4O10二维纳米片TEM图。

  图5显示为SrCuSi4O10-Ca3(PO4)2复合生物陶瓷的SEM图。

  具体实施方式

  以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露 的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加 以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精 神下进行各种修饰或改变。

  本发明的第一方面,提供一种SrCuSi4O10-Ca3(PO4)2复合生物陶瓷,所述复合生物陶瓷 由原料烧结制成,所述原料包括以下重量份的组分:

  SrCuSi4O10,1wt%~10wt%;

  Ca3(PO4)2,99wt%~90wt%。

  本发明实施人员可根据实际需求选择不同重量份的组分,例如所选的原料中SrCuSi4O10的重量份为1wt%~2wt%,Ca3(PO4)2的重量份为99wt%~98wt%;也可以是所选的原料中 SrCuSi4O10的重量份为2wt%~3wt%,Ca3(PO4)2的重量份为98wt%~97wt%、SrCuSi4O10的重量份为3wt%~4wt%,Ca3(PO4)2的重量份为97wt%~96wt%、SrCuSi4O10的重量份为 4wt%~5wt%,Ca3(PO4)2的重量份为96wt%~95wt%、SrCuSi4O10的重量份为5wt%~6wt%, Ca3(PO4)2的重量份为95wt%~94wt%、SrCuSi4O10的重量份为6wt%~7wt%,Ca3(PO4)2的 重量份为94wt%~93wt%、SrCuSi4O10的重量份为7wt%~8wt%,Ca3(PO4)2的重量份为 93wt%~92wt%、SrCuSi4O10的重量份为8wt%~9wt%,Ca3(PO4)2的重量份为92wt%~ 91wt%、SrCuSi4O10的重量份为9wt%~10wt%,Ca3(PO4)2的重量份为91wt%~90wt%其中 的一种。

  优选地是原料中SrCuSi4O10的重量份为1wt%~4wt%,Ca3(PO4)2的重量份为99wt%~ 96wt%。

  更优选地是原料中SrCuSi4O10的重量份2wt%,Ca3(PO4)2的重量份为98wt%。这个掺杂 量下得到的SrCuSi4O10-Ca3(PO4)2复合生物陶瓷的细胞生物相容性、体内成骨性能更佳。

  原料中SrCuSi4O10的重量份为1wt%、2wt%和4wt%时,制备出的SrCuSi4O10-Ca3(PO4)2复合生物陶瓷均具有良好的细胞生物相容性,可用于骨支架制备,本领域技术人员可预见性 推测SrCuSi4O10的重量份为4wt%~10wt%时,也可用于骨支架制备。

  在本发明中所述SrCuSi4O10可使用SiO2、SrCO3和CuCO3通过固相反应制得,所述Ca3(PO4)2可从市场采购得到。将原料SrCuSi4O10粉末和Ca3(PO4)2粉末均匀混合通过实在一定温度下烧结,并保温一段时间可得到具有良好生物相容性和体内成骨性的Ca3(PO4)2-SrCuSi4O10复合生物陶瓷。

  在一实施例中,所述SrCuSi4O10呈二维结构。所述二维结构是指原子或离子集团中的原子 或离子具有在空间沿二维方向的正、反向延伸作有规律排布的结构。用二维结构的SrCuSi4O10材料可以增加所述SrCuSi4O10-Ca3(PO4)2复合生物陶瓷的力学强度。

  本发明的第二方面,提供第一方面所述的一种SrCuSi4O10-Ca3(PO4)2复合生物陶瓷的制 备方法,包括:将Ca3(PO4)2粉末和SrCuSi4O10粉末均匀混合烧结,获得所述Ca3(PO4)2- SrCuSi4O10复合生物陶瓷。

  Ca3(PO4)2粉末和SrCuSi4O10粉末均匀混合,混合后的粉末放入到马弗炉或高温炉中进行 烧结,并保温,保温结束后自然降温获得SrCuSi4O10-Ca3(PO4)2复合生物陶瓷。

  获得具有一定形状的SrCuSi4O10-Ca3(PO4)2复合生物陶瓷,需要将Ca3(PO4)2粉末、SrCuSi4O10粉末和粘结剂均匀混合,使用模具压制或者是3D打印成一定的形状,再放入到马弗炉或者高温炉中进行烧结,并保温。

  本发明中所述的粘结剂是指为了陶瓷成型而添加到粉末中的可在烧结过程中除掉的物 质。

  在一实施例中,所述烧结的温度是1100-1300℃。优选烧结的温度是1100℃。1100℃时, Ca3(PO4)2和SrCuSi4O10开始发生蠕变,有利于Ca3(PO4)2颗粒和SrCuSi4O10颗粒粘结在一起, 提高SrCuSi4O10-Ca3(PO4)2复合生物陶瓷的机械强度。温度高于1300℃时,由于持续的高 温作用,SrCuSi4O10-Ca3(PO4)2复合生物陶瓷会发生形变,会破坏预设的形状,不利于SrCuSi4O10-Ca3(PO4)2复合生物陶瓷的成型。

  在一实施例中,所述保温时间是3-5小时。优选的保温时间是3小时。有利于排出SrCuSi4O10-Ca3(PO4)2复合生物陶瓷内的气体,防止复合生物陶瓷有大量气孔导致机械性能 降低。保温时间大于5小时,会导致SrCuSi4O10-Ca3(PO4)2复合生物陶瓷发生形变。

  本发明的第三方面,提供第一方面所述的一种SrCuSi4O10-Ca3(PO4)2复合生物陶瓷用于 制备支架的用途。SrCuSi4O10-Ca3(PO4)2复合生物陶瓷具有优异的生物相容性和机械强度, 可用于制备骨支架。

  本发明的第四方面,提供一种骨支架,所述骨支架的材料为第一方面所述的复合生物陶 瓷。

  本发明的第五方面,提供第四方面所述的一种骨支架的制备方法,包括:使用三维打印技 术将包含有Ca3(PO4)2粉末、SrCuSi4O10粉末和粘合剂的混合浆料打印成预设的骨支架外型, 烧结,获得骨支架。

  在一实施例中,所述粘合剂是聚醚F127。粘结效果好,打印时更顺畅。

  在一实施例中,所述粘合剂在所述混合浆料中的质量份是45wt%~50wt%。可得到合适 黏稠度的混合浆料,更方便顺畅打印。所述粘合剂在所述混合浆料中的质量份低于45wt%, 会导致3D打印机无法打印。

  本发明的第六方面,提供第四方面所述的骨支架用于制备骨-软骨一体化修复用产品的 用途。

  本发明中的所述骨支架含Sr、Cu和Si离子有利于重建骨-软骨缺损,恢复软骨与软骨下 骨的界面微观结构,保护软骨不发生骨关节炎的退变,所述骨支架可用于制备骨-软骨一体 化修复用的产品。

  此外应理解,本发明中提到的一个或多个方法步骤并不排斥在所述组合步骤前后还可以 存在其他方法步骤或在这些明确提到的步骤之间还可以插入其他方法步骤,除非另有说明; 还应理解,本发明中提到的一个或多个设备/装置之间的组合连接关系并不排斥在所述组合设 备/装置前后还可以存在其他设备/装置或在这些明确提到的两个设备/装置之间还可以插入其 他设备/装置,除非另有说明。而且,除非另有说明,各方法步骤的编号仅为鉴别各方法步骤 的便利工具,而非为限制各方法步骤的排列次序或限定本发明可实施的范围,其相对关系的 改变或调整,在无实质变更技术内容的情况下,当亦视为本发明可实施的范畴。

  实施例1

  如图4所示,SrCuSi4O10陶瓷的制备:合成SrCuSi4O10粉体是用一种简单的固态反应方 法。简单来说,4×10-3M SiO2,1×10-3M SrCO3和1×10-3M CuCO3均匀研磨。混合后的粉末被放入铂金坩埚,在1000℃下加热16h,加热速率为5℃/min。得到的产品重新研磨,并再 次使用相同条件下加热。之后,使用过量的HCl溶液(1M)除去未反应的原料和得到的SrCuSi4O10微粒用去离子水冲洗,然后风干,得到二维状的SrCuSi4O10。

  实施例2

  SrCuSi4O10-Ca3(PO4)2的制备:按照下表,分别称取Ca3(PO4)2粉末和SrCuSi4O10粉末均 匀混合,混合后的粉末放入到马弗炉中1100℃烧结,加热速率为2℃/min,并保温3小时, 保温结束后自然降温获得SrCuSi4O10-Ca3(PO4)2复合生物陶瓷。

  表1:SrCuSi4O10和Ca3(PO4)2配料比

  实施例3

  骨支架的制备,按照下表,分别称取Ca3(PO4)2粉末和SrCuSi4O10粉末均匀混合,再加入 粘合剂聚醚F127,再进行均匀混合得到混合浆料,其中聚醚F127在混合浆料中的质量份是 45wt%。将得到的混合浆料注入3D打印机中打印成预设的形状,再放入到马弗炉中1100℃ 烧结,加热速率为2℃/min,并保温3小时,保温结束后自然降温获得骨支架。

  表2:骨支架配料

  实施例4

  1)兔子干细胞增殖:

  首先将TCP,1%SrCuSi-TCP,2%SrCuSi-TCP,4%SrCuSi-TCP四种支架进行高温高压灭菌 后,待用。采用第3代兔子骨髓间充质干细胞(rBMSCs)以及含10%的FBS的完全低糖细胞培 养基DMEM培养基进行实验。首先,将支架放入48孔板后。然后向每个孔内支架上种入1×104个细胞,将培养板放入含有5%CO2的培养箱中,温度维持37℃恒定。分别培养12h、4、7 天后,利用CCK-8法,通过吸光度,评估rBMSCs增殖情况。

  2)支架表面干细胞SEM

  将1×104个第3代rBMSCs种在2%SrCuSi-TCP支架上三天后,经过固定,脱水等过程 后,进行SEM表征,观察细胞与支架的粘附情况以及细胞状态。

  3)rBMSCs细胞相关基因表达

  将两种支架放入6孔板中,向每个孔板加入5×104个第3代rBMSCs,隔天换一次培养基, 在培养箱中养7天后,利用反转录酶-聚合酶连锁反应对成骨细胞相关基因进行检测(Real-time Quantitative Reverse Transcription-Polymerase Chain Reaction,RT-qPCR)。具体实验步骤如下: 在检测时间点,吸出培养基后,用PBS轻轻洗三次,然后每孔加入1mLTrizol试剂,充分裂 解细胞,提取细胞中的RNA。然后将每个孔板中裂解液装入到1.5mL离心管中,再向每个 离心管中加入200μL的三氯甲烷,在振荡器上进行震荡15s后,放置约5min.然后在4℃ 下离心(12000rpm,10min),离心好后收集上清液,加入500μL异丙醇,震荡静置后。再离心 (12000rpm,10min)。然后,将RNA反转录cDNA。具体实验步骤为:吸取1000ng的RNA, 用水加至11μL,得到RNA模版。加入1μL引物Oligo(dT)20,1μL ReverTraAce,1μL Rnase Inhibitor,2μL 10mM dNTPS以及4μL 5XRT Buffer。在42℃下放置20min,然后在99℃ 下放置5min,再放到冰上5min,利用分光光度计测量其中cDNA的浓度。最后,以cDNA为模版,通过SYBR Green PCR Master Mix Kit试剂盒(Toyobo)在PCR仪器上,测量待测 基因的Ct值,样品中的GAPDH的Ct作为内参。利用ΔΔCt法算出待测基因的表达水平。

  如图1所示。图中在复合陶瓷支架上培养rBMSCs的细胞增殖结果(a)。在复合陶瓷支架 上培养rBMSCs的相关基因Sox-9(b),Runx2(c)的表达结果。在复合陶瓷支架上培养rBMSCs 3天后的SEM结果(d)。SrCuSi4O10-Ca3(PO4)2复合生物活性陶瓷支架上的细胞数量随天数持 续增加。细胞种在支架上3天后的SEM结果可以看出,rBMSCs在支架表面贴附铺展的很好, 且细胞的骨架与细胞丝状伪足都清晰可见。证明SrCuSi4O10-Ca3(PO4)2复合生物活性陶瓷支 架保持良好的细胞相容性。培养7后,2%SrCuSi-TCP支架上的细胞中Sox-9、Runx2基因的 表达均显著性高于TCP支架上。

  实施例5

  1)细胞增殖

  采用第3代兔子软骨细胞以及含10%的FBS的完全低糖细胞培养基DMEM培养基进行 实验。首先,将支架放入48孔板后。然后向每个孔内支架上种入1×104个细胞,将培养板放 入含有5%CO2的培养箱中,温度维持37℃恒定。分别培养1、3、5天后,利用CCK-8法, 通过吸光度,评估兔子软骨细胞增殖情况。

  2)支架表面细胞SEM表征

  在1×104个第3代兔子软骨细胞种在2%SrCuSi-TCP支架上三天后,吸出细胞液,每个 孔板内加入300μL事先配好的2.5%的戊二醛进行细胞固定20min后,加入不同浓度的乙醇 (30%,50,70,90,80,95,and 100v/v%)依次脱水,每种浓度脱水10min,然后用50%的六甲基 二硅胺(HDMS),纯HDMS各脱水处理10min,放置通风厨过夜后,即可利用SEM(SEM,SU8220,日本)对细胞形貌进行观察。

  3)支架表面细胞共聚焦表征

  为了观察细胞骨架,在1×104个第3代兔子软骨细胞种在2%SrCuSi-TCP支架上三天后, 用4%的多聚甲醛对细胞进行固定20min,PBS洗三次,然后加入异硫氰酸荧光素标记的鬼笔 环肽(FITC标记的Phalloidin)染料对细胞质进行染色20min,PBS洗3次,每次5min。之后 用DAPI对细胞核进行染色5min,PBS洗3次。随后泡在PBS里。利用共聚焦显微镜cLSM(单 光子激光共聚焦显微成像系统,Leica TCS SP8,德国)进行观察拍照。

  如图2所述,在复合陶瓷支架上培养软骨细胞5天后的细胞增殖结果(a)。在2%SrCuSi-TCP 支架上培养软骨细胞3天后的SEM结果(b)。在2%SrCuSi-TCP支架上培养骨细胞3天后的荧 光共聚焦cLSM结果(c)。SrCuSi4O10-Ca3(PO4)2复合生物陶瓷支架上的兔子软骨细胞数量随 天数持续增加,SEM和共聚焦结果显示,SrCuSi4O10-Ca3(PO4)2复合生物陶瓷支架可以很好 的支撑软骨细胞在其表面粘附与生长。

  实施例6

  采用新西兰大白兔(2-2.5kg)建立骨-软骨缺损模型,评价TCP和2%SrCuSi-TCP支架的重 建效果。全麻后在股骨髁上制作骨软骨缺损,植入缺损部位植入支架。空白对照组缺损区未 植入支架。所有的兔子都被注射了三天的抗生素。术后12、16周,处死新西兰大白兔,收集 股骨髁,采用数码相机、组织学分析观察股骨髁再生效果。利用Van Gieson染色(VG)、甲苯 胺蓝染色评估软骨修复情况及软骨下骨组织再生情况。

  如图3所示,兔子体内软骨和软骨下骨的再生质量。复合支架组的V&G染色结果(a), 甲苯胺蓝染色结果(b),直观照片(c)。为了评估2%SrCuSi-TCP支架对骨-软骨缺损再生的效果, 进行V&G染色、甲苯胺蓝染色的组织学分析。染色结果可以看出2%SrCuSi-TCP复合生物陶 瓷支架显著促进新骨形成以及软骨的形成,说明2%SrCuSi-TCP复合生物陶瓷支架具有明显 的骨-软骨一体化修复的效果。

  在以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应 当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若 干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在 不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、 修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述 实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

  序列表

  <110> 上海交通大学医学院附属第九人民医院

  <120> 一种SrCuSi4O10-Ca3(PO4)2复合生物陶瓷、骨支架及其用途

  <160> 4

  <170> SIPOSequenceListing 1.0

  <210> 1

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 1

  ggtgctcaag ggctacgact 20

  <210> 2

  <211> 20

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 2

  gggtggtctt tcttgtgctg 20

  <210> 3

  <211> 22

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 3

  ccttccactc tcagtaagaa ga 22

  <210> 4

  <211> 22

  <212> DNA

  <213> 人工序列(Artificial Sequence)

  <400> 4

  taagtaaagg tggctggata gt 22

《一种SrCuSi<Sub>4</Sub>O<Sub>10</Sub>-Ca<Sub>3</Sub>(PO<Sub>4.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)