欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 基于铋钠锶钛酸盐的介电组合物、其介电元件、电子组件和层叠电子组件独创技术32635字

基于铋钠锶钛酸盐的介电组合物、其介电元件、电子组件和层叠电子组件

2021-01-31 18:10:24

基于铋钠锶钛酸盐的介电组合物、其介电元件、电子组件和层叠电子组件

  本申请是申请日为2016年5月24日、申请号为201680042966.9、发明名称为“基于铋钠锶钛酸盐的介电组合物、其介电元件、电子组件和层叠电子组件”之申请的分案申请。

  技术领域

  本发明涉及一种介电组合物、一种介电元件、一种电子组件和一种层叠电子组件,其有利地用于具有高额定电压的中压和高压应用,并且还有利地在高温环境下使用。

  背景技术

  层叠电子组件如层叠陶瓷电容器被广泛用作紧凑、大容量和高可靠性的电子组件。近年来,随着电子电路已经达到更高的密度,对介电元件的小型化的要求越来越强烈。此外,随着层叠电子组件如层叠陶瓷电容器的小型化和增加的容量的急剧发展,应用范围也在扩大。由于层叠电子组件的应用范围已经扩大,这些层叠电子组件需要多种特性。

  例如,用于装置如发动机控制模块(ECM)、燃料喷射装置、电子控制节流阀、逆变器、变流器,高强度放电(HID)前照灯单元、混合动力发动机电池控制单元和数码相机中的中压和高压电容器通常具有超过100V的额定电压,因为其被用于提供高压升压的电路中。当施加高DC偏压时,诸如这些的中压和高压电容器需要高介电常数和高电容。此外,当这些中压和高压电容器用于机动车辆或工业设备等时,还需要高介电常数和高电容,其不仅用于高DC偏压的应用,而且还供在高温的环境下使用。

  然而,常规介电组合物是根据它们将在施加低DC偏压时使用的假设而设计的。这意味着,如果在施加高DC偏压时使用具有包含常规介电组合物的介电层的电子组件,则存在介电常数和电容减小的问题。这个问题在DC偏压越高的情况下越显著,在具有非常薄的层的层叠陶瓷电容器中尤其如此,这是因为介电常数和电容趋于减小。

  为了解决上述问题,在下述专利文献1中描述了一种介电瓷料(porcelain)组合物,其含有包含以下的主要组分:碱金属氧化物含量为0.02重量%或更少的钛酸钡;选自氧化铕、氧化钆、氧化铽、氧化镝、氧化钬、氧化铒、氧化铥和氧化镱中的至少一种化合物;锆酸钡,氧化镁和氧化锰;所述主要组分由以下组成式表示:{BaO}mTiO2+αR2O3+βBaZrO3+γMgO+gMnO(其中R2O3是选自Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3和Yb2O3中的至少一种化合物;α、β、γ和g表示摩尔比并且在以下范围内:0.001≤α≤0.06,0.005≤β≤0.06,0.001<γ≤0.12,0.001<g≤0.12,γ+g≤0.13,以及1.000<m≤1.035);相对于100摩尔的主要组分,所述介电组合物含有以SiO2当量计为0.2至5.0摩尔的硅氧化物作为辅助组分。

  如专利文献1中所述的介电瓷料组合物在施加5V/μm的DC偏压时具有相对大的介电常数。但是,利用专利文献1所描述的介电陶瓷组合物在具有薄层以应对中压和高压电容器中甚至更大程度的紧凑度和更高的电容的层叠电子组件中不可能获得满意的特性。当在室温下对专利文献1中描述的介电瓷料组合物施加约8V/μm的高DC偏压时,不可能获得高介电常数。此外,当在高温下施加约8V/μm的高DC偏压时,不能获得高介电常数。

  此外,由于施加高DC偏压,存在常规介电组合物中存在的介电组合物发生击穿的可能性。当施加高DC偏压时,还需要不会产生击穿的优越耐受场。

  现有技术文献

  专利文献

  [专利文献]JP 3334607 B2

  发明内容

  发明解决的问题

  鉴于上面概述的情况,本发明的目的在于提供一种介电组合物,该介电组合物有利地用于具有相对高的额定电压的中压和高压应用,在室温和高温两者范围内,当施加高DC偏压时其具有高介电常数,并且其还具有优异的耐受电场特性,并且还提供了一种采用所述介电组合物的介电元件、一种电子组件和一种层叠电子组件。

  解决问题的手段

  为了实现上述目的,根据本发明的介电组合物包含主要组分和辅助组分,并且:

  所述主要组分由(BiaNabSrcLnd)TiO3表示;

  Ln为选自稀土元素的至少一种;

  a、b、c和d满足以下:0.100≤a≤0.400,0.100≤b≤0.400,0.100≤c≤0.700,0≤d≤0.100,且0.900≤a+b+c+d≤1.050;

  所述辅助组分包括第一辅助组分和/或第二辅助组分;

  所述第一辅助组分包含选自Li和K中的至少一种;并且

  所述第二辅助组分包含选自Cu、Zn、Mn、Mg和Co中的至少一种。

  根据本发明的介电组合物在室温和高温两者范围内,当施加高DC偏压时具有高介电常数,并且还在室温和高温两者范围内表现出优异的耐受电场。

  相对于100摩尔份的包含于主要组分中的Ti,优选以至少0.5摩尔份且少于7摩尔份的量含有第一辅助组分。

  相对于100摩尔份的包含于主要组分中的Ti,优选以至少0.05摩尔份且少于5摩尔份的量含有第二辅助组分。

  根据本发明的介电元件具有上述介电组合物。

  根据本发明的介电元件具有上述介电组合物,因此可使其更紧凑且性能更高。

  根据本发明电子组件具有包含上述介电组合物的介电层。

  根据本发明的层叠电子组件具有通过交替层叠内部电极层和包含上述介电组合物的介电层而形成的层叠部。

  附图说明

  图1是根据本发明的一个实施方式的层叠陶瓷电容器的截面图;

  图2是示出了介电常数相对于DC偏压的变化而变化的曲线图;以及

  图3是示出了介电常数相对于温度的变化而变化的曲线图。

  具体实施方式

  下面将参照图1描述本发明的优选实施方式。

  图1是根据本发明的一个实施方式的层叠陶瓷电容器的截面图。层叠陶瓷电容器200包括电容器元件主体5,其具有其中介电层7和内部电极层6A、6B交替堆叠的结构。在元件主体5的两端形成有一对端电极11A、11B,其与交替地设置在元件主体5内部的内部电极层6A、6B导通。虽然对元件主体5的形状没有特别限制,但是其通常为长方体形状。此外,对其尺寸没有特别限制,但尺寸应根据应用适当设定。

  根据形成介电层7的该实施方式的介电组合物包含具有下式(1)的主要组分,并且相对于100摩尔份的包含于主要组分中的Ti,还以至少0.05摩尔份且不多于10摩尔份的量包含选自第一辅助组分(Li和K中的至少一中)和第二辅助组分(Cu、Zn、Mn、Mg或Co中的至少一种)中的至少一者。

  (BiaNabSrcLnd)TiO3...式(1)

  (Ln为稀土元素)

  其中式(1)组合物中的a、b、c和d在以下数值范围内。

  0.100≤a≤0.400

  0.100≤b≤0.400

  0.100≤c≤0.700

  0≤d≤0.100

  0.900≤a+B+C+d≤1.050

  介电组合物包含具有式(1)的主要组分,其中a、b、c和d在上述数值范围内,以及选自第一辅助组分和第二辅助组分中的至少一种辅助组分,因此在150℃下施加DC偏压时的介电常数增加。a、b、c和d表示当Ti的原子数为1时Bi、Na、Sr和Ln的原子数之比。应当指出,施加DC偏压时介电常数的增加据信是因为根据本实施方式的介电组合物比常规的基于BaTiO3的介电组合物更接近顺电性的。

  当在25℃下施加至少8V/μm的DC偏压时,可以提供介电常数为900或更大的介电组合物,当在150℃下施加至少8V/μm的DC偏压时,可以提供介电常数为850或更大的介电组合物,并且在25℃和150℃下施加至少15V/μm的DC偏压可以提供具有耐受电场的介电组合物。

  应该注意的是,在150℃下介电组合物的介电常数的增加据信是因为主要组分的介电常数最高时的温度(在-10℃至100℃的范围内)由于添加了第一辅助组分和/或第二辅助组分而向高温侧移动。

  当介电组合物不包含第一辅助组分或第二辅助组分时,当在150℃下施加8V/μm的DC偏压时,不可能获得850或更大的介电常数。

  当a小于0.100时,介电组合物的顺电特性过分占优势。这意味着介电常数降低,并且当在25℃下施加8V/μm的DC偏压时,不可能实现900或更大的介电常数。此外,当a大于0.400时,绝缘电阻降低并且可能发生击穿,因此在25℃下不能实现15V/μm或更大的耐受电场。

  当b小于0.100时,介电组合物的顺电特性过分占优势。这意味着介电常数降低,并且当在25℃下施加8V/μm的DC偏压时,不可能实现900或更大的介电常数。另外,当b大于0.400时,绝缘电阻下降并且可能发生击穿,因此在25℃下不能实现15Vμm或更大的耐受电场。

  当c小于0.100时,绝缘电阻降低并且可能发生击穿,所以在25℃下不可能实现15V/μm或更大的耐受电场。此外,如果c大于0.700,则介电组合物的顺电特性过度占优势。因此,当在25℃下施加8V/μm的DC偏压时,不可能实现900或更大的介电常数。

  当d大于0.100时,介电组合物的顺电特性过分占优势。因此,在25℃下施加8V/μm的DC偏压时,不可能实现900或大的高介电常数。

  当a+b+c+d小于0.900或大于1.050时,绝缘电阻降低并可能发生击穿,因此在25℃下不能实现15V/μm或更大的耐受电场。

  相对于100摩尔份的包含于介电组合物中的Ti,包含于介电组合物中的第一辅助组分和第二辅助组分优选以就第一辅助组分和第二辅助组分的总和而言至少0.5摩尔份且不多于10摩尔份的量被包含。通过将第一辅助组分和第二辅助组分的总含量设定为0.5摩尔份或更多,主要组分的介电常数的峰值容易向高温侧移动足够的量。此外,通过将第一辅助组分和第二辅助组分的总含量设定为10摩尔份或更少,容易地防止高温下的绝缘电阻的降低,并且有助于获得在150℃下耐受电场为15V/μm或更大的介电组合物。

  此外,相对于100摩尔份的包含于介电组合物中的Ti,包含于介电组合物中的第一辅助组分优选以至少0.5摩尔份至少于7摩尔份的量被包含。通过将第一辅助组分的含量设定为0.5摩尔份或更多,主要组分的介电常数的峰值容易向高温侧移动足够的量。此外,通过将第一辅助组分的含量设定为少于7摩尔份,第一辅助组分可能以全部的量在主相中形成固溶体。通过减少残留在烧结体内而没有在主相中形成固溶体的第一辅助组分的量,可以进一步提高介电常数。鉴于此,通过以0.5摩尔份或更多且少于7摩尔份的量包含第一辅助组分,当施加8V/μm或更大的DC偏压时,可以在25℃和150℃下获得具有900或更大的相对高介电常数的介电组合物,并且在25℃和150℃下还可以获得耐受电场为15V/μm或更大的介电组合物。

  此外,相对于100摩尔份的包含于介电组合物中的Ti,包含于介电组合物中的第二辅助组分优选以至少0.05摩尔份到少于5摩尔份的量被包含。通过将第二辅助组分的含量设定为0.05摩尔份或更多,主要组分的介电常数的峰值容易向高温侧移动足够的量。此外,通过将第二辅助组分的含量设定为少于5摩尔份,第二辅助组分可能以全部的量在主相中形成固溶体。通过减少残留在烧结体内而没有在主相中形成固溶体的第二辅助组分的量,可以进一步提高介电常数。鉴于此,通过以0.05摩尔份或更多且少于5摩尔份的量包含第二辅助组分,当施加8V/μm或更大的DC偏压时,可以在25℃和150℃下获得具有900或更大的相对高介电常数的介电组合物,并且在25℃和150℃下还可以获得耐受电场为15V/μm或更大的介电组合物。

  此外,当形成介电层7的根据本实施方式的介电组合物满足以下(2)和(3)两者(其为更优选的)时,本发明的效果更加显著。如果满足以下(2)和(3)两者,则在25℃下施加8V/μm或更大的DC偏压时,介电常数为1200或更大,并且当在150℃下施加8V/μm或的更大的DC偏压时,介电常数为1000或更大。另外,在25℃和150℃下耐受电场为15V/μm或更大。

  (2)a、b、c和d在以下数值范围内。

  0.150≤a≤0.375

  0.150≤b≤0.375

  0.150≤c≤0.600

  0.010≤d≤0.080

  0.920≤a+b+c+d≤1.020

  (3)相对于100摩尔份的包含于介电组合物中的Ti,第一辅助组分的含量为至少1摩尔份且小于5摩尔份,和/或第二辅助组分的含量为至少0.1摩尔份且不多于3摩尔份。

  此外,如果包含Li作为第一辅助组分,并且包含La、Pr、Nd和Sm中的至少一种元素作为Ln,则第一辅助组分的含量优选为3%至6%。

  包含于上述式(1)中的元素的混合或复合氧化物可以用作介电组合物的起始材料,但是也可以从形成上述氧化物或复合氧化物作为焙烧产物的多种不同化合物中适当地选择起始材料,例如,碳酸盐、草酸盐、硝酸盐、氢氧化物和有机金属化合物等,这些可以混合使用。在介电起始材料中的每种化合物的含量应该以在焙烧后形成的上述介电组合物的方式确定。

  取介电组合物整体为100重量%,由式(1)表示的主要组分的含量优选例如占至少90重量%,以有助于实现用于作为介电组合物的实际应用的足够的介电常数。此外,除了主要组分和第一辅助组分和第二辅助组分之外,组合物可以同样含有选自Ni、Al和Si的元素的一种或更多种化合物作为第三辅助组分。对于第三辅助组分的含量没有特别限制,优选以相对于100摩尔份的包含于介电组合物中的Ti不多于1摩尔份的量包含第三辅助组分。

  此外,取介电组合物整体为100重量%,在制造期间可能污染本发明的介电组合物的杂质如P和Zr可同样以0.5重量%或更少的量被包含。

  介电层7的每层的厚度可以自由设定,对其没有特别的限制。例如,厚度可以是1μm至100μm。

  内部电极层6A、6B以平行的方式设置。内部电极层6A以其一端在形成有端子电极11A的层叠体5的端表面处暴露的方式形成。此外,内部电极层6B以其一端在形成有端电极11B的层叠体5的端表面处暴露的方式形成。另外,内部电极层6A和内部电极层6B以其大部分在堆叠方向上交叠的方式设置。

  对内部电极层6A、6B的材料没有特别的限制。可以使用Ag、Ag-Pd合金、Ni或Cu等。

  端电极11A、11B分别与内部电极层6A的端部和内部电极层6B的端部接触,所述端部在层叠体5的端表面处暴露,在层叠体5上设置有所述端电极11A、11B。因此,端电极11A、11B分别与内部电极层6A、6B电连接。

  对于端电极11A、11B的材料没有特别的限制。例如,其可以由具有Ag、Au或Cu等作为主要组分的导电材料构成。端电极11A、11B的厚度可以根据层叠介电元件的用途、尺寸等适当设定,并且没有特别限制。端电极11A、11B的厚度例如可以为10μm至50μm。

  (生产层叠陶瓷电容器的方法)

  根据本发明的层叠陶瓷电容器以与常规层叠陶瓷电容器相同的方式生产,即通过使用一般印刷方法或使用糊剂的片材方法制备生坯块片(green chip),焙烧所述生坯块片然后印刷或复制(transcribing)外部电极然后焙烧。下面将具体描述生产方法。

  用于层叠陶瓷层的糊剂可以是包含介电起始材料和有机载体(vehicle)的混合物的有机涂料,或者可以是包含介电起始材料和水性载体的混合物的水性涂料。

  对于介电起始材料,可以使用包含于主要组分和辅助组分中的金属,例如选自Bi、Na、Sr、Ln、Ti、Li、K、Cu、Mn、Zn、Mg、Co、Ni、Al和Si中的元素的氧化物或其混合物,或者可以使用复合氧化物。此外,介电起始材料可以适当地选自形成上述氧化物或复合氧化物作为焙烧结果的多种类型的化合物,例如,碳酸盐、草酸盐、硝酸盐、氢氧化物和有机金属化合物等,这些可以混合使用。介电起始材料中的每种化合物的含量应该以在焙烧后形成的上述介电组合物的方式确定。作为介电起始材料,通常使用平均粒径约为0.1μm至3μm的粉末。介电起始材料粉末的平均粒径可以通过适当调整起始材料混合的时间来调整。

  当用于介电层的糊剂为有机涂料时,应该混合介电起始材料与其中粘合剂等溶解于有机溶剂中的有机载体。对有机载体中使用的粘合剂没有特别的限制,可以适当地选自多种常规粘合剂如乙基纤维素、聚乙烯醇缩丁醛。另外,对有机载体中使用的有机溶剂没有特别限制,根据所使用的方法,即印刷法或片材法等,可以适当地选自多种类型的有机溶剂如萜品醇、丁基卡必醇、丙酮和甲苯。

  另外,当用于介电层的糊剂为水性涂料时,应该将介电起始材料与其中水溶性粘合剂和分散剂等溶解于水中的水性载体混合。对水性载体中使用的水溶性粘合剂没有特别的限制,可以使用的粘合剂的实例包括聚乙烯醇、纤维素和水溶性丙烯酸树脂。

  用于内部电极层的糊剂通过将包含多种类型的上述金属或合金,或在焙烧之后形成导电材料的多种类型的化合物、有机金属化合物、树脂酸盐/酯等的导电材料与上述有机载体或水性载体混合来制备。用于外部电极的糊剂可以以与用于内部电极的糊剂相同的方式制备。

  当使用有机载体制备上述糊剂时,对于所述有机载体的含量没有特别的限制。例如,粘合剂可以以约1重量%至5重量%的量存在,并且有机溶剂可以以约10重量%至50重量%的量存在。此外,糊剂可以根据需要含有选自多种分散剂、增塑剂、电介质、绝缘体等中的添加剂。这些添加剂的总含量优选不大于10重量%。

  当使用印刷方法时,将用于介电陶瓷的糊剂和用于内部电极层的糊剂以层的形式印刷在由聚对苯二甲酸乙二醇酯(PET)等制成的基底上,并切割成预定形状,之后,将其从基板上剥离以形成生坯块片。另外,使用片材法时,使用用于介电层的糊剂形成生坯片(green sheet),在生坯片上印刷用于内部电极的用糊剂,然后堆叠生坯片形成生坯块片。

  在焙烧生坯块片之前,进行脱脂(debinding)处理。脱脂处理的条件没有特别限制,应在通常的条件下进行。

  脱脂处理优选在大气下或还原性气氛下进行,升温速率优选为0.1℃/小时至100℃/小时,更优选为1℃/小时至10℃/小时,保持温度优选为200℃至500℃,更优选为300℃至450℃,保温时间优选为1小时至48小时,更优选为2小时至24小时。另外,有机组分如粘合剂组分优选被移除降至约300ppm,更优选被移除降至约200ppm。

  生坯块片的焙烧期间的气氛应根据用于内部电极层的糊剂中的导电材料的类型适当设定,焙烧应在大气下或还原性气氛下进行。

  另外,焙烧期间的保持温度优选为900℃至1250℃,更优选为950℃至1150℃。通过将保持温度设定为900℃或更高,由于焙烧,这使得致密化更有可能充分发展。另外,通过将保持温度设定为1250℃或更低,这有助于抑制形成内部电极层的各种材料的扩散和内部电极层的异常烧结。通过抑制内部电极层的异常烧结,这有助于防止内部电极的破损。通过抑制形成内部电极层的各种材料的扩散,这有助于防止DC偏压特性的劣化。

  这样得到的层叠介电元件主体的端表面通过滚筒抛光或喷砂进行抛光,例如,在其上印刷或复制用于外部电极的糊剂,进行焙烧,形成外部电极。用于外部电极的糊剂的焙烧条件优选为600℃至800℃的温度,时间为约10分钟至1小时。根据需要,通过镀覆等在外部电极表面上形成涂层。这样生产的根据本发明的层叠陶瓷电容器通过焊接等安装在印刷电路板等上,并用于各种电子装置等。

  上面描述了根据本发明的一个实施方式的层叠陶瓷电容器。在施加高DC偏压时,根据本发明的介电组合物具有高介电常数和电容,因此可以有利地用于具有相对高的额定电压的中压或高压电容器中。

  另外,本发明不限于上述实施方式。例如,根据本发明的介电组合物还可以用作半导体器件中的介电元件等。此外,根据本发明的介电组合物、介电元件、电子组件和层叠电子组件也用于电路保护用的平滑电容器或缓冲电容器中,因为当施加DC偏压时需要高介电常数。

  根据本发明,除了介电组合物的组成之外,还可以自由使用已知的结构等。此外,当生产层叠陶瓷电容器时,例如,煅烧的粉末可以通过已知的方法如水热合成来生产。此外,还可以制备(Bi0.5Na0.5)TiO3、SrTiO3和La0.67TiO3等,与包含第一辅助组分和/或第二辅助组分的起始材料混合,并烧结作为主要组分前体。

  [示例性实施方案]

  下面将借助于示例性实施方案和比较例来更详细地描述本发明。然而,本发明不限于以下示例性实施方案。应该注意,在下面的描述中,第一辅助组分可以称为“辅助组分A”,第二辅助组分可以称为“辅助组分B”。

  为了生产介电组合物,制备下列起始材料粉末,即包含主要组分的元素的起始材料粉末(氧化铋(Bi2O3)、碳酸钠(Na2CO3)、碳酸锶(SrCO3)、氢氧化镧(La(OH)3)、氧化镱(Yb2O3)、氧化钐(Sm2O3)、氧化铈(CeO2)、氧化钇(Y2O3)、氧化镨(Pr6O11)、氧化钕(Y2O3)、氧化钆(Gd2O3)、氧化铽(Tb4O7)、氧化镝(Dy2O3)、氧化钬(Ho2O3)、氧化铽(Er2O3)和氧化钛(TiO2));和包含辅助组分的元素的起始材料粉末(碳酸锂(Li2CO3)、碳酸钾(K2CO3)、氧化铜(CuO)、氧化锌(ZnO)、氧化锰(MnO2)、氧化镁(MgO)和氧化钴(Co3O4))。对起始材料粉末进行调节和称重,使得焙烧后的介电组合物(烧结体)满足以下示出的表1至4中的组成。应该注意的是,表1至表4中的a、b、c和d表示下式(1)中的a、b、c和d的数值。此外,对辅助组分的起始材料粉末进行调节和称重,使得烧结体含有表1至表4所示的辅助组分的量。

  (BiaNabSrcLnd)TiO3...式(1)

  在表1至表3的示例性实施方案和比较例中,Ln是选自La、Yb、Sm和Ce中的一种类型的元素。在表4中的示例性实施方案中,Ln是选自Y、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er和Yb中的一种或两种类型的元素。当选择两种类型的元素时,其各自的含量以1:1的比例作为摩尔转换率。

  用球磨机湿法混合经称重的起始材料粉末以得到混合物。此后,混合物在空气中在750℃至850℃下煅烧2小时以获得煅烧材料。然后使用球磨机湿法研磨煅烧材料以获得煅烧粉末。

  然后将有机溶剂和有机载体添加到煅烧粉末中,使用球磨机湿法混合材料,制备用于介电层的糊剂。

  另外,相对于用于介电层的糊剂分开混合导电材料粉末和有机载体,以制备用于内部电极层的糊剂。使用Ag、Ag-Pd合金或Cu等作为导电材料粉末。

  然后借助片材成型法将用于介电层的糊剂模制为片状,得到厚度10μm的陶瓷生坯片。

  借助丝网印刷将用于内部电极层的糊剂涂覆在所得的陶瓷生坯片上以印刷内部电极层,然后堆叠经印刷的片材,之后,将其切割成尺寸为4.5×4.3×1.0mm的长方体形状,由此制备了层叠生坯块片。内部电极层的厚度为2μm。此外,介电层的层叠数为10。层叠生坯块片在300℃至500℃下进行脱脂处理以将有机组分移除降低至约300ppm,在大气下或在还原性气氛下在900℃至1250℃下进行焙烧。在焙烧之后,对内部电极的暴露表面进行抛光,对其施用具有Ag或Cu作为导电材料的外部电极的糊剂,获得层叠陶瓷电容器。

  分析所得层叠陶瓷电容器的组成。通过X射线荧光和电感耦合等离子体(ICP)光学发射光谱进行组成的分析。结果证实层叠陶瓷电容器的组成与表1至3中所示的组成相同。

  当在室温(25℃)和150℃下施加8V/μm的DC偏压并施加有效值为0.1V/μm的叠加AC电压时,测量每个得到的层叠陶瓷电容器的介电常数(ε)。

  在数字LCR仪(Hewlett-Packard,4284A)上连接DC高压电源(Glassman HighVoltage,WX10P90),并通过所述数字LCR仪在室温(25℃)和150℃下同时施加8V/μm的DC偏压测量介电常数。

  通过逐渐施加电压并使用DC高压电源(Glassman High Voltage,WX10P90)测量产生击穿的电压来获得在25℃和150℃下的耐受电场。

  在示例性实施方案和比较例中,在室温(25℃)和150℃下施加8V/μm的DC偏压时的介电常数,以及在25℃和150℃下的耐受电场示于表1至3中。当在25℃下施加8V/μm的DC偏压时介电常数为900或更大,当在150℃下施加8V/μm的DC偏压时介电常数为850或更大,以及在25℃和150℃下耐受电场为15V/μm或更大被认为是良好的。

  此外,当在25℃和150℃下施加8V/μm的DC偏压时介电常数为900或更大,以及在25℃和150℃下耐受电场为15V/μm或更大被认为是更好的。

  [表1]

  

  [表2]

  

  [表3]

  

  表1至3所示的根据示例性实施方案的层叠陶瓷电容器在a、b、c和d方面满足以下,即,0.100≤a≤0.400,0.100≤b≤0.400,0.100≤c≤0.700,0≤d≤0.100且0.900≤a+b+c+d≤1.050。此外,所述层叠陶瓷电容器还包含选自第一辅助组分(Li和K中的至少一种)和第二辅助组分(Cu、Zn、Mn、Mg和Co中的至少一种)中的至少一种。相对于100摩尔份的包含于主要组分中的Ti,第一辅助组分和第二辅助组分的总含量为0.05摩尔份至10摩尔份。

  当在25℃下施加8V/μm的DC偏压时,表1至3所示的根据示例性实施方案的层叠陶瓷电容器的介电常数为900或更大,当在150℃下施加8V/μm的DC偏压时,介电常数为850或更大,在25℃和150℃下耐受电场为15V/μm或更大。另外,无论使用La、Yb、Sm和Ce中的任一种作为Ln,都能获得具有良好特性的层叠陶瓷电容器。

  表1至3所示的根据示例性实施方案的层叠陶瓷电容器(其中相对于100摩尔份的包含于介电组合物中的Ti,第一辅助组分以至少0.5摩尔份至但少于7摩尔份的量被包含),当在25℃和150℃下施加8V/μm的DC偏压时介电常数为900或更大,并且在25℃和150℃下耐受电场为15V/μm或更大。

  表1至3所示的根据示例性实施方案的层叠陶瓷电容器(其中相对于100摩尔份的包含于介电组合物中的Ti,第二辅助组分以至少0.05摩尔份至但少于5摩尔份的量被包含),当在25℃和150℃下施加8V/μm的DC偏压时介电常数为900或更大,并且在25℃和150℃下耐受电场为15V/μm或更大。

  另外,表1至3所示的示例性实施方案中的层叠陶瓷电容器的一些示例性实施方案在a、b、c和d方面满足以下,即,0.150≤a≤0.375,0.150≤b≤0.375,0.150≤c≤0.600,0.010≤d≤0.080,0.920≤a+b+c+d≤1.020。此外,相对于100摩尔份的包含于主要组分中的Ti,所述层叠陶瓷电容器还包含至少1摩尔份但小于5摩尔份的第一辅助组分(Li和K中的至少一种)和/或0.1摩尔份至3摩尔份的第二辅助组分(Cu、Zn、Mn、Mg和Co中的至少一种)。

  在一些示例性实施方案中,本发明的效果特别显著。在一些示例性实施方案中,当在25℃下施加8V/μm的DC偏压时介电常数为1200或更大,当在150℃下施加8V/μm的DC偏压时介电常数为1000或更大,在25℃和150℃下耐受电场为15V/μm或更大。

  [表4]

  

  在表4中的一些示例性实施方案中,包含La、Pr、Nd和Sm中的至少一种元素,并且第一辅助组分(Li)的含量为3摩尔份至6摩尔份。

  本发明的优点在一些示例性实施方案中特别显著。在一些示例性实施方案中,当在25℃下施加8V/μm的DC偏压时介电常数为1200或更大,当在150℃下施加8V/μm的DC偏压时介电常数为1300或更大,在25℃和150℃下耐受电场为18V/μm或更大。

  此外,对示例性实施方案4的层叠陶瓷电容器,改变在25℃下施加的DC偏压的大小,测量介电常数。测量介电常数的结果连同常规的基于BaTiO3的电容器样品的介电常数变化的示意图示于图2中。

  从图2中清楚可见,随着施加的DC偏压的增大,常规的基于BaTiO3的电容器样品的介电常数急剧下降,而具有根据本申请的介电组合物的层叠陶瓷电容器的介电常数没有大幅下降,即使在DC偏压大的情况下,也能保持高介电常数。这被认为是因为本申请的根据本发明的介电组合物比常规的基于BaTiO3的介电组合物更接近顺电性。

  另外,当施加8V/μm的DC偏压同时温度从25℃变化到150℃时,测量根据示例性实施方案4的层叠陶瓷电容器的介电常数。测量结果连同常规的基于BaTiO3的电容器样品的介电常数变化的示意图示出于表3中。

  从图3中清楚可见,当施加8V/μm的DC偏压时,具有本申请的根据本发明的介电组合物的层叠陶瓷电容器在25℃至150℃的范围内获得850或更大的介电常数,所以该介电常数高于常规的基于BaTiO3的电容器样品的介电常数。

  [标记符号]

  5...层叠体

  6A,6B...内部电极层

  7...介电层

  11A,11B...端电极

  200...层叠陶瓷电容器

  本申请还包括以下方面。

  1.一种介电组合物,包含主要组分和辅助组分,其中:

  所述主要组分由(BiaNabSrcLnd)TiO3表示;

  Ln为选自稀土元素的至少一种;

  a、b、c和d满足以下:0.100≤a≤0.400,0.100≤b≤0.400,0.100≤c≤0.700,0≤d≤0.100,且0.900≤a+b+c+d≤1.050;

  所述辅助组分包括第一辅助组分和/或第二辅助组分;

  所述第一辅助组分包含选自由Li和K组成的组中的至少一种;以及

  所述第二辅助组分包含选自由Cu、Zn、Mn、Mg和Co组成的组中的至少一种。

  2.根据项1所述的介电组合物,相对于100摩尔份的包含于所述主要组分中的Ti,所述介电组合物包含至少0.5摩尔份且少于7摩尔份的所述第一辅助组分。

  3.根据项1或2所述的介电组合物,相对于100摩尔份的包含于所述主要组分中的Ti,所述介电组合物包含至少0.05摩尔份且少于5摩尔份的所述第二辅助组分。

  4.一种介电元件,其提供有根据项1至3中任一项所述的介电组合物。

  5.一种电子组件,其具有包含根据项1至3中任一项所述的介电组合物的介电层。

  6.一种层叠电子组件,其具有通过交替层叠内部电极层和包含根据项1至3中任一项所述的介电组合物的介电层而形成的层叠部。

《基于铋钠锶钛酸盐的介电组合物、其介电元件、电子组件和层叠电子组件.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)