欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 水泥材料> 钢包渣线用纳米碳低碳镁碳砖及制备方法独创技术23932字

钢包渣线用纳米碳低碳镁碳砖及制备方法

2021-02-26 17:09:18

钢包渣线用纳米碳低碳镁碳砖及制备方法

  技术领域

  本发明属于耐火材料技术领域,具体涉及一种钢包渣线用纳米碳低碳镁碳砖及制备方法。

  背景技术

  镁碳砖是以镁砂和难以被炉渣侵润的高熔点石墨碳素材料作为主要原料、添加各种非氧化物添加剂和采用炭质结合剂制成的不烧碳复合耐火材料。由于石墨热膨胀系数小、热导率大、熔点高、不易被熔渣润湿等性能,因此镁碳砖具有耐高温、抗渣能力强、抗热震性高和高温蠕变低等优良特性,并在炼钢工序得到广泛应用。由于常规的MgO-C砖总含碳量较高,约为10~20%,常用的碳素材料主要是鳞片石墨,导致镁碳砖热导率高,石墨资源消耗大;同时,由于鳞片石墨独特的片层结构,易在平行砖体成型压力方向产生弹性效应,造成砖体结构出现层裂及传热各向异性,引起砖体内应力集中,加速砖体结构破坏;此外,碳素材料的易氧化性能,引起镁碳砖表层氧化脱碳,导致砖体表层组织劣化,降低了砖体的抗侵蚀、抗剥落性能。随着高品质纯净钢冶炼技术的不断发展,耐火材料品质对钢水质量与低成本冶炼技术的影响越来越得到行业的高度关注;根据相关资料报道,对于钢包渣线用镁碳砖,现有镁碳砖对钢水质量与低成本冶炼技术的影响主要有:(1)热导率高导致热损耗大,使出钢温度提高,加大了耐火材料的侵蚀;(2)在冶炼品质钢或超低碳钢时,引起增碳问题。因而,降低钢包渣线镁碳砖总碳含量、提高使用性能成为国内外业界的持续关注的热点问题,并开展了大量的钢包渣线用低碳镁碳砖、超低碳镁碳砖研究。所谓低碳镁碳砖,一般是指总含碳量不超过8%,超低碳镁碳砖总含碳量不超过4%。

  镁碳砖是在镁砖的基础上添加石墨而发展起来的,其优良的性能在于添加了石墨,因而单纯降低镁碳砖中的碳含量,会带来热震稳定性及抗渣渗透性下降等问题。根据文献“朱伯铨,张文杰,低碳镁碳砖的研究现状与发展,武汉科技大学学报,2008,No.3”报道,镁碳砖中碳含量降低引起的主要问题是热震稳定性及抗渣渗透性下降;众所周知,镁碳砖中碳含量降低以后,使砖的热导率下降,弹性模量增大,从而使砖的抗热震稳定性变差,并使熔渣及钢水与材料的润湿性增强,材料的抗熔渣及钢水的渗透性变差。针对这一问题,文献系统地综述了国内外镁碳砖低碳化技术研究成果,总结了相关的改进途径,具体如下:

  (1)改善结合炭的炭结构,提高低碳镁碳砖的热震稳定性及高温强度。传统镁碳砖的结合剂多为酚醛树脂,这种结合剂炭化以后的炭结构呈各向同性的玻璃态,所以使镁碳砖呈脆性,弹性模量高,对制品的热稳定性不利,且制品的高温强度也低;为此,日本学者通过在酚醛树脂中引入能石墨化的炭素前躯体制备复合结合剂,并在镁碳砖使用环境下能炭化成为具有流动状或镶嵌状结构的次生炭,或原位形成纳米炭纤维,改善结合炭结构。

  (2)优化镁碳砖的基质结构,改善镁碳砖热震稳定性与抗渣渗透性、降低热导率。在碳含量大幅度降低的情况下,提高骨料颗粒与炭粒子的接触频率,是保证少量炭粒子性能充分发挥的重要途径。为此,日本学者采用炭黑和金属为原料和自蔓燃(SHS)法,合成了具有纳米尺度的部分石墨化的炭黑和金属炭化物组成的复合石墨化炭黑;通过采用复合石墨化炭黑改性酚醛树脂结合剂、不同形态纳米尺度的炭黑(单球型、聚集型)和复合石墨化炭黑碳源在基质组成中的引入,开展了纳米结构基质低碳镁碳砖的研制,通过纳米颗粒间的挠性、结合剂树脂的挥发分逸出及通过控制炭化过程而生成的纳米气孔吸收热胀冷缩变形,提高低碳镁碳砖的抗热冲击性能,其中,添加1.5%的碳纳米颗粒的镁碳砖,其抗剥落的热循环次数与鳞片石墨含量为18%传统镁碳砖相当,并有效地遏制了传统镁碳砖对钢水的增碳问题。另外,气孔微细化还有助于改善材料的抗渣性;通过对比检测,研制的低碳镁碳砖在抗热震性、抗氧化性、抗渣性以及导热性等方面与传统镁碳砖相比都有显著的改善和提高。

  (3)引入高效抗氧化剂。镁碳砖损毁的主要原因之一就是砖中碳的氧化,导致钢渣侵蚀渗透,因而,对于低碳镁碳砖,对砖中碳氧化的保护尤为重要;为此,国内外学者开展了镁碳砖高效抗氧化剂的研究,加强低碳镁碳砖中碳素材料的防氧化保护,形成了由金属粉体、合金粉体、非氧化物粉体单一使用或复合使用的系列专利技术,但通常引入的高效抗氧化剂成本较高,且其分散均匀性不易控制,对材料的抗侵蚀性能、尤其是高温力学性能的改善不明显。

  针对上述三个方面的改进途径,国内学者同样开展了大量的研究,大力推进了我国镁碳砖制备与应用技术的发展。如:中国专利“贾晓林,封鉴秋,崔全掌等,含纳米碳粉的酚醛树脂、纳米碳改性的低碳镁碳砖及制备方法,专利号:ZL200810049163.3”,公开了一种采用苯酚、甲醛、分散剂、纳米碳粉和超声波分散技术制备含纳米碳粉的酚醛树脂结合剂方法,并公开了采用含纳米碳粉的酚醛树脂结合剂制备低碳镁碳砖的组分与工艺方法。通过纳米碳颗粒与树脂的结合及其在耐火材料的粗颗粒、细颗粒、添加剂及其它材料之间的均匀分散,并填充到气孔内部和空隙间,使内部孔径分布主要集中在几纳米范围内。利用纳米结构基质中的纳米颗粒之间的挠性和结合剂树脂的挥发份逸出,通过控制碳化过程生成的纳米气孔,吸收因热冲击产生的剧烈热膨胀和收缩,改善镁碳砖的热震稳定性、抗侵蚀性和抗氧化性,降低热导率,最低为6.2W·(m·K)-1。但结合剂的改性效果尚需进一步进行生产应用验证,如何实现工业化生产还需进一步研究。如:中国专利“刘浩,节闯,王周福等,一种低碳镁碳砖及其制备方法,专利申请号:201910649280.1”,通过将78~93wt%的镁砂颗粒、0.1~2wt%的有机助剂和5~20wt%的无水乙醇置于搅拌机中,以300~600转/分钟的转速搅拌2~6小时,于80~110℃条件下烘干12~24小时后筛分,对粒度为1~5mm的镁砂颗粒预处理,其中有机助剂为聚乙烯吡咯烷酮或为聚丙二醇。通过对镁砂颗粒进行预处理,调控了镁砂颗粒的表面结构与形貌,使其易于形成合理、可控的颗粒堆积,有助于调节镁砂细粉、鳞片石墨、抗氧化剂等在镁砂颗粒间的分布与微结构发展状态,使所制备的低碳镁碳砖具有高的高温抗折强度和抗渣侵蚀性。经检测分析,制备的低碳镁碳砖体积密度大于2.98g/cm3、显气孔率小于7.2%、常温耐压强度大于52MPa;高温抗折强度(1400℃×0.5h)大于11.2MPa,残余抗折强度(1100℃风冷循环1次)大于6.8MPa,抗渣试验(氧化气氛,1600℃×3h)未见明显侵蚀和渗透;但镁砂颗粒预处理量大、预处理时间长,预处理工艺困难,目前未能见到实际生产应用的报道。中国专利“钟香崇,马成良,曹勇等,钢包渣线用金属复合低碳镁碳砖及其制备方法,授权公告号CN%20101244940%20B”公开了一种碳含量≤6%的金属复合低碳镁碳砖及其制备方法,其主要特征在于材料组分中加入了粒度小于0.088mm的金属粉3~15%和含硼抗氧化剂0.5~3%;其中,金属粉为铝粉、硅粉、镁粉、锌粉、镁铝合金粉金属粉中的一种或两种以上的复合,金属粉不仅起到了抗氧化的作用,而且主要是高温使用过程中金属粉发生原位反应生成非氧化物,然后填充穿插在方镁石骨架结构中起到增强增韧作用,从而显著提高镁碳砖的高温强度和抗热震性,改善其抗氧化性和抗渣性能;含硼抗氧化剂为碳化硼、氮化硼、硼化锆、硼化钙粉中的至少一种,有效的防止石墨和非氧化物的氧化,使得镁碳砖不易被钢渣润湿和渗透。制得的钢包渣线用金属复合低碳镁碳砖,体积密度≥2.96g/cm3,显气孔率≤6%,常温耐压强度≥45MPa,1400℃埋碳高温抗折强度≥25Mpa,碳含量≤6%,MgO含量≥80%,抗热震性采用1100℃、风冷一次的空气急冷法测定残余强度保持率为70~80%(现常用镁碳砖残余强度保持率为50~60%);但因金属粉与抗氧化剂成本高,目前未能推广应用。中国专利“马北越,任鑫明,苏畅等,一种纳米碳增强的低碳镁碳砖及其制备方法,专利申请号:201810613284.X”公开了一种纳米碳含量为2~4%低碳镁碳砖及其制备方法,各种原材料的质量百分比组成为:原料镁砂90%~95%,纳米碳2~4%,抗氧化剂2%~3%,结合剂4%;其中,纳米碳中的碳质量百分比≥98%,为纳米氧化石墨片、碳纳米管、炭黑、活性炭、焦炭或其中两种的任意比混合;显然焦炭中的碳质量百分比≥98%是很困难的,此外,专利未对易团聚的纳米碳在镁碳砖中如何分散均匀进行介绍,工业化实施困难。

  发明内容

  本发明的目的就是针对上述技术的不足,提供一种钢包渣线用纳米碳低碳镁碳砖及制备方法,具有总碳含量低(≤4%)、热导率低、体积密度大、力学强度高以及抗氧化、抗渣侵蚀渗透及抗热剥落等性能优的特点,达到延长钢包渣线使用寿命、降低渣线散热损失、抑制钢水增碳等综合目的。

  为实现上述目的,本发明所设计的钢包渣线用纳米碳低碳镁碳砖,纳米碳低碳镁碳砖的原料包括主原料和辅原料,主原料按重量百分比包括:

  

  辅原料包括钢纤维、聚乙烯醇纤维和短切碳纤维,钢纤维重量占主原料总重量的0~1%,聚乙烯醇纤维重量占主原料总重量的0.05~0.15%,短切碳纤维重量占主原料总重量的0.02~0.2%;

  其中,五种不同粒度的电熔镁砂按粒度从小到大排序,从小到大取至少两种粒度的电熔镁砂包覆纳米碳膜,纳米碳膜的厚度为20~200纳米,纳米碳膜固定碳含量≥90%,可分散性纳米碳的固定碳含量≥80%,且纳米碳低碳镁碳砖的总碳含量≤4%。

  进一步地,所述钢纤维直径≤0.5mm,长度为5~20mm。

  进一步地,所述聚乙烯醇纤维熔点≤90℃,水溶温度≥55℃。

  进一步地,所述短切纤维直径丝径5~9μm,长度为0.5~2.5mm,碳含量≥95wt%。

  进一步地,所述抗氧化剂为由金属铝粉、金属硅粉和镁铝合金粉组成的混合金属粉抗氧化剂,粒度为<0.074mm;所述有机结合剂为热固性酚醛树脂。

  进一步地,所述主原料按重量百分比包括:

  

  进一步地,所述主原料按重量百分比包括:

  

  进一步地,所述主原料按重量百分比包括:

  

  进一步地,所述主原料按重量百分比包括:

  

  还提供一种如上述所述钢包渣线用纳米碳低碳镁碳砖的制备方法包括以下步骤:

  1)将电熔镁砂破碎分级成5~3mm、3~1mm、1~0.15mm三种规格的原料,进一步将电熔镁砂磨细,并分级成180目和325目两种规格的原料,总共形成五种规格的原料;

  2)对不同粒度电熔镁砂表面进行化学气相沉积包覆纳米碳膜,完成不同粒度电熔镁砂的纳米碳膜包覆制备,纳米碳膜固定碳含量≥90%,纳米碳膜厚度为20~200纳米;并收集纳米碳膜制备过程中化学气相沉积装置排出废气中的细小颗粒产物,得到所需的可分散性纳米碳,粒径为20~200纳米,固定碳含量≥80%。

  3)按照权利要求1中原料组成和重量百分比,称取相应的原料,并将有机结合剂和无水酒精加入搅拌罐,搅拌混合10~15分钟,获得被无水酒精均匀稀释后的有机结合剂;

  4)将步骤3)中称取的固体原料加入到轮碾式混合机,轮碾混合10~15分钟,再加入稀释后的有机结合剂,轮碾混合15~25分钟,出料后再静置困料8~15小时,获得制砖混合料;

  5)将步骤4)制备的制砖混合料加入模具中,采用复合式摩擦压砖机打击成型制备砖坯,打击成型压力为150~200MPa,打击次数不低于12次;

  6)成型后砖坯自然放置16~24小时成型后,进入干燥窑中进行热处理,固化温度为180~240℃,固化时间18~24小时,制得所需的低碳镁碳砖。

  其中,包覆纳米碳膜采用中国专利申请粉末旋转化学气相沉积装置(申请公布号CN 103668112 A)所公开的装备,乙炔为碳源气体,化学气相沉积温度650~750℃、沉积时间0.5~5小时,在电熔镁砂表面进行化学气相沉积包覆纳米碳膜,完成纳米碳膜包覆电熔镁砂的制备,纳米碳膜固定碳含量≥90%,纳米碳膜厚度可在20~200纳米范围内可控。收集纳米碳膜制备过程中化学气相沉积装置排出废气中的细小颗粒产物,得到所需的可分散性纳米碳,粒径或厚度为20~200纳米,固定碳含量≥80%。在上述化学气相沉积工艺条件下,在纳米碳膜和可分散性纳米碳主要为无定型碳,含有少量石墨雏晶,溶剂可浸润。

  与现有技术相比,本发明的有益效果如下:

  本发明的钢包渣线用纳米碳低碳镁碳砖,通过不同粒度电熔镁砂颗粒表面的纳米碳膜包覆、可分散性纳米碳的应用,利用纳米碳膜和可分散性纳米碳主要为无定型碳、含有少量石墨雏晶、溶剂可浸润等特点,改善纳米碳膜与可分散性纳米碳对有机结合剂的浸润吸附,实现纳米碳在镁碳砖中的均匀分散,通过纳米碳膜与可分散性纳米碳20~200纳米厚度的尺度控制,大幅度降低镁碳砖中碳粒子的尺度,显著提高了镁碳砖耐火原料与碳粒子的接触频率,保证了低碳含量条件下碳粒子性能的发挥,改善镁碳砖抗侵蚀渗透性;此外,通过电熔镁砂表面包覆纳米碳膜的纳米碳引入方式,不仅保证了镁碳砖耐火原料与碳粒子极高的接触频率与接触界面积,更是实现了不同种类原材料的高效紧密复合和材料性能的优化耦合,在大幅度降低镁碳砖碳含量、遏制钢水增碳、减少钢包渣线散热损失的基础上,通过纳米颗粒间的挠性、结合剂树脂的挥发分逸出及通过控制炭化过程而生成的纳米气孔吸收热胀冷缩变形,提高低碳镁碳砖的抗热冲击性能,进一步改善镁碳砖的综合使用性能,达到延缓低碳镁碳砖损毁进程、延长钢包渣线低碳镁碳砖服役寿命、降低钢包耐火材料消耗成本、提高钢包周转率、降低转炉出钢温度等综合使用效果。

  针对低碳化对镁碳砖热震稳定性的不利影响,本发明进一步通过外加的聚乙烯醇纤维低温熔化和高温碳化收缩细微孔隙残留,实现有机结合剂挥发和结合剂裂解放气的快速排出,防止镁碳砖热处理微裂纹的形成,增强孔隙异相增韧效应;通过外加短切碳纤维的强度大、高温性能优、抗侵蚀性能好与拉拔增韧效应,改善镁碳砖使用性能、提高热震稳定性,并通过短切碳纤维长度的限定,避免碳纤维常规搅拌混合分散过程中的缠绕结团,保证了短切碳纤维的均匀分散;通过外加耐热钢纤维的拉拔增韧,提高镁碳砖抗折强度与热震稳定性,通过耐热钢纤维直径与长度的限定,防止砖坯压制过程中的回弹,提高镁碳砖致密性与外形尺寸精度。通过上述镁碳砖中多种增强增韧材料的复配,实现了镁碳砖的多相复合增强增韧效应,进一步改善低碳镁碳砖热震稳定性,防止热震裂纹剥落损毁,从而有效地克服了低碳化对镁碳砖热震稳定性的不利影响。

  本发明针对纳米碳膜包覆电熔镁砂和可分散性纳米碳的微观结构特征及其良好的表面浸润性和有机溶剂吸附性特点,通过制备方法中机结合剂中添加无水酒精进行稀释,避免纳米碳膜和可分散性纳米碳吸附有机结合剂中溶剂引起的有机结合剂后流变性差及其在耐火原料中分散困难的问题,保证有机结合剂在混料过程中的分散均匀性;通过制备方法中各种规格与种类的固体原材料及其加入稀释后有机结合剂的轮碾混合时间的控制,在实现固体原材料混合均匀的条件下,实现了有机结合剂在固体原材料混合料中的均匀混合分散,通过长时间的静置困料,实现结合剂在固体原材料表面的充分浸润、渗透与吸附,实现结合剂功能的高效发挥,提高低碳镁碳砖致密性与结合强度。通过制备方法中成型压力与打击次数的限定,提高砖坯密度,降低显气孔率;通过成型后砖坯自然放置,便于结合剂的进一步渗透扩散均化以及有机溶剂的挥发,避免热处理过程有机溶剂快速挥发带来的不足;通过制备方法中砖坯干燥窑中热处理温度与时间限定,保证了有机结合的充分固化,提高低碳镁碳砖结合强度。

  本发明通过新型纳米碳源的科学合理选择、原材料组分及制备方法的优化,制备的低碳镁碳砖理化性能为:总碳含量≤4%,体积密度为2.98~3.18g/cm3,常温抗折强度>30MPa,导热系数≤9.5w/m·℃,抗热震次数≥9次(按照镁碳砖抗热震试验国家标准,即:950℃热处理后风急冷,随后施加0.3MPa压强,试样未被破坏则进行下一次抗热震测试,以抗热震次数进行抗热震性能表征),1500℃保温1h空气气氛下进行抗氧化实验,试样氧化层厚度≤1.5mm,1600℃保温3h埋碳气氛下进行抗渣实验,渣侵蚀和渗透不明显。由此可见,发明的纳米碳低碳镁碳砖各项性能指标显著优于常规的镁碳砖。

  具体实施方式

  下面结合具体实施例和对比例对本发明作进一步的详细说明,便于更清楚地了解本发明,但它们不对本发明构成限定。

  实施例1

  钢包渣线用纳米碳低碳镁碳砖的原料包括主原料和辅原料,主原料按重量百分比包括:

  

  

  辅原料包括钢纤维、聚乙烯醇纤维和短切碳纤维,钢纤维重量占主原料总重量的1%,聚乙烯醇纤维重量占主原料总重量的0.05%,短切碳纤维重量占主原料总重量的0.02%;

  制备方法包括以下步骤:

  1)将电熔镁砂破碎分级成5~3mm、3~1mm、1~0.15mm三种规格的原料,进一步将电熔镁砂磨细,并分级成180目和325目两种规格的原料,总共形成五种规格的原料;

  2)将步骤1)中180目的电熔镁砂和325目的电熔镁砂表面进行化学气相沉积包覆纳米碳膜,采用中国专利申请粉末旋转化学气相沉积装置(申请公布号CN 103668112 A)所公开的装备,乙炔为碳源气体,化学气相沉积温度650~750℃、沉积时间0.5~5小时,在电熔镁砂表面进行化学气相沉积包覆纳米碳膜,完成纳米碳膜包覆电熔镁砂的制备,纳米碳膜固定碳含量≥90%,纳米碳膜厚度可在20~200纳米范围内可控。收集纳米碳膜制备过程中化学气相沉积装置排出废气中的细小颗粒产物,得到所需的可分散性纳米碳,粒径或厚度为20~200纳米,固定碳含量≥80%;

  3)按照上述原料组成和重量百分比,称取相应的原料,并将有机结合剂和无水酒精加入搅拌罐,搅拌混合10分钟,获得被无水酒精均匀稀释后的有机结合剂;

  4)将步骤3)中称取的固体原料加入到轮碾式混合机,轮碾混合10分钟,再加入稀释后的有机结合剂,轮碾混合25分钟,出料后再静置困料8小时,获得制砖混合料;

  5)将步骤4)制备的制砖混合料加入模具中,采用复合式摩擦压砖机打击成型制备砖坯,打击成型压力为150MPa,打击次数不低于12次;

  6)成型后砖坯自然放置16小时成型后,进入干燥窑中进行热处理,固化温度为180℃,固化时间18小时,制得所需的低碳镁碳砖。

  实施例2

  钢包渣线用纳米碳低碳镁碳砖的原料包括主原料和辅原料,主原料按重量百分比包括:

  

  辅原料包括钢纤维、聚乙烯醇纤维和短切碳纤维,钢纤维重量占主原料总重量的0.5%,聚乙烯醇纤维重量占主原料总重量的0.10%,短切碳纤维重量占主原料总重量的0.10%。

  制备方法与实施例1相同。

  实施例3

  钢包渣线用纳米碳低碳镁碳砖的原料包括主原料和辅原料,主原料按重量百分比包括:

  

  

  辅原料包括钢纤维、聚乙烯醇纤维和短切碳纤维,钢纤维重量占主原料总重量的0.5%,聚乙烯醇纤维重量占主原料总重量的0.15%,短切碳纤维重量占主原料总重量的0.20%。

  制备方法与实施例1相同。

  实施例4

  钢包渣线用纳米碳低碳镁碳砖的原料包括主原料和辅原料,主原料按重量百分比包括:

  

  辅原料包括钢纤维、聚乙烯醇纤维和短切碳纤维,钢纤维重量占主原料总重量的0.5%,聚乙烯醇纤维重量占主原料总重量的0.15%,短切碳纤维重量占主原料总重量的0.20%。

  制备方法与实施例1相同。

  按照实施例1~4,完成了钢包渣线用纳米碳低碳镁碳砖制备,制备的低碳镁碳砖理化性能为:总碳含量≤4%,体积密度为2.98~3.18g/cm3,常温抗折强度>30MPa,导热系数≤9.5w/m·℃,抗热震次数≥9次(按照镁碳砖抗热震试验国家标准,即:950℃热处理后风急冷,随后施加0.3MPa压强,试样未被破坏则进行下一次抗热震测试,以抗热震次数进行抗热震性能表征),1500℃保温1h空气气氛下进行抗氧化实验,试样氧化层厚度≤1.5mm,1600℃保温3h埋碳气氛下进行抗渣实验,渣侵蚀和渗透不明显。并随着纳米碳膜包覆电熔镁砂加入总量的增加和可分散性纳米碳加入量的减少,制备的钢包渣线用纳米碳低碳镁碳砖性能不断改善,即在实施例1~4中,随着实施例序号的增大,钢包渣线用纳米碳低碳镁碳砖性能不断提高,实施例4性能最优,由此可见,提高纳米碳膜包覆原材料加入比例是改善低碳镁碳砖性能的关键手段之一;此外,由于纳米碳膜包覆厚度极薄,为了减少纳米碳膜包覆原材料量、降低纳米碳膜包覆成本,可分散性纳米碳的使用是保证镁碳砖中合理碳含量的重要手段;此外多种增强增韧材料的复配及其复合效应,是防止低碳镁碳砖热震剥落损毁的重要措施。

《钢包渣线用纳米碳低碳镁碳砖及制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)