欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 化合物分离> 沸石催化剂独创技术44846字

沸石催化剂

2021-03-11 04:19:45

沸石催化剂

  相关申请的交叉引用

  本申请根据35 U.S.C.§119(e)要求2017年11月2日提交的美国专利申请号62/580,514的权益和优先权,其公开内容以其整体通过引用结合到本文中。

  技术领域

  本公开涉及制备吡啶衍生物,例如α-皮考啉或α-杷沃啉,以及可用于选择性制备此类吡啶衍生物的催化剂。具体地讲,本公开涉及用经脱铝的沸石催化剂选择性制备某些吡啶衍生物。

  背景

  本公开涉及用改性沸石催化剂制备吡啶碱合成的方法。

  吡啶碱是用非均相催化剂在工业上制备的最大量的杂芳族化合物。在这一组内,吡啶和皮考啉(甲基吡啶)比卢剔啶(二甲基吡啶)、可力丁(三甲基吡啶和甲基乙基吡啶)和杷沃啉(二甲基乙基吡啶)占优势。吡啶碱是一系列农用化学品、药物和消费品的关键前体,并直接用于溶剂和除酸剂应用。

  术语“碱合成”已知,并用于吡啶领域,在本申请中用于识别用以通过使醛和/或酮与氨在气相中用非均相催化剂反应来制备吡啶或烷基吡啶衍生物的碱的过程。碱合成反应的一些实例(以及适当时其常用名)包括,例如,由乙醛和氨合成α-和γ-皮考啉(“α-γ反应”);由丙醛和氨合成α-杷沃啉(2-乙基-3,5-二甲基吡啶);2-丙基-3,5-二乙基吡啶的合成;等等。很多其它的碱合成反应已知和被报道,或已在本领域实施,但涉及醛与氨反应的那些反应是本公开中特别关注的那些。另外,很多工业规模的吡啶碱合成在气相中用氨组合羰基化合物(醛和酮)与非均相催化剂接触而进行。共产物异构体α-和γ-皮考啉可从乙醛-氨进料混合物产生(“α-γ反应”)。

  在本领域已知用于进行本公开中关注的碱合成反应的催化剂包括氧化铝,该氧化铝单独或作为氟化锌或其它金属盐的载体,或作为结合有氧化硅和氧化铝二者的无定形结构(见美国专利号2,807,618和2,744,904;以及德国专利号1,255,661),和形状选择性沸石,它们为具有一定结晶结构的铝硅酸盐,其活性和孔尺寸类似于其它商业上关注的分子(见,例如,E. G. Derouane, "New Aspects of Molecular Shape-Selectivity:Catalysis by Zeolite ZSM-5"(分子形状选择性的新方面:由沸石ZSM-5催化),Catalysisby Zeolites, ed. B. Imelik et al., Elsevier, Amsterdam, pp.5-18 (1980))。

  沸石定义为微孔(≤20Å通道孔径)结晶铝硅酸盐,既包括天然矿物,也包括人造合成材料。长期以来已知沸石可用作选择性吸附剂和催化剂,因为它们的通道尺寸在大小上与很多分子相当。对于分别包含≤8、10和≥12个T原子环的微孔沸石,可将这些微孔沸石相应细分成小孔(≤5Å)、中孔(5-6Å)和大孔(≥6Å)。 (T原子是指四面体原子,即各自由4个氧原子包围的Si或Al。)已知沸石具有不同维度的通道结构(即1-D、2-D和3-D),通常具有互连的不同尺寸的通道,有时具有不互连的单独通道系统。

  形式上,纯的全氧化硅沸石具有电荷中性的骨架。SiIV原子由AlIII同晶取代在沸石骨架上引入负电荷,该负电荷可通过使阳离子物种在沸石通道内紧密接近地驻留而得到补偿。离子交换程序允许阳离子物种根据需要改变(例如,从原合成态沸石中的Na+转变成质子(即H+),基本上提供固体酸催化剂)。可将广泛的阳离子(包括金属、有机和有机金属物种)引入沸石的通道中。这些物种的总量将取决于沸石及其SiO2/Al2O3摩尔比。

  β-沸石(BEA),最初由Mobil Oil corp.在1967年发现(US 3,308,069),具有一种3-D通道结构,其特征为二维线性通道(约7.6 x 6.4 Å)和三维曲折通道(5.5 x 5.5Å)。β-沸石在二十世纪九十年代初可商购获得,通常以其铵离子(NH4+-BEA)和质子(H+-BEA)形式提供,原合成态SiO2/Al2O3摩尔比为约25-75。β-沸石已用于合成吡啶碱,主要是由乙醛和甲醛合成吡啶和β-皮考啉(所谓的“吡啶-β反应”),其中β-沸石具有约15至90的SiO2/Al2O3(相当于Si/Al = 7.5至45)和结合到其中的金属离子,如Pb、Co、Sn、Cd、Ga、Tl(见美国专利号5,780,635)。

  用于这些非均相气相反应的反应器设计在固定床形式和流化床形式的基本类别内变化。流化床的优点早就得到了认可(见美国专利号2,807,618),这由以下事实证明:早期的商业规模碱合成装置使用流化床,并且投入运行的大多数装置从那时起就结合催化剂流化床。其原因之一是,碱合成反应总是产生深色的沉积物,主要是碳质材料,也称为“焦炭”,它倾向于淤塞催化剂,从而逐渐降低其活性。尽管观察到变化,但所有的催化剂都以可观的速率积聚这些焦炭沉积物,从而需要周期性活动。由于出于经济原因不希望丢弃催化剂,因此通常采用通过在空气或其它含氧气体中加热进行的再生。该再生/燃烧过程非常放热,并且也最佳在流化床过程中进行。C. L. Thomas, "Catalytic Processes and ProvenCatalysts"(催化过程和已证明的催化剂), Academic Press, 纽约p.11-14 (1970)。

  因此,长期以来,一种常见的技术是同时运行两个流化床,一个流化床用于反应,一个用于再生,且催化剂在这些床之间连续或间歇循环。考虑到具体反应和/或所用成分,熟练的操作人员可容易地确定操作参数,例如循环速率、接触时间、温度等。参见例如德国专利2,203,384。该技术的辅助益处是,已认识到,来自流化床中进行的碱合成反应的产物产率通常高于相应的固定床反应(见英国伦敦的BP Chemicals U.K. Ltd.),一个用于α-γ合成(英国专利号1188891、德国专利1903879和加拿大专利号852745);另一个用于吡啶-β合成(英国专利号1,235,390、加拿大专利号851,727和德国专利号1,903,878)。

  Feitler等人在美国专利号4,675,410中关于碱合成催化剂报道了流化床使用的类似优点,碱合成催化剂由以酸性形式使用的形状选择性铝硅酸盐(通常称为“沸石”)组成。Chang等人更早已在美国专利4,220,783关于碱合成反应报道了这些结晶沸石,处于其酸-形式或H-形式,并与镉、铜或镍离子交换。该Chang专利中的几个实例证明,催化剂随时间而失活,因此也提示了流化床在任何商业应用中通过在空气中加热来重新活化催化剂的期许。

  然而,由于催化剂将不可避免地从流化床反应器逸出,并且吡啶碱合成产生大量的废水,因此,对吡啶碱反应的商业可行性的一个制约因素是使用有毒的金属促进剂,例如铅、铊和镉,这会导致有毒的废水输出。

  因为对α-皮考啉及其衍生物的市场需求大大超过γ-皮考啉及其衍生物,所以强烈需要研发提供吡啶碱(例如α-皮考啉)的高选择性和高产率的新催化剂。另外,市场压力也要求研发新催化剂,其提供所需的吡啶碱(如α-皮考啉和吡啶)相对于不需要的吡啶碱(如γ-皮考啉和较高烷基化的吡啶碱)以及相对于副产物(如乙腈)的高选择性比。本公开的另一个目的是提供新催化剂,其将无毒金属结合到该催化剂制剂中。

  概述

  在一个方面,本公开涉及一种制备吡啶碱的方法,所述方法包括在包含金属和β-沸石的负载金属的β-沸石催化剂存在下使氨与C2-C6醛接触。

  在另一个方面,本公开涉及一种制备吡啶碱的方法,所述方法包括在包含金属和β-沸石的负载金属的β-沸石催化剂存在下使氨与C2-C6醛接触,其中负载金属的β-沸石催化剂通过以下方法制备,所述方法包括:

  i. 使原硅酸四乙酯与氢氧化四乙铵水溶液接触,以提供硅酸盐溶液;

  ii. 使硅酸盐溶液与金属源接触,以提供金属-硅酸盐溶液;

  iii. 使金属-硅酸盐溶液与氢氟酸接触,以提供金属-硅酸盐凝胶;并且

  iv. 使金属-硅酸盐凝胶与经脱铝的β-沸石晶种接触,以提供负载金属的β-沸石催化剂。

  在与此方面相关的一些实施方案中,负载金属的β-沸石催化剂基本不含Al2O3。在与此方面相关的一些实施方案中,负载金属的β-沸石催化剂具有至少约200/1的SiO2/Al2O3摩尔比。在一些实施方案中,负载金属的β-沸石催化剂具有至少约400/1的SiO2/Al2O3摩尔比。在与此方面相关的一些实施方案中,负载金属的β-沸石催化剂具有至少约500/1的SiO2/Al2O3摩尔比。

  在另一个方面,本公开涉及一种制备吡啶碱的方法,所述方法包括在包含金属和β-沸石的负载金属的β-沸石催化剂存在下使氨与C2-C6醛接触,其中负载金属的β-沸石催化剂包含金属和经脱铝的β-沸石。在与此方面相关的一些实施方案中,经脱铝的β-沸石具有至少约150/1的SiO2/Al2O3摩尔比。在与此方面相关的一些实施方案中,经脱铝的β-沸石具有至少约200/1的SiO2/Al2O3摩尔比。

  在与此方面相关的一些实施方案中,负载金属的β-沸石催化剂通过以下方法制备,所述方法包括:

  i. 使经脱铝的β-沸石与金属源接触,以提供负载金属的β-沸石催化剂。

  在与此方面相关的一些实施方案中,经脱铝的β-沸石通过以下方法制备,所述方法包括:

  ii. 使具有约15至约90的SiO2/Al2O3摩尔比的β-沸石催化剂与无机酸接触,以提供经脱铝的β-沸石。

  可将本公开的方法在任何以下列举项中描述为实施方案。应了解,本文所述的任何实施方案可与本文所述的任何其它实施方案结合,在实施方案不相互冲突的范围内使用。

  1. 一种制备吡啶碱的方法,所述方法包括:

  a. 在包含金属和β-沸石的负载金属的β-沸石催化剂存在下使氨与C2-C6醛接触。

  2. 项1的方法,其中负载金属的β-沸石催化剂通过以下方法制备,所述方法包括:

  i. 使原硅酸四乙酯与氢氧化四乙铵水溶液接触,以提供硅酸盐溶液;

  ii. 使硅酸盐溶液与金属源接触,以提供金属-硅酸盐溶液;

  iii. 使金属-硅酸盐溶液与氢氟酸接触,以提供金属-硅酸盐凝胶;并且

  iv. 使金属-硅酸盐凝胶与经脱铝的β-沸石晶种接触,以提供负载金属的β-沸石催化剂。

  3. 项1或2的方法,其中金属源为包含Sn的化合物。

  4. 项1或2的方法,其中金属源为氯化锡水溶液。

  5. 前述项中任一项的方法,其中负载金属的β-沸石催化剂具有β-沸石拓扑结构,并且不存在块状结晶SnO2。

  6. 前述项中任一项的方法,其中负载金属的β-沸石催化剂的锡含量为约1重量%至约4重量%。

  7. 前述项中任一项的方法,其中负载金属的β-沸石催化剂包含金属和经脱铝的β-沸石。

  8. 前述项中任一项的方法,其中经脱铝的β-沸石具有至少约150/1的SiO2/Al2O3摩尔比。

  9. 前述项中任一项的方法,其中经脱铝的β-沸石具有至少约200/1的SiO2/Al2O3摩尔比。

  10. 前述项中任一项的方法,其中金属的量与负载金属的β-沸石催化剂相比小于约10重量%,或小于约5重量%,或小于约4重量%,或小于约3%重量。

  11. 前述项中任一项的方法,其中金属选自Sn、Ti、Mn、Fe、Co、Zn及其组合。

  12. 前述项中任一项的方法,其中金属包括Sn。

  13. 项12的方法,其中金属还包括Mn或Zn。

  14. 前述项中任一项的方法,其中金属为约3:1至约10:1的比率的Sn和Mn的组合。

  15. 前述项中任一项的方法,其中金属为约3:1至约10:1的比率的Sn和Zn的组合。

  16. 前述项中任一项的方法,其中金属包括Zn。

  17. 前述项中任一项的方法,其中金属包括Ti。

  18. 前述项中任一项的方法,其中金属包括Mn。

  19. 前述项中任一项的方法,其中负载金属的β-沸石催化剂通过以下方法制备,所述方法包括:

  i. 使经脱铝的β-沸石与金属源接触,以提供负载金属的β-沸石催化剂。

  20. 前述项中任一项的方法,其中金属源为SnO2、SnCl4、SnSO4或Sn(CH3CO2)2。

  21. 前述项中任一项的方法,其中金属源在负载金属的β-沸石催化剂中提供金属氧化物。

  22. 前述项中任一项的方法,其中金属氧化物为SnO2、ZnO、Fe2O3、Co3O4、MnO2或TiO2。

  23. 前述项中任一项的方法,所述方法还包括

  ii. 使具有约15至约90的SiO2/Al2O3摩尔比的β-沸石催化剂与无机酸接触,以提供经脱铝的β-沸石。

  24. 前述项中任一项的方法,其中无机酸选自硝酸、盐酸和磷酸。

  25. 前述项中任一项的方法,其中负载金属的β-沸石催化剂用选自SiO2、Al2O3、高岭土、蒙脱土和二氧化钛的粘合剂混合并成形,以提供负载金属的β-沸石催化剂组合物。

  26. 前述项中任一项的方法,其中使负载金属的经脱铝沸石催化剂组合物成形为挤出物、片剂、球或微球。

  27. 前述项中任一项的方法,其中C2-C6醛选自乙醛、丙醛、巴豆醛和丁醛。

  28. 前述项中任一项的方法,其中C2-C6醛为乙醛或丙醛。

  29. 前述项中任一项的方法,其中接触在约300℃至约500℃的温度进行。

  30. 前述项中任一项的方法,所述方法还包括

  b. 通过使负载金属的β-沸石催化剂与空气在约500℃至约600℃的温度接触,再生在步骤(a)后留下的负载金属的β-沸石催化剂。

  31. 前述项中任一项的方法,所述方法还包括在从步骤(b)获得的负载金属的β-沸石催化剂存在下使氨与C2-C6醛接触。

  32. 前述项中任一项的方法,其中步骤(a)在约380℃至约450℃的温度进行。

  33. 前述项中任一项的方法,其中吡啶碱为α-皮考啉。

  34. 前述项中任一项的方法,其中吡啶碱为α-皮考啉,并且α-皮考啉以α-皮考啉:γ-皮考啉副产物至少约2.5:1的比率形成。

  35. 前述项中任一项的方法,其中吡啶碱为α-皮考啉,并且α-皮考啉以α-皮考啉:吡啶副产物至少约10:1的比率形成。

  36. 前述项中任一项的方法,其中吡啶碱为α-皮考啉,并且α-皮考啉以α-皮考啉:乙腈副产物至少约5:1的比率形成。

  37. 项1至32中任一项的方法,其中吡啶碱为α-杷沃啉。

  附图简述

  图1示出通过高浓度乙酸亚锡制备的氧化锡、HTS Sn-BEA(实施例1)、Sn-deAlBEA(实施例4)和Sn-deAlBEA(比较实施例1)的X-射线衍射光谱。

  详述

  为了促进理解本公开的原理,现将参考其某些实施方案,并用具体语言描述它。然而,应了解,本公开的范围不旨在受其限制,如本公开所涉及领域的技术人员正常应想到的,预期这些实施方案的此类变化和其它改进以及本文所述发明原理的此类其它应用。

  如上所述,本发明的一个优选实施方案涉及发现一种新的制备吡啶碱的碱合成方法,该方法包括一种或多种包含两个至约六个碳原子的醛与氨在气相中的催化反应。反应在有效量的包含金属和β-沸石的负载金属的β-沸石催化剂存在下进行。可通过几种方法制备负载金属的β-沸石催化剂,包括水热合成β-沸石,随后通过金属源将金属浸到新生成的催化剂上。或者,可使具有约15至约90的SiO2/Al2O3摩尔比的市售β-沸石脱铝,随后通过金属源将金属引入催化剂结构中。

  在一些实施方案中,可与本文所述方法结合使用在Chang等人, RSC Advances2012, 2, 10475-10477中发现的示例性水热制备方法。在Chang等人中所述的方法与本公开结合,作为实施例1进行。根据Chang等人的程序制备的负载金属的β-沸石催化剂的特性与所报道的文献以及本文所述的益处和用途一致。应理解,与Chang等人的程序和以下提供的实施例1结合使用的方法和试剂的改进为本公开所预期,并且可由本领域的技术人员在这些改变与催化剂特性和本文所述的益处和用途一致的范围内实施。另外,本领域的技术人员应理解,用于制备β-沸石催化剂的其它水热方法也可应用于本公开。或者,可用Davis等人(J. Phys. Chem. B. 1999, 103, 2674-2679)报道的程序制备具有Zn原子骨架的β-沸石(CIT-6)。

  或者,本文所述的方法可用从市售β-沸石例如NH4-BEA(25)(可得自Zeolyst)、NH4-BEA(38)(可从例如Zeolyst或Alfa Aesar获得)等得到的负载金属的β-沸石催化剂进行。在一些实施方案中,起始β-沸石可具有约15至约90的SiO2/Al2O3摩尔比。起始β-沸石可通过用无机酸例如硝酸处理β-沸石来脱铝。可与本文所述方法结合使用在Sels等人(Green Chemistry 2013, 15, 2777-2785)中发现的示例性硝酸脱铝程序。在Sels等人中所述的方法与本公开结合在以下提供的实施例中进行。根据Sels等人的程序制备的负载金属的β-沸石催化剂的特性与所报道的文献以及本文所述的益处和用途一致。

  一旦制备了经脱铝的β-沸石(也称为deAlBEA),就可将金属引入组合物,以提供本文所述的负载金属的β-沸石催化剂。金属可通过本文所述的金属源引入,并且可通过在本领域已知的多种方法引入。例如,可使经脱铝的β-沸石经历金属接枝程序,例如,在溶剂例如醇溶剂(如异丙醇)存在下,在回流下,使经脱铝的β-沸石与金属源例如SnCl4·5H2O接触。或者,可使经脱铝的β-沸石经历始润浸渍(IWI)程序,例如,使经脱铝的β-沸石与金属源水溶液(例如SnSO4水溶液)接触,以使金属结合到催化剂中。在本文所述的实施例中提供了金属接枝和IWI的示例性方法。应理解,与以下关于金属接枝和IWI程序提供的实施例结合使用的方法和试剂的改进为本公开所预期,并且可由本领域的技术人员在这些改变与催化剂特性和本文所述的益处和用途一致的范围内实施。

  与本文所述方法结合使用的金属身份可以为多种金属,例如Sn、Ti、Mn、Fe、Zn等及其组合。在一些实施方案中,金属为Sn。在一些实施方案中,用于将金属引入本文所述催化剂的金属源可以为在本领域中已知与催化剂制备相关的金属化合物的任何金属盐,包括但不限于五水氯化锡,硫酸亚锡水溶液,乙酸亚锡(例如,在i-PrOH中的溶液),脱水乙酸锌,乙酸锡(II),Mn(II)、Fe(III)、Co(II)和锌(II)硝酸盐的水溶液等。应理解,在金属源引入本文所述的催化剂后,金属可以呈金属氧化物的形式,例如SnO2、ZnO、Fe2O3、Co3O4、MnO2或TiO2等。

  应了解,可根据反应条件、反应物身份等改变与本文所述方法结合使用的β-沸石催化剂上的金属负载量。在一些实施方案中,金属的量与负载金属的β-沸石催化剂相比小于约10重量%,或小于约5重量%,或小于约4重量%,或小于约3%重量。在一些实施方案中,基于β-沸石,MyOx的标称负载量可在约0.4重量%至约5.0重量%之间。在一些实施方案中,基于β-沸石,MyOx的标称负载量可在约1.0重量%至约5.0重量%之间。在一些实施方案中,基于β-沸石,MyOx的标称负载量可在约2.0重量%至约4.0重量%之间。应理解,β-沸石催化剂上MyOx的标称负载量可在约0.4重量%和约5重量%之间的任何值的任何范围,例如0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%、1.0重量%、1.2重量%、1.4重量%、1.6重量%、1.8重量%、2.0重量%、2.4重量%、2.6重量%、3.0重量%、3.5重量%、4.0重量%、4.2重量%、4.4重量%、4.5重量%、4.6重量%、4.8重量%和5.0重量%。

  在本文所述方法的一些实施方案中,可用于制备本文所述催化剂的β-沸石具有约100或更大的氧化硅:氧化铝比。在一些实施方案中,β-沸石具有约200或更大的氧化硅:氧化铝比。在一些实施方案中,β-沸石具有约300或更大的氧化硅:氧化铝比。在一些实施方案中,β-沸石基本不含氧化铝。应理解,描述了在所提供范围内包括的所有氧化硅/氧化铝比率。

  应理解,与本发明教导结合使用的催化剂还可包含粘合剂,例如用于将催化剂组合物的组分保持在一起。粘合剂还可提供一些催化活性也在本描述的范围内。预期用于本发明催化剂组合物的适合粘合剂通常包括但不限于氧化硅、氧化铝、氧化硅-氧化铝及其组合。在一些实施方案中,粘合剂为氧化硅。在一些实施方案中,氧化硅粘合剂从胶体氧化硅、硅酸盐、硅酸、四烷氧基硅烷和/或其它硅前体化合物得到。

  与本发明教导结合使用的催化剂还可包括粘土。适合粘土组分的实例包括但不限于高岭土、改性高岭土(例如偏高岭土)、蒙脱土、层柱粘土等。应了解,对粘土添加剂的身份没有特别限制,并且实际上可使用在本领域已知与沸石催化剂结合使用的任何粘土。

  与本发明教导结合使用的负载金属的β-沸石催化剂组合物可用于通常在固定床或流化床反应器中操作的吡啶碱合成方法,以实现吡啶碱产率的整体提高。催化剂组合物可成型和成形为大小适用于固定床反应器的尺寸范围0.5至10mm的挤出物、片剂或球。另外,微球形式的催化剂组合物具有足以影响流化床反应器内流化性质的粒度和磨损性质。在用于流化床反应器时,可与本发明教导结合使用的负载金属的β-沸石催化剂组合物可具有约40μm至约200μm的平均粒度。在一些实施方案中,负载金属的β-沸石催化剂组合物的平均粒度在约60μm至约120μm的范围内。

  很多碱合成方法已知,并且也预期在本文所述方法的范围内。除下面的具体实施例和上面提到的描述外,通常用约1:1的氨:乙醛的进料摩尔比进行α-γ反应。在一些实施方案中,进料比可以为约3:1至约0.4:1。在固定床催化剂存在下,乙醛和氨的单独流合并一定持续时间,持续时间通常定义为接触时间,接触时间又取决于催化剂床体积、反应器尺寸、反应温度和给定进料组合物的进料流速。为方便起见,W/F因子是固定和流化催化剂床二者的优选量度,并定义为所用催化剂的重量量(W)除以进料的乙醛的每小时重量(F),其单位可表示为克催化剂/克乙醛/小时(g-cat/g-CH3CHO/h)。在一些实施方案中,与本发明教导结合使用的W/F可以为约0.2至约5。在一些实施方案中,与本发明教导结合使用的W/F可以为至少约0.3。在一些实施方案中,与本发明教导结合使用的W/F可以为约0.6。在一些实施方案中,与本发明教导结合使用的接触时间可以为约0.2至约10秒。在一些实施方案中,与本发明教导结合使用的接触时间可以为至少约1秒。在一些实施方案中,与本发明教导结合使用的接触时间可以为约2秒。

  应理解,可将以上进料比和进料速率应用于和修改用于与本文所述方法结合使用的其它C2-C6醛,以制备其它吡啶碱。例如,可根据上述比率和速率,用丙醛代替乙醛以进行α-杷沃啉的制备。

  应理解,如本领域常规已知用于吡啶碱合成方法的,可与本公开方法结合使用另外的溶剂。本公开的反应温度可在约300℃和约500℃之间。本公开的反应温度可在约350℃和约550℃之间。在一些实施方案中,温度可在约380℃和约450℃之间。在一些实施方案中,温度可在约380℃之间。在一些实施方案中,温度可在约390℃之间。在一些实施方案中,温度可在约400℃之间。在一些实施方案中,温度可在约410℃之间。在一些实施方案中,温度可在约420℃之间。在一些实施方案中,温度可在约430℃之间。在一些实施方案中,温度为约440℃。在一些实施方案中,温度为约450℃。

  本文所述一些方法的产物,即α-皮考啉、γ-皮考啉、吡啶和CH3CN,可通过干燥和蒸馏浓缩并分离成纯化合物,如本领域中熟知。在一些实施方案中,本文所述方法可以至少约2.5:1的α-皮考啉:γ-皮考啉副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约2.6:1的α-皮考啉:γ-皮考啉副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约3.0:1的α-皮考啉:γ-皮考啉副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约3.5:1的α-皮考啉:γ-皮考啉副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约3.6:1的α-皮考啉:γ-皮考啉副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约4.0:1的α-皮考啉:γ-皮考啉副产物的比率产生α-皮考啉和γ-皮考啉。

  在一些实施方案中,本文所述方法可以至少约10:1的α-皮考啉:吡啶副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约15:1的α-皮考啉:吡啶副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约20:1的α-皮考啉:吡啶副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约25:1的α-皮考啉:吡啶副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约30:1的α-皮考啉:吡啶副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约35:1的α-皮考啉:吡啶副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约40:1的α-皮考啉:吡啶副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约45:1的α-皮考啉:吡啶副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约50:1的α-皮考啉:吡啶副产物的比率产生α-皮考啉和γ-皮考啉。

  在一些实施方案中,本文所述方法可以至少约4:1的α-皮考啉:乙腈副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约5:1的α-皮考啉:乙腈副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约6:1的α-皮考啉:乙腈副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约7:1的α-皮考啉:乙腈副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约8:1的α-皮考啉:乙腈副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约10:1的α-皮考啉:乙腈副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约15:1的α-皮考啉:乙腈副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约20:1的α-皮考啉:乙腈副产物的比率产生α-皮考啉和γ-皮考啉。在一些实施方案中,本文所述方法可以至少约25:1的α-皮考啉:乙腈副产物的比率产生α-皮考啉和γ-皮考啉。

  同样,本文所述一些方法的产物,即α-杷沃啉和γ-杷沃啉,可通过干燥和蒸馏浓缩并分离成纯化合物,如本领域中熟知。在一些实施方案中,本文所述方法可以至少约50:1的α-杷沃啉:γ-杷沃啉副产物的比率产生α-杷沃啉和γ-杷沃啉。在一些实施方案中,本文所述方法可以至少约55:1的α-杷沃啉:γ-杷沃啉副产物的比率产生α-杷沃啉和γ-杷沃啉。在一些实施方案中,本文所述方法可以至少约60:1的α-杷沃啉:γ-杷沃啉副产物的比率产生α-杷沃啉和γ-杷沃啉。

  为了进一步说明本公开及其优点,给出以下具体实施例。这些实施例作为本公开的说明给出。然而应了解,本公开不限于在实施例中阐明的具体细节。

  除非另外说明,涉及固体组合物或浓度的实施例和本描述其余部分中的所有份数和百分数均以重量计。然而,除非另外说明,涉及气体组合物的实施例和说明书其余部分中的所有份数和百分数均为摩尔或以体积计。

  另外,在本公开或权利要求书中列举的任何数字范围,如表示性质、测量单位、条件、物理状态或百分数的特定集,均旨在字面上明确通过提及结合到本文中,或另外,通过落入此范围内的任何数字,包括在如此列举的任何范围内的数字的任何子集。

  本文所述产物的产率,应理解为产物的“重量产率”,如在本领域中通常已知的那样使用。具体地讲,可根据以下一般公式定义重量产率:

  化合物的重量产率=产生的化合物的重量产量/所用反应物醛的重量

  在三摩尔乙醛生成一摩尔α-皮考啉的情况下,最大理论重量产率为

  93.13g α-皮考啉/3 x 44.05g乙醛= 0.7047

  可使用以下公式将重量产率转换成摩尔产率:

  %摩尔产率=(重量产率/0.7047) x 100。

  实施例

  实施例1:Sn-BEA的水热合成

  用Chang等人(RSC Advances 2012, 2, 10475-10477)报道的合成方法水热合成Sn-BEA,其中用经微滤、脱铝的BEA颗粒(直径<200nm)作为晶种材料。

  通过将0.92g NH4-BEA(38)样品(Zeolyst,CP814C, SiO2/Al2O3~38或Si:Al约19:1)加到PTFE广口瓶中的23mL 13M HNO3溶液,制备经脱铝的BEA晶种。将该溶液在80℃搅拌过夜,并通过离心收集固体,用去离子水(18.2 MΩ/cm)充分洗涤,直至达到中性pH。将回收的固体在100℃干燥过夜。通过原子吸收光谱法(AAS, HF溶出)测定,最终的Si:Al摩尔比>660:1。

  通过将20.59g原硅酸四乙酯(TEOS, 98%, Sigma Aldrich)和23.05g氢氧化四乙铵水溶液(TEAOH,Sachem,35重量%)在PTFE广口瓶中合并,并使这些均化1h,制备用于Sn-BEA的起始凝胶。然后,使0.30g五水氯化锡(SnCl4·5H2O, 98%, Sigma Aldrich)溶于1.91g水中,并将该溶液滴加到搅拌的凝胶中,将其在封闭的PTFE广口瓶中搅拌过夜(>12h )。随后,在搅拌的同时,从凝胶蒸发由TEOS水解产生的乙醇和一些过量的H2O,最终失重23.84g。下一步,将2.2g氢氟酸水溶液(Alfa Aesar, 48%)加入溶液中,并用Teflon刮铲搅拌。然后,将1.61mL H2O和0.25g经脱铝的BEA晶种加到凝胶(~4重量%的SiO2含量),并用Teflon刮铲搅拌。最终的凝胶摩尔组成为0.56 TEAOH: 1 SiO2: 0.0086 SnCl4: 0.54 HF: 8.38 H2O。将该凝胶装入衬有Teflon的不锈钢高压釜中,并在旋转(60rpm)下在140℃加热6天。得到的固体离心回收,并用水和丙酮充分洗涤。将回收的固体经烘箱干燥过夜(100℃),并在马弗炉中在流动空气(65mL/g固体,1℃/min)下在580℃煅烧10h。Sn-BEA的XRD(图1)证实了BEA拓扑结构的存在以及块状结晶SnO2(锡石)的不存在。通过AAS,测定锡含量为1.30重量%(相当于1.65重量%SnO2)。

  将Sn-BEA粉末压制(10吨,3mm OD模头)并成形为粒料,将粒料压碎并过筛,以提供0.5-1.0mm尺寸范围的颗粒。将4mL(2.1g)装载量的Sn-BEA颗粒装入配有热电偶套管(5mmOD)的石英微型反应器(15mm ID),并在1英寸管式炉中在流动的空气(20mL/min)中加热到550℃过夜。通过流动氮气(20mL/min)从反应器清除空气,并使催化剂床达到450℃。10分钟后,用氨(50mL/min)代替氮气流,在另外10分钟后,通过不锈钢传输线将乙醛(CH3CHO)蒸气流(4.8g/小时,约1秒接触时间)直接输送到催化剂床的前缘。经1小时时间收集冷凝的反应器流出物(10℃),称重,然后通过气相色谱法分析。α-皮考啉、γ-皮考啉、吡啶和CH3CN的重量产率(每克进料的CH3CHO生成的化合物的克数)分别为0.388、0.087、0.010和0.055。

  实施例2

  经几个反应-再生循环评价来自实施例1的Sn-BEA催化剂。在4小时的反应时间后,停止CH3CHO流,并继续NH3流10分钟。NH3流由氮气代替(10分钟),然后由空气代替,并使反应器温度升至550℃(过夜),以完成反应-再生循环。在四个反应-再生循环后,在420℃反应温度下,用NH3(30mL/min)和CH3CHO(3g/h)相当于1.7秒的接触时间,试验Sn-BEA催化剂。分析运行中从最初一小时起的经回收液体反应粗物质,得出α-皮考啉、γ-皮考啉、吡啶和CH3CN的重量产率分别为0.430、0.108、0.008和0.063。

  实施例3:经脱铝β-沸石(deAlBEA)的合成

  使用类似于Sels等人(Green Chemistry 2013, 15, 2777-2785)报道的硝酸脱铝程序。在装有顶置式搅拌器的3升圆底烧瓶中,将500mL 13M硝酸加热到80℃,然后加入50gNH4-BEA(25) (Zeolyst, CP814E, SiO2/Al2O3 ≈ 25或Si:Al ≈ 12.5:1)粉末。将所得浆料在80℃保持过夜,然后转移到布氏过滤漏斗上。用去离子水(>3升)洗涤所得滤饼,直至滤液达到pH 5。将滤饼在风扇烘箱中在60℃干燥过夜。在转化成锡接枝的催化剂之前,使deAlBEA在150℃活化过夜。

  实施例4:通过在deAlBEA上SnCl4-接枝而合成Sn-deAlBEA

  使用与Sels等人(Green Chemistry 2013, 15, 2777-2785)报道相似的脱铝-接枝程序合成称为Sn-deAlBEA的催化剂。通过将100g SnCl4·5H2O溶于1升异丙醇(iPrOH, 99.7%,Sigma Aldrich),在氮气气氛下制备溶液。将新鲜活化的deAlBEA(40g)加到搅拌的iPrOH溶液,然后使其回流。在回流下8小时后,将浆料转移到布氏过滤漏斗上。用iPrOH(约500mL)洗涤所得Sn-deAlBEA滤饼,并在室温在抽吸下保持过夜。将Sn-deAlBEA在风扇烘箱中在80℃干燥过夜,然后在550℃煅烧6小时。

  该Sn-deAlBEA催化剂的AAS分析显示,其包含1.70重量%锡(相当于2.16重量%SnO2),并且 Si:Al摩尔比为约440:1。Sn-deAlBEA的 XRD显示出完整的BEA结构,而没有明显的块状SnO2(锡石)(图1)。使用实施例1中所述的程序,使Sn-deAlBEA粉末成形为催化剂颗粒(尺寸范围0.5-1.0mm),在微型反应器中装载并试验。在450℃反应温度,3g/h的CH3CHO,和30mL/min NH3 (1.6s接触时间)下,α-皮考啉、γ-皮考啉、吡啶和CH3CN的重量产率分别为0.410、0.116、0.018和0.014。

  实施例5:通过在deAlBEA上SnCl4-接枝而合成Sn-deAlBEA

  使用与实施例3中所述相似的脱铝方法制备经脱铝的β-沸石,不同之处在于使用2升HNO3和140g NH4-BEA(25) (Zeolyst, CP814E)粉末。通过AAS测定,所得deAlBEA具有约366:1的Si:Al摩尔比。重复实施例4中所述的锡接枝方法,不同之处在于向1升iPrOH中的50gSnCl4·5H2O加入20g热活化的deAlBEA。通过AAS测定,所得Sn-deAlBEA催化剂包含1.46重量%Sn。XRD显示完整的BEA结构,而没有明显的SnO2相。

  使用与实施例2中所述相似的程序,经几个反应-再生循环评估Sn-deAlBEA催化剂。表1提供了使用3g/h CH3CHO和30mL/min NH3进料流速,利用不同的反应温度,从运行中最初一小时起经几个反应循环的产物重量产率。在最初的磨合期后,在420-450℃范围内的反应温度看来得到最佳的α-皮考啉产率。

  表1

  实施例6:通过在deAlBEA上SnCl4-接枝合成Sn-deAlBEA

  使用与实施例3中所述相似的脱铝方法制备经脱铝的β-沸石,不同之处在于使用2升HNO3和150g NH4-BEA(38) (Zeolyst, CP814C, SiO2 ~38或Si:Al 约19:1)粉末。重复实施例4中所述的锡接枝方法,不同之处在于向1升iPrOH中的56g SnCl4·5H2O加入20g热活化的deAlBEA。使用实施例1中所述的程序,使Sn-deAlBEA粉末成形为催化剂颗粒(0.5-1.0mm尺寸范围),在微型反应器中装载并试验。在第三反应循环,在420℃反应温度,3g/h CH3CHO和30mL/min NH3下,α-皮考啉、γ-皮考啉、吡啶和CH3CN的重量产率分别为0.363、0.109、0.021和0.021。

  实施例7:通过用SnSO4水溶液始润浸渍而合成Sn-deAlBEA.

  使用与实施例3中所述相似的脱铝方法制备经脱铝的β-沸石,不同之处在于使用2升HNO3和200g NH4-BEA(25) (Zeolyst, CP814E)粉末。通过AAS测定,所得deAlBEA具有约140:1的Si:Al摩尔比。通过使0.144g硫酸亚锡(SnSO4, ≥95%, Sigma Aldrich)溶于17mL去离子水,然后使该溶液与10g热活化的deAlBEA混合,用始润浸渍(IWI)程序制备Sn-deAlBEA催化剂。将得到的糊干燥(风扇烘箱,80℃过夜)并煅烧(550℃,6h),以提供具有1重量%的标称SnO2含量的Sn-deAlBEA催化剂。使用实施例1中所述的成形方法制备0.5-1.0mm尺寸范围的催化剂颗粒。

  使用与实施例2中所述相似的程序,经几个反应-再生循环评估Sn-deAlBEA催化剂。表2提供了使用3g/h CH3CHO和30mL/min NH3进料流速,利用不同的反应温度,从运行中最初一小时起经几个反应循环的产物重量产率。

  表2

  实施例8:通过具有标称1重量%SnO2的SnCl4水溶液IWI而合成Sn-deAlBEA

  用类似于实施例7的IWI程序制备具有标称1重量%SnO2的Sn-deAlBEA催化剂,不同之处在于使用SnCl4·5H2O(0.235g,在30mL去离子水中),连同具有约150:1 Si:Al摩尔比的10gdeAlBEA载体。表3提供了使用3g/h CH3CHO和30mL/min NH3进料流速,利用不同的反应温度,从运行中最初一小时起经几个反应循环的产物重量产率。

  表3

  实施例9:通过在deAlBEA上Sn(CH3CO2)2-接枝而合成Sn-deAlBEA

  使用与实施例3中所述相似的脱铝方法制备经脱铝的β-沸石,不同之处在于使用2升HNO3和200g NH4-BEA(25) (Zeolyst, CP814E)粉末。通过AAS测定,所得deAlBEA具有约67:1的Si:Al摩尔比。重复实施例4中所述的锡接枝方法,不同之处在于向在1升iPrOH中包含1.89g乙酸亚锡(Sn(CH3CO2)2)的溶液加入10g热活化的deAlBEA。通过AAS测定,所得Sn-deAlBEA催化剂包含4.7重量%Sn。XRD显示完整的BEA结构,而没有明显的SnO2相。表4提供了使用3g/h CH3CHO和30mL/min NH3进料流速,在390和450℃之间试验这种Sn-deAlBEA催化剂时的峰值α-皮考啉重量产率。

  表4

  实施例10-15:通过具有标称0.5至5重量%SnO2的SnCl4水溶液IWI的Sn-deAlBEA

  使用相同的deAlBEA粉末(Si:Al约150:1),用实施例8中的IWI程序制备具有为0.5%、1.5%、2%、3%、4%和5%的标称重量%SnO2含量的6种Sn-deAlBEA催化剂。表5提供了使用3g/hCH3CHO和30mL/min NH3进料流速,在390和450℃之间试验这些Sn-deAlBEA催化剂时的峰值α-皮考啉重量产率。

  表5

  实施例16:由丙醛(CH3CH2CHO)和NH3生成α-杷沃啉(2-乙基-3,5-二甲基吡啶)

  在550℃下过夜空气再生后,用CH3CH2CHO-NH3进料混合物在380℃和2.7g/h CH3CH2CHO和36mL/min NH3进料流速下,试验来自实施例4的Sn-deAlBEA催化剂。α-杷沃啉和γ-杷沃啉(4-乙基-3,5-二甲基吡啶)的重量产率分别为0.667和0.013。

  实施例17:1% SnO2 0.25% ZnO

  使用与实施例8中所述相似的IWI程序和deAlBEA载体,用包含SnCl4·5H2O和硝酸锌(Sigma-Aldrich)的水溶液制备Sn-Zn-deAlBEA催化剂,以提供分别为1.0和0.25重量%的标称SnO2和ZnO负载量。在450℃反应温度,3g/h的CH3CHO和30mL/min NH3下,α-皮考啉、γ-皮考啉、吡啶和CH3CN的重量产率分别为0.416、0.143、0.017和0.012。

  实施例18:通过在deAlBEA上Ti(OiPr)4-接枝而合成Ti-deAlBEA

  在氮气气氛下,向在1L iPrOH中包含49g异丙氧基钛(IV)(Sigma Aldrich)的搅拌溶液加入如实施例5中所述制备的20g量的热活化的deAlBEA。使所得浆料回流,在8小时后过滤,并用500mL iPrOH洗涤。将所得Ti-deAlBEA滤饼干燥(80℃),煅烧(550℃,6小时),压制,并成形为0.5-1.0mm尺寸范围的催化剂颗粒。表6示出在450℃以3g/h CH3CHO和30mL/min NH3流速试验这种催化剂的结果。Ti-deAlBEA催化剂得到α-皮考啉和吡啶的良好合并重量产率,后面的化合物比γ-皮考啉有更大的价值。

  实施例19-22:通过硝酸盐的水溶液IWI合成Mn-、Fe-、Co-和Zn-deAlBEA

  使用具有约150 Si/Al摩尔比的经脱铝的β-沸石,用与实施例7中所述相似的水溶液IWI程序制备Mn-、Fe-、Co-和Zn-deAlBEA催化剂。从Mn(II)、Fe(III)、Co(II)和锌(II)硝酸盐(均由Sigma Aldrich提供)的水溶液开始,每种催化剂具有0.45 重量%标称金属氧化物含量。在一定温度范围评估形成的催化剂(3g/h CH3CHO,30mL/min NH3,在运行之间550℃空气再生),表6报道了得到最大α-皮考啉重量产率的条件。所有的金属促进剂都给予良好的α-皮考啉重量产率,而较低活性的Fe-和Mn-基催化剂得到明显的增量吡啶。

  表6

  实施例23:合成CIT-6和Zn-CIT-6

  用Davis等人(J. Phys. Chem. B. 1999, 103, 2674-2679)报道的程序制备具有Zn原子骨架的β-沸石(CIT-6)。通过将0.99g二水乙酸锌(Sigma Aldrich, 99.9%)和0.316g一水氢氧化锂(Sigma Aldrich, 99.95%)加到46.73g水和22.87g氢氧化四乙铵(SigmaAldrich,40重量%)制备CIT-6。搅拌混合物约15分钟,直至所有固体完全溶解。然后混合物添加22.87g胶体氧化硅(Sigma Aldrich,40重量%),并搅拌2小时。最终的反应混合物凝胶具有以下摩尔组成:0.65 TEA+:1.0 SiO2:0.05 Li+:0.03 Zn(CH3COO)2:0.70 OH-:30 H2O。然后将凝胶装入衬有Teflon的不锈钢高压釜(Parr Instrument Co.),并在强制对流烘箱中在140℃静态加热138小时。通过离心收集产物,并用纯净水和丙酮洗涤(各5次,每次洗涤为约50mL/g沸石),然后在90℃烘箱干燥过夜。

  利用Andy和Davis(Ind. Eng. Chem. Res. 2004, 43, 2922-2928)报道的程序的改编,将初制CIT-6从锂形式离子交换成锌形式。将硝酸锌溶液(1M,约480mL)加到4.8g初制CIT-6,并在500RPM和80℃下搅拌10小时。将所得固体用水和丙酮各洗涤5次(每次洗涤为约50mL/g沸石),并在真空炉(约0.013kPa)中在环境温度下干燥过夜。然后将干燥的Zn-CIT-6粉末在流动空气下加热(马弗炉,1℃/分钟)到580℃,并保持10小时。

  使所得Zn-CIT-6粉末成形为催化剂粒料,并在一系列温度下评估α-皮考啉的生成(3g/h CH3CHO,30mL/min NH3,在运行之间有550℃空气再生)。在360℃获得最大α-皮考啉重量产率,α-皮考啉、γ-皮考啉、吡啶和CH3CN的重量产率分别为0.293、0.125、0.010和0.026。

  比较实施例1:通过在deAlBEA上Sn(CH3CO2)2-接枝而合成Sn-deAlBEA

  通过使用十倍高浓度的Sn(CH3CO2)2 (19g,在1L iPrOH中)与实施例5中所述的deAlBEA批次(10g),修改实施例9中的锡接枝程序。通过AAS测定,所得Sn-deAlBEA催化剂包含23.7重量%Sn。XRD(图1)显示完整的BEA结构与大量的SnO2相(锡石)的存在。表4提供了使用3g/hCH3CHO和30mL/min NH3进料流速,在420和450℃之间试验这种Sn-deAlBEA催化剂时的峰值α-皮考啉重量产率。

  与α-皮考啉相比,在较高锡含量的Sn-deAlBEA催化剂中形成块状结晶SnO2对性能有害,导致过量的乙腈生成。

《沸石催化剂.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)