欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 化合物分离> 便携式制氧机独创技术24052字

便携式制氧机

2021-03-03 13:24:13

便携式制氧机

  技术领域

  本发明涉及一种气体分离设备,尤其涉及的是一种制氧机。

  背景技术

  变压吸附法(简称PSA)作为一种气体分离技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速。其工作原理是:利用吸附剂分子筛对不同气体分子吸附性能的差异而将气体混合物分开,吸附平衡后根据分子筛在不同压力下对吸附气体吸附量不同的特性,降低压力使分子筛解除对吸附气体的吸附,这一过程称为再生。目前,变压吸附装置通常使用两塔或多塔并联,这样可以交替进行加压吸附和解压再生,从而获得连续的产品气体。

  PSA制氧机一般采用加压吸附常压解吸的方法,由两只吸附塔分别进行相同的循环过程,从而实现连续供气。全系统由单片机全自动控制。

  目前,市场上大多数氧气机,也是运用此技术,主要都是通过无油压缩机,对气体进行压缩后经过管道到分子筛罐中利用分子筛进行气体的分离;

  如申请号:201710983403.6,公开一种智能制氧机,所述智能制氧机包括:主控板、血氧检测模块及无油压缩机,所述血氧检测模块及所述无油压缩机分别与所述主控板连接;所述血氧检测模块,用于对目标用户进行血氧浓度检测,生成与检测到的血氧浓度对应的电信号,并将所述电信号发送至所述主控板;所述主控板,用于生成与所述电信号对应的转速调节信号;所述无油压缩机,用于按照所述转速调节信号对电机转速进行调整。但无油压缩机转速普遍都在1000多转,运转时发热高,噪音大。

  目前,大都通过提高压缩机的加工精度来降低噪音,或将压缩机微型化来降噪,如申请号:201910454114.6,公开一种便携式制氧机,包括塑料外壳和导管,所述便携式制氧机还包括嵌合于塑料外壳内部,沿导管依次布置的消音空气过滤器、微型压缩机和集成有电磁阀的分子筛塔。该申请中采用微型压缩机,但是每一个对应排量的制氧机,在每个工作周期里面,需要的气量是一定的,而缩小了压缩机就只能提高相应的转速,才能满足对应需气量的要求,且微型化的过程提高了加工工艺要求,也提高了加工成本;

  或采用消音罩等来降低噪音,如申请号201820097714.2,一种制氧机消音机罩,盖板、固定杆、活性炭过滤板、进气管、机罩主体、支撑腿、出气管、气缸、隔音板、压板、制氧机主体以及压杆,其特征在于:所述机罩主体上端固定有盖板,所述支撑腿设有四个,四个所述支撑腿对称固定在机罩主体下端面上,所述机罩主体内壁固定有隔音板,所述制氧机主体固定在机罩主体内部,所述制氧机主体位于隔音板内端,所述盖板内部顶端固定有气缸,所述气缸下端固定有压杆,所述压杆下端穿过盖板、机罩主体以及隔音板,并延伸至隔音板内层,所述压杆下端固定有压板,所述制氧机主体左端固定有进气管,所述进气管左端依次穿过隔音板以及机罩主体,并延伸至机罩主体左侧,所述固定杆固定在机罩主体左端,所述固定杆左端固定有活性炭过滤板,所述制氧机右端固定有出气管,所述出气管右端依次穿过隔音板以及机罩主体,并延伸至机罩主体右侧。

  无油压缩机的金属缸体和活塞之间高速干摩擦,产生的发热量其实是相当大的,气体压缩本身也是一个发热过程,加上又有压缩机的电机产生的热量,市面上某些制氧机,就算采取了相应散热措施,内部工作温度也有八、九十度甚至更高,严重的影响了分子筛的吸附性能和效率。电子电路本身对高温也很敏感,高温很容易引发电子电路本身的一些系统故障。要解决制氧机的热量问题,就必须让系统有一定的敞开度,让散热风扇利用风道把热量给带出来,敞开又凸显了噪音的问题。目前制氧机里面较好的解决方案就是采用低噪音的高精度压缩机,价格昂贵,但毕竟还是使用的压缩机,整体的噪音也不低。

  目前制氧机使用的分子筛解吸时间、吸附时间分别为数秒,分子筛工作频率通常小于10次/分钟,而无油压缩机转速较大,与分子筛的工作过程异步,这就需要用到电子传感器、单片机、多路电磁阀等元器件以及复杂的控制电路来匹配分子筛的工作过程。

  如申请号:201520585327.X,公开一种PSA制氧机,包括控制模块,制氧工艺监控模块、人机界面模块、电源模块;控制模块包括单片机,与单片机相连的EEPROM看门狗电路;制氧工艺监控模块包括压缩机、分子筛吸附塔,压缩机经电磁阀与分子筛吸附塔相连,压缩机的电源端、电磁阀的控制端分别与单片机相连,分子筛吸附塔的出气口安装有氧浓度传感器,氧浓度传感器与单片机相连。

  综上所示,现有的小型制氧装置基本都存在以下几点缺陷:零部件多、结构复杂、发热高,噪音大,需要用到专门的散热及降噪设计,还需要有复杂的控制电路来进行匹配,成本高。特别是噪音大这一缺点,因为使用制氧机的人员大部分情况下是病人,更需要安静的使用环境。且现有制氧机无法脱电工作,无法满足一些无电力场合特别是户外便携使用的要求。

  公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。

  发明内容

  本发明所要解决的技术问题在于:如何解决现有技术中的制氧机发热量大、噪音大、零部件多、结构复杂、成本高,不适宜便携使用的问题。

  本发明通过以下技术手段实现解决上述技术问题的:

  便携式制氧机,包括至少一组分离机构;分离机构包括内部空间能够压缩和扩张的气囊、分子筛罐,分子筛罐内填充有用于吸附的分子筛,气囊具有用于空气进入的进气口以及排出的排气口,所述气囊的进气口具有单向阀,气囊通过阀组与分子筛罐连接,阀组包括第一单阀、第二单阀,第一单阀为单向压力阀,第二单阀为常开阀,气囊的排气口通过第一单阀与分子筛罐连接,分子筛罐两端分别具有至少各一个用于分离后的气体排出的排气口,其中与气囊连接端的排气口处具有与第一单阀联动的第二单阀,第一单阀打开以及关闭时联动第二单阀关闭以及打开;

  气囊内部空间压缩、扩张一次为一个工作周期,分子筛罐内分子筛吸附、解吸一次为一个工作周期;气囊内部空间开始压缩,当气囊内压力增大至设定压力值,第一单阀打开,第二单阀关闭,分子筛罐内分子筛开始吸附过程;气囊内部空间扩张时,第一单阀关闭,第二单阀打开,分子筛罐内分子筛开始解吸过程。

  本发明以气囊取代多数制氧机方案中的无油压缩机,通过一个阀组以联动方式保持气囊的工作行程与分子筛的工作过程同步,气囊压缩后气体压力增大至设定值,第一单阀打开,第二单阀关闭,实现将高压空气(主要成分为氮氧混合物)充入分子筛罐,罐内压力增大,分子筛对混合气体进行吸附,分离出氧气排出;气囊扩张,第一单阀关闭,第二单阀打开,罐内压力降低,分子筛进行解吸,排出剩余的氮气。

  优选的,所述分离机构为两组,两组分离机构中的气囊连接,且两个气囊之间具有能够移动的挤压板,其中一个气囊内部空间扩张或压缩时,另一个气囊内部空间压缩或扩张。

  本发明还可以通过至少两组分离机构配合产气,效率高。

  优选的,所述分子筛罐与储氧罐之间具有节流阀。节流阀可以实现分子筛罐内的分子筛在吸附过程中,控制氧气排出的流量,避免氮气也跟着一起排出。分子筛在解吸过程中,由于分子筛罐内的压力逐步降低,储氧罐内的部分氧气经节流阀回吹,以利于分子筛吸附能力的再生。

  优选的,所述阀组为二位二通联动单向压力阀,第一单阀为二位二通联动单向压力阀上的一位阀体,第二单阀为二位二通联动单向压力阀上的另一位阀体,两个阀体之间通过滑片联动。通过机械式的联动,可以进一步减少采用电子电路联动时的器件。

  优选的,还包括储氧罐,分离机构与储氧罐连接。

  优选的,还包括湿化器,储氧罐与湿化器连接,所述湿化器与储氧罐之间具有储氧罐节流阀。储氧罐节流阀为可调节流阀,使用者根据需要调节氧气需求。

  优选的,所述气囊为折叠气囊或弹性气囊。挤压板可以由人力扳动,可实现脱电使用,结构简单、取材容易、重量轻。

  优选的,所述挤压板安装有永久磁体,两个气囊远离挤压板的一端均具有能够与挤压板相吸相斥的电磁铁结构。

  本发明的优点在于:本发明以气囊(气囊内部无需油品润滑,不会对气路同分子筛造成污染,与无油压缩机一样,可以提供适用于人体呼吸需要的洁净气源)取代多数制氧机方案中的无油压缩机,通过一个阀组以联动方式保持气囊的工作行程与分子筛的工作过程同步,由于分子筛最佳工作频率通常小于10次/分钟,因此气囊的同步运动速度低,无需专门的散热及降噪设计,从源头上解决了噪音和发热的问题;免去了传统装置中相应的电子传感器、单片机、多路电磁阀以及复杂的控制电路,且可以手动实现气囊内部空间的压缩与扩张,在特殊状况下可脱电工作;再加上气囊平时不工作时可折叠,体积小;气囊非金属材料制造,重量轻;整机零部件少,结构简单,气囊也无需精加工,成本低,尤其适合车载便携,野外生存,紧急救护,应急装备以及低成本、低噪音的应用需求。

  附图说明

  图1是本发明实施例一中便携式制氧机的结构示意图;

  图2是二位二通联动单向压力阀的结构示意图;

  图3是本发明实施例二中便携式制氧机的结构示意图;

  图4是本发明实施例三中挤压板右移工作过程示意图;

  图5是本发明实施例三中挤压板左移工作过程示意图。

  图中标号:1、气囊;11、单向阀;2、分子筛罐;21、节流阀;3、二位二通联动单向压力阀;4、储氧罐;41、储氧罐节流阀;5、湿化器;6、挤压板;

  1′、第一气囊;1"、第二气囊;11′、第一单向阀;11"、第二单向阀;2′、第一分子筛罐;2"、第二分子筛罐;21′、第一节流阀;21"、第二节流阀;3′、第一二位二通联动单向压力阀;3"、第二二位二通联动单向压力阀。

  具体实施方式

  为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

  实施例一:

  如图1所示,便携式制氧机包括一组分离机构、储氧罐4;分离机构包括气囊1、分子筛罐2(分子筛罐内填充有用于吸附的分子筛),分子筛罐2与储氧罐4连接;

  气囊1为内部空间能够压缩和扩张的结构,气囊1具有用于空气进入的进气口以及排出的排气口,进气口设有单向阀11,所述气囊1通过阀组与分子筛罐2连接,阀组包括联动的第一单阀和第二单阀,第一单阀为单向压力阀,第二单阀为常开阀,气囊1的排气口通过第一单阀与分子筛罐2底部连接,分子筛罐2两端分别具有至少各一个用于分离后的气体排出的排气口,其中一个排气口位于底部,该排气口用于排出氮气,氮气排气口处设置第二单阀,第一单阀打开时第二单阀关闭,第一单阀关闭时第二单阀打开,分子筛罐2的另一个排气口位于顶部用于氧气排出,该排气口与储氧罐4连接,储氧罐4与分子筛罐2之间设有节流阀21;

  节流阀21为普通节流阀,设计时设定好参数,在吸附过程进行中,氧气从分子筛罐2顶部排出,节流阀21限制住气体排出来的流量,直至分子筛罐2底部的排氮口打开开始解吸过程时,控制住分子筛罐2内氮氧混合层离冲到分子筛罐2顶部还有一段距离,确保从分子筛罐2顶部排出来的都是氧气,随着分子筛罐2内的气体压力降低,储氧罐4内的部分氧气又经节流阀21回吹至分子筛罐2,以利于罐内分子筛吸附能力的再生。节流阀21还可以分成两个单向节流阀,一个用于控制分子筛罐2排出氧气的流量,一个用于控制储氧罐4回吹氧气的流量。

  本实施例中的上述阀组可以直接采用二位二通联动单向压力阀3,如图2所示,第一单阀为二位二通联动单向压力阀3上的左边位的阀体,第二单阀为二位二通联动单向压力阀3上的右边位的阀体,二者通过滑片联动;具体的,左边气体通路常闭,右边气体通路常开;当左边进气口气体压力大于设定值,左边气体通路打开,联动滑片上移,致使右边气体通路关闭;当左边进气口气体压力小于设定值,左边气体通路关闭,联动滑片下移,致使右边气体通路打开。

  需要说明的是:第一单阀为单向压力阀,第二单阀为常开阀,二者也可以通过电磁信号等方式进行联动,实现此开彼关的关系。

  本实施中,气囊1为折叠气囊或弹性气囊。可以通过挤压或拉伸改变其内部空间,具体的,其中一端固定,另一端设置挤压板6,挤压板6来回运动,实现气囊内部空间的压缩和扩张;

  本实施中,制氧机还包括湿化器5,储氧罐4与湿化器5连接,所述湿化器5与储氧罐4之间设有储氧罐节流阀41,储氧罐节流阀41为可调节流阀,使用者通过调整,可以自行调控输出氧气的流量。

  本实施例的具体工作过程如下:

  气囊1由最大扩张状态开始压缩时,气囊1内的气体压力开始增大,单向阀11关闭,随着气囊1内的气体压力逐渐增大,当压力增大到二位二通联动单向压力阀3设定的压力值,二位二通联动单向压力阀3的左侧气体通路打开,右侧气体通路关闭,高压空气通过左侧气体通路进入分子筛罐2,分子筛罐2内的分子筛开始吸附过程,由于分子筛的吸附作用,氮气给分子筛吸附住,氧气冲到了分子筛罐2的顶端,然后通过节流阀21进入储氧罐4。

  气囊1由最大压缩状态开始扩张时,空气气源通过进气口经单向阀11给吸入气囊1,二位二通联动单向压力阀3的左侧气体通路关闭,右侧气体通路打开,分子筛罐2内的氮气由右侧气体通路排出,分子筛罐2内的分子筛开始解吸过程,由于分子筛罐2内的压力逐步降低,储氧罐4内的部分氧气经节流阀21回吹至分子筛罐2,以利于罐内分子筛吸附能力的再生,气囊1的内部空间变得最大时,吸入了最大量的空气;

  至此,气囊1实现压缩和扩张一个工作周期,分子筛罐2内分子筛实现吸附和解吸一个工作周期。

  本实施例通过气囊1取代现有技术中的无油压缩机,实现将高压空气充入分子筛罐2,分子筛罐2内分子筛对氮气进行吸附,将所需氧气储存在储氧罐4中,降压解吸后将剩余的氮气排出;因没有压缩机的使用,也无需进行降噪以及散热相关设计,因此,本实施例低噪音、低发热、结构简单;且气囊1内部空间压缩、扩张一次与分子筛罐2内分子筛吸附、解吸一次同步,保持气囊1的工作行程与分子筛的工作过程同步,可以免去传统装置中相应的电子传感器、单片机、多路电磁阀以及复杂的控制电路,且可以手动实现气囊1内部空间的压缩与扩张,可脱电工作;

  本实施例可以应用在野外生存,紧急救护,应急装备,以及家庭成员需要氧气的场合,使用场合多,适应性强,体积小,重量轻,便于携带。

  实施例二:

  如图3所示,本实施例中,在上述实施例一的基础上增加一组分离机构,两组分离机构共用一个储氧罐4、储氧罐节流阀41、湿化器5;

  如图3中左侧气囊为第一气囊1′,右侧气囊为第二气囊1",左侧单向阀为第一单向阀11′,右侧单向阀为第二单向阀11",左侧分子筛罐为第一分子筛罐2′,右侧分子筛罐为第二分子筛罐2",左侧节流阀为第一节流阀21′,右侧节流阀为第二节流阀21",左侧二位二通联动单向压力阀为第一二位二通联动单向压力阀3′,右侧二位二通联动单向压力阀为第二二位二通联动单向压力阀3";

  第一气囊1′与第二气囊1"之间具有能够移动的挤压板6,第一气囊1′内部空间扩张时,第二气囊1"内部空间压缩,反之亦成立。

  第一气囊1′的进气口具有第一单向阀11′,第一气囊1′的排气口通过第一二位二通联动单向压力阀3′连接第一分子筛罐2′,第一分子筛罐2′顶端与储氧罐4的左端连接,第一分子筛罐2′与储氧罐4之间设有第一节流阀21′;第二气囊1"的进气口具有第二单向阀11",第二气囊1"的排气口通过第二二位二通联动单向压力阀3"连接第二分子筛罐2",第二分子筛罐2"顶端与储氧罐4的右端连接,第二分子筛罐2"与储氧罐4之间设有第二节流阀21"。

  本实施例的具体工作过程如下:

  结合图4所示,挤压板6向右摆动,第一气囊1′的空间不断增大,空气气源通过左侧进气口的第一单向阀11′给吸入第一气囊1′;第二气囊1"的空间开始给压缩,里面的气体压力开始增大,第二单向阀11"关闭,当气囊内的压力大到第二二位二通联动单向压力阀3"设定的压力值,第二二位二通联动单向压力阀3"的左侧气体通路打开,右侧气体通路关闭,高压空气通过第二二位二通联动单向压力阀3"进入第二分子筛罐2",第二分子筛罐2"内的分子筛开始吸附过程;由于分子筛的吸附作用,氮气给分子筛吸附住,氧气冲到了第二分子筛罐2"的顶端,然后通过第二节流阀21"进入储氧罐4,部分氧气再从储氧罐4流经储氧罐节流阀41到湿化器5后至出氧口;

  当挤压板6摆到最右端,第一气囊1′的内部空间变得最大,吸入了最大量的空气,第二气囊1"的空间变得最小;

  结合图5所示,挤压板6开始由右向左进行摆动,第二气囊1"的空间开始增大,里面的气体压力降低,第二单向阀11"打开,第二气囊1"开始由进气口吸入空气,第二二位二通联动单向压力阀3"的左侧气体通路关闭,右侧气体通路打开,第二分子筛罐2"开始由排氮口排氮,第二分子筛罐2"内的分子筛开始解吸过程,由于第二分子筛罐2"内的压力逐步降低,储氧罐4内的部分氧气经第二节流阀21"回吹,以利于第二分子筛罐2"内分子筛吸附能力的再生;同时,第一气囊1′的空间开始给压缩,里面的气体压力开始增大,第一单向阀11′关闭,当第一气囊1′内的压力大到第一二位二通联动单向压力阀3′设定的压力值,第一二位二通联动单向压力阀3′的右侧气体通路打开,左侧气体通路关闭;高压空气通过第一二位二通联动单向压力阀3′进入第一分子筛罐2′,第一分子筛罐2′内的分子筛开始吸附过程,由于分子筛的吸附作用,氮气给分子筛吸附住,氧气冲到了第一分子筛罐2′的顶端,然后由第一节流阀21′进入储氧罐4;

  挤压板6摆动到最左端时,第二气囊1"的内部空间变得最大,吸入了最大量的空气,此时,第一气囊1′的空间变得最小。

  挤压板6开始向右回摆,第一气囊1′的空间开始增大,里面的气体压力降低,第一单向阀11′打开,第一气囊1′开始由进气口吸入空气,第一二位二通联动单向压力阀3′的右侧气体通路关闭,左侧气体通路打开,第一分子筛罐2′开始由排氮口排氮,第一分子筛罐2′内的分子筛开始解吸过程,由于第一分子筛罐2′内的压力逐步降低,储氧罐4内的部分氧气由经第一节流阀21′回吹;同时,第二气囊1"的空间开始给压缩,里面的气体压力增大,第二单向阀11"关闭,当第二气囊1"内的压力大到第二二位二通联动单向压力阀3"设定的压力值,第二二位二通联动单向压力阀3"的左侧气体通路打开,右侧气体通路关闭,高压空气通过第二二位二通联动单向压力阀3"进入第二分子筛罐2",第二分子筛罐2"内的分子筛开始吸附过程,系统又开始了下一轮的工作循环...

  本实施例通过两组分离机构配合交替产生氧气,供气连续性好,效率高。

  本实施例中,第一气囊1′的左端与第二气囊1"的右端均固定设置,通过人力扳动挤压板6,即可以实现气囊内部空间的压缩与扩张,可实现脱电使用。

  实施例三:

  如图4、图5所示,所述挤压板6安装有永久磁体,第一气囊1′的左端与第二气囊1"的右端均具有电磁铁结构,可以通过改变电流方向改变磁极,通过电磁铁结构与挤压板6的永久磁体相吸相斥实现气囊内部空间的压缩与扩张;如图4所示,挤压板6左侧为N极,右侧为S极,第二气囊1"的左端为N极,第一气囊1′的右端为N极,实现第二气囊1"与挤压板6相吸,第一气囊1′与挤压板6相斥;如图5所示,挤压板6左侧为N极,右侧为S极,第二气囊1"的左端为S极,第一气囊1′的右端为S极,实现第二气囊1"与挤压板6相斥,第一气囊1′与挤压板6相吸。

  反之亦可以,第一气囊1′的左端与第二气囊1"的右端安装有一对相斥的永久磁体,挤压板6安装有电磁铁结构,通过改变电流方向改变挤压板6的磁极,实现挤压板6的左右移动。

  以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

《便携式制氧机.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)