欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 一种破片收敛型防弹复合材料的制备方法独创技术19394字

一种破片收敛型防弹复合材料的制备方法

2021-01-26 04:43:54

一种破片收敛型防弹复合材料的制备方法

  技术领域

  本发明涉及防弹材料技术领域,具体涉及一种破片收敛型防弹复合材料的制备方法。

  背景技术

  目前,国内外复合材料防弹领域,主要采用玻璃纤维、芳纶纤维、超高分子量聚乙烯纤维等纤维增强复合材料。在装甲防护领域,坦克装甲车辆面临穿甲弹、破甲弹、大口径榴弹、反坦克导弹等先进弹药的威胁。弹药击穿车辆主体钢装甲后,钢制装甲和弹头产生破碎形成高速破片和崩落破片,并呈锥形高速前行,从而造成车辆内部大面积人员伤亡和设备损坏。破片收敛型多功能复合材料主要作用是针对各种弹药击穿步兵战车装甲后产生的二次破片进行有效收敛及防护,同时有效控制穿燃弹及空心装药弹产生的金属射流引起的火焰和热效应,从而降低人员伤亡,有效保护车内设备、仪器仪表及电脑,提高战场生存力,同时具有低密度、阻燃性、良好环境适应性、经济性等特性,提升坦克装甲车辆的防护能力。

  目前的复合材料材质中所采用的纤维编织布结构主要是二维或单向纤维结构,所采用的树脂主要是热固性树脂或者其它一系列的改性树脂,如玻璃纤维布-环氧树脂、芳纶纤维-酚醛树脂等,其主要的成型方式一般是树脂与纤维初步浸渍形成预浸布材料,然后通过常规复合材料的模压或者层压成型方式,通过高压和加温的方式采用大型压力设备进行制备,这种成型工艺所生产的材料基本都是叠层结构,这种因为层间高压压制粘接的结构在复杂环境下很容易出现脱层或者开裂的现象,机械性能差,且存在面密度较高、辐射屏蔽性能较差、阻燃性能较差等缺点,在严酷的战场环境下,对各种高速破片防护性能及收敛作用有限,严重影响作战效能。

  发明内容

  本发明的目的在于提供一种具有优异机械性能的破片收敛型防弹复合材料的制备方法。本发明制备的复合材料能够对二次破片有效收敛,同时具有高阻燃性、辐射屏蔽性和优异的减振降噪性能。

  本发明目的通过以下技术方案实现:

  一种破片收敛型防弹复合材料的制备方法,所述复合材料依次包括破片约束层、共混改性弹性体层、改性阻尼橡胶层,其特征在于:所述破片约束层是将芳纶纤维进行预处理,然后采用机织编织出浅交联2.5D编织结构,最后固化成型,所述固化成型具体是将聚氨酯树脂与环氧树脂组成的双树脂和固化剂用丙酮溶解形成混合液,聚磷酸铵溶解于去离子水,并加入混合液中,以200~220转/min的速度搅拌15~20min混合均匀,再采用超声波进行辅助分散,超声波介质的温度控制在32℃,分散10min,其中双树脂、固化剂和聚磷酸铵的质量比为10:1:1,在0.095MPa负压条件下压入芳纶纤维编织结构的纤维层中进行固化,形成芳纶纤维板复合材料。

  进一步,上述芳纶纤维是含有杂环结构的共聚型对位芳纶,纤维度为1000~1500D,密度1.42~1.44g/cm3,拉伸强度3500~5000MPa,弹性模量115~150GPa,断裂伸长率2.8~3.5%。

  进一步,上述聚氨酯树脂与环氧树脂按照1.5~4:1的体积比组成,固化剂为热固性酚醛树脂和水杨酸按照1:1的体积比组成。

  共聚型对位芳纶织物与树脂基体的浸润性较差,树脂和纤维之间结合力差,会降低其防弹性能。本发明中采用上述双树脂体系,其中聚磷酸铵不仅增强了体系的阻燃性,且增加了聚氨酯树脂弹性基体的相容性,聚氨酯树脂中的异氰酸酯基与环氧树脂中的环氧基反应交联,热固性酚醛树脂中的羟甲基和环氧树脂中羟基及环氧基反应,酚醛树脂和水杨酸中的酚羟基和环氧树脂的环氧基发生开环醚化反应,将环氧树脂从线型转变成体型,促进固化,最终环氧树脂与聚氨酯树脂形成相互交联网状的体型大分子,改善了树脂对上述共聚型对位芳纶纤维的浸润性,增加了纤维与树脂之间的化学键合,增强了树脂与纤维之间的结合力。

  在固化过程中,聚氨酯完全固化,环氧树脂真空常温下在固化剂作用下,形成半固化状态,固化和半固化状态的双树脂相互协同,增强了复合材料的强度和韧性,提高了复合材料整体性能。

  进一步,上述预处理具体是将芳纶纤维放入质量分数为0.5%的氢氧化钠溶液中,浸泡1~1.5h后取出,用去离子水清洗至中性,再放入丙酮中,浸泡12h后取出,用去离子水清洗,然后放入去离子水中煮15min,取出后放入烘箱烘干,设定温度110℃,时间20min,取出后放入密封袋中备用。

  进一步,上述浅交联2.5D编织结构是将将预处理后的对位芳纶纤维分为相互垂直的经纱与纬纱进行编制,经纱呈弯曲状态、纬纱呈直线状态,经纱沿织物竖直平面和厚度方向上与纬纱交联,在织物竖直平面方向上每2股经纱与纬纱交联一次,在织物厚度方向上每4股经纱与纬纱交联一次,制得编织结构。

  本发明中通过控制经纱和纬纱的垂直交联编织,在竖直平面方向上增加纤维体积含量,纤维之间的间隙小,弹丸穿透后留下的孔径小,从而达到约束破片的目的;在厚度方向上保持了纤维在竖直平面方向上传递应力波的能力,充分发挥了纤维编织结构的抗拉伸破坏的能力。

  进一步,上述冷压复合是采用400目砂纸打磨芳纶纤维板和共混改性弹性体端面,并用丙酮清洗后分别采用自动涂胶机涂覆A型胶黏剂,在室温条件下,在四柱液压机中0.1~0.3MPa压力下保压24h,待胶黏剂完全固化后,在该共混弹性体表面复合改性阻尼橡胶层,然后通过高压水切切割至指定尺寸。

  进一步,上述共混改性弹性体层具体是氧化钐/聚氨酯共混弹性体,所述改性阻尼橡胶层具体是有硬质酸钠改性的丁基阻尼橡胶。

  本发明中采用在芳纶纤维板表面依次复合氧化钐/聚氨酯共混弹性体和硬质酸钠改性的丁基阻尼橡胶,使得复合材料具有优异的防辐射性能和减振降噪能力,其中硬质酸钠改性的丁基阻尼橡胶具有减振降噪的性能,且硬脂酸钠改性的丁基阻尼橡胶表面具有显著的粘接性能,使得其与氧化钐/聚氨酯共混弹性体之间存在优异的结合力。

  最具体的,一种破片收敛型防弹复合材料的制备方法,其特征在于,按如下步骤进行:

  S1、芳纶纤维编织结构制备

  (1)芳纶纤维进行预处理:将芳纶纤维放入质量分数为0.5%的氢氧化钠溶液中,浸泡1~1.5h后取出,用去离子水清洗至中性,再放入丙酮中,浸泡12h后取出,用去离子水清洗,然后放入去离子水中煮15min,取出后放入烘箱烘干,设定温度110℃,时间20min,取出后放入密封袋中备用。

  (2)浅交联2.5D编织结构:将预处理后的对位芳纶纤维分为相互垂直的经纱与纬纱进行编制,经纱呈弯曲状态、纬纱呈直线状态,经纱沿织物竖直平面和厚度方向上与纬纱交联,在织物竖直平面方向上每2股经纱与纬纱交联一次,在织物厚度方向上每4股经纱与纬纱交联一次,制得编制结构;上述芳纶纤维是含有杂环结构的共聚型对位芳纶,纤维度为1000~1500D,密度1.42~1.44g/cm3,拉伸强度3500~5000MPa,弹性模量115~150GPa,断裂伸长率2.8~3.5%;

  S2、芳纶纤维板破片约束层制备

  (1)双树脂体系配置:将聚氨酯树脂与环氧树脂组成的双树脂和固化剂用丙酮溶解形成混合液,将聚磷酸铵溶解于去离子水,并加入混合液中,以200~220转/min的速度搅拌15~20min混合均匀,再采用超声波进行辅助分散,超声波介质的温度控制在30±2℃,分散10~15min,混合溶液中双树脂、固化剂和聚磷酸铵的质量比为10:1:1,上述聚氨酯树脂与环氧树脂的体积比为1.5~4:1,固化剂为热固性酚醛树脂和水杨酸按照1:1的体积比组成;

  (2)芳纶纤维板破片约束层固化成型:在0.095MPa负压条件下压入芳纶纤维编织结构的纤维层中进行固化,形成芳纶纤维板;

  S3、冷压复合

  采用400目砂纸打磨芳纶纤维板和氧化钐/聚氨酯共混弹性体端面,并用丙酮清洗后分别采用自动涂胶机涂覆A型胶黏剂,在室温条件下,在四柱液压机中0.1~0.3MPa压力下保压24h,待胶黏剂完全固化后,在阻尼橡胶表面均匀加工出孔径为2mm、孔间距为8mm的半通孔,常温常压下,用A型胶粘剂将改性丁基阻尼橡胶层复合在弹性体表面,待胶黏剂完全固化后,通过高压水切切割开孔至指定尺寸。

  本发明具有如下技术效果:

  本发明制备的破片收敛型防弹复合材料,结构稳定,不出现分层、开裂等现象具有高防破片性能、低散射角、阻燃、阻尼减振降噪、辐射屏蔽性能优异等优点,采用功能互补结构设计实现了多功能高效集成,并有效解决了传统防弹复合材料不能衰减破片散射角的特点。本发明制备的复合材料厚度为8~20mm、面密度8~20kg/m2、共振状态下结构损耗因子0.033~0.062、降噪量在10dB(A)以上、氧指数可达42%以上、中子辐射屏蔽系数1.63~1.87、破片散射角低至2.6~15.9°。适用于各型轻量化装甲装备对二次破片的防护需求,无毒无害有效改善人机环境,提高战场生存率。

  附图说明

  图1:预处理前后的共聚型对位芳纶纤维扫描电镜图。

  图2:本发明对位芳纶纤维板破片约束层固化成型实物图。

  图3:本发明破片收敛型防弹复合材料结构示意图。

  图4:本发明制备的破片收敛型多功能防弹复合材料实物图。

  具体实施方式

  下面通过实施例对本发明进行具体的描述,有必要在此指出的是,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。

  实施例1

  一种破片收敛型防弹复合材料的制备方法,按如下步骤进行:

  S1、芳纶纤维编织结构制备

  (1)芳纶纤维进行预处理:将芳纶纤维放入质量分数为0.5%的氢氧化钠溶液中,浸泡70min后取出,用去离子水清洗至中性,再放入丙酮中,浸泡12h后取出,用去离子水清洗三遍,然后放入去离子水中煮15min,取出后放入烘箱烘干,设定温度110℃,时间20min,取出后放入密封袋中备用;

  (2)浅交联2.5D编织结构:将预处理后的对位芳纶纤维分为相互垂直的经纱与纬纱进行编制,经纱呈弯曲状态、纬纱呈直线状态,经纱沿织物竖直平面和厚度方向上与纬纱交联,在织物竖直平面方向上每2股经纱与纬纱交联一次,在织物厚度方向上每4股经纱与纬纱交联一次,制得编制结构;上述芳纶纤维是含有杂环结构的共聚型对位芳纶,纤维度为1000~1500D,密度1.42~1.44g/cm3,拉伸强度3500~5000MPa,弹性模量115~150GPa,断裂伸长率2.8~3.5%;

  S2、芳纶纤维板破片约束层制备

  (1)双树脂体系配置:将聚氨酯树脂与环氧树脂组成的双树脂和固化剂用丙酮溶解形成混合液,将聚磷酸铵溶于去离子水中,再加入混合液中,以200转/min的速度搅拌15min混合均匀,再采用超声波进行辅助分散,超声波介质的温度控制在30℃,分散10min,混合溶液中双树脂、固化剂和聚磷酸铵的质量比为10:1:1,上述聚氨酯树脂与环氧树脂按照3:1的体积比组成,固化剂为热固性酚醛树脂和水杨酸按照1:1的体积比组成;

  (2)芳纶纤维破片约束层固化成型:在0.095MPa负压条件下压入芳纶纤维编织结构的纤维层中进行固化,形成芳纶纤维板,厚度为2.0~2.4mm;

  S3、冷压复合

  采用400目砂纸打磨芳纶纤维板和厚度为2.8~3.5mm的氧化钐/聚氨酯共混弹性体端面,并用丙酮清洗后分别采用自动涂胶机涂覆A型胶黏剂,在室温条件下,在四柱液压机中0.3MPa压力下保压24h,待胶黏剂完全固化后,在厚度为3~3.6mm的硬质酸钠改性的丁基阻尼橡胶层表面均匀加工出孔径为2mm、孔间距为8mm的半通孔,常温常压下,用A型胶粘剂将改性丁基阻尼橡胶层复合在弹性体表面,待胶黏剂完全固化后,通过高压水切切割开孔至指定尺寸。

  本实施例制备的收敛型防弹复合材料厚度为8mm,面密度为10.6kg/m2,V50为453~468m/s、破片散射角可低至15.6~31.8°,氧指数为44.6%。共振状态下结构损耗因子为0.054~0.057、降噪量为15.2~17.3dB(A)、中子辐射屏蔽系数1.81~1.87,以上数据指标存在本领域可接受的误差波动范围。

  本实施例中对位芳纶纤维编织结构参数如表1。

  表1:编织结构规格参数

  

  实施例2

  一种破片收敛型防弹复合材料的制备方法,按如下步骤进行:

  S1、芳纶纤维编织结构制备

  (1)芳纶纤维进行预处理:将芳纶纤维放入质量分数为0.5%的氢氧化钠溶液中,浸泡1h后取出,用去离子水清洗至中性,再放入丙酮中,浸泡12h后取出,用去离子水清洗,然后放入去离子水中煮15min,取出后放入烘箱烘干,设定温度110℃,时间20min,取出后放入密封袋中备用。

  (2)浅交联2.5D编织结构:将预处理后的对位芳纶纤维分为相互垂直的经纱与纬纱进行编制,经纱呈弯曲状态、纬纱呈直线状态,经纱沿织物竖直平面和厚度方向上与纬纱交联,在织物竖直平面方向上每2股经纱与纬纱交联一次,在织物厚度方向上每4股经纱与纬纱交联一次,制得编制结构;上述芳纶纤维是含有杂环结构的共聚型对位芳纶,纤维度为1000~1500D,密度1.42~1.44g/cm3,拉伸强度3500~5000MPa,弹性模量115~150GPa,断裂伸长率2.8~3.5%;

  S2、芳纶纤维板破片约束层制备

  (1)双树脂体系配置:将聚氨酯树脂与环氧树脂组成的双树脂和固化剂用丙酮溶解形成混合液,将聚磷酸铵溶于去离子水中,再加入混合液中,以220转/min的速度搅拌18min混合均匀,再采用超声波进行辅助分散,超声波介质的温度控制在32℃,分散15min,混合溶液中双树脂、固化剂和聚磷酸铵的质量比为10:1:1,上述聚氨酯树脂与环氧树脂按照4:1的体积比组成,固化剂为热固性酚醛树脂和水杨酸按照1:1的体积比组成;

  (2)芳纶纤维板破片约束层固化成型:在0.095MPa负压条件下压入芳纶纤维编织结构的纤维层中进行固化,形成芳纶纤维板,厚度为4.4~4.7mm;

  S3、冷压复合

  采用400目砂纸打磨芳纶纤维板和厚度为5.4~6.0mm的氧化钐/聚氨酯共混弹性体端面,并用丙酮清洗后分别采用自动涂胶机涂覆A型胶黏剂,在室温条件下,在四柱液压机中0.1MPa压力下保压24h,待胶黏剂完全固化后,在厚度为5.8~6.4mm的硬质酸钠改性后的丁基阻尼橡胶表面均匀加工出孔径为2mm、孔间距为8mm的半通孔,常温常压下,用A型胶粘剂将硬质酸钠改性丁基阻尼橡胶层复合在弹性体表面,待胶黏剂完全固化后,通过高压水切切割开孔至指定尺寸。

  本实施制备的收敛型防弹复合材料厚度为15.9mm,面密度为12.53kg/m2,V50为557~565m/s、破片散射角10.7~19.5°,氧指数为42.7%。共振状态下结构损耗因子为0.057~0.062、降噪量为17.9~22.6dB(A)、中子辐射屏蔽系数1.69~1.72。以上数据存在本领域可接受的误差波动范围。

  实施例3

  一种破片收敛型防弹复合材料的制备方法,按如下步骤进行:

  S1、芳纶纤维编织结构制备

  (1)芳纶纤维进行预处理:将芳纶纤维放入质量分数为0.5%的氢氧化钠溶液中,浸泡1.5h后取出,用去离子水清洗至中性,再放入丙酮中,浸泡12h后取出,用去离子水清洗,然后放入去离子水中煮15min,取出后放入烘箱烘干,设定温度110℃,时间20min,取出后放入密封袋中备用。

  (2)浅交联2.5D编织结构:将预处理后的对位芳纶纤维分为相互垂直的经纱与纬纱进行编制,经纱呈弯曲状态、纬纱呈直线状态,经纱沿织物竖直平面和厚度方向上与纬纱交联,在织物竖直平面方向上每2股经纱与纬纱交联一次,在织物厚度方向上每4股经纱与纬纱交联一次,制得编制结构;上述芳纶纤维是含有杂环结构的共聚型对位芳纶,纤维度为1000~1500D,密度1.42~1.44g/cm3,拉伸强度3500~5000MPa,弹性模量115~150GPa,断裂伸长率2.8~3.5%;

  S2、芳纶纤维破片约束层制备

  (1)双树脂体系配置:将聚氨酯树脂与环氧树脂组成的双树脂和固化剂用丙酮溶解形成混合液,将聚磷酸铵溶于去离子水中,再加入混合液中,以210转/min的速度搅拌20min混合均匀,再采用超声波进行辅助分散,超声波介质的温度控制在28℃,分散12min,混合溶液中双树脂、固化剂和聚磷酸铵的质量比为10:1:1;

  (2)芳纶纤维破片约束层固化成型:在0.095MPa负压条件下压入芳纶纤维编织结构的纤维层中进行固化,形成芳纶纤维板,厚度为5.2~5.5mm;

  S3、冷压复合

  采用400目砂纸打磨芳纶纤维板和厚度为7.2~7.4mm的氧化钐/聚氨酯共混弹性体端面,并用丙酮清洗后分别采用自动涂胶机涂覆A型胶黏剂,在室温条件下,在四柱液压机中0.2MPa压力下保压24h,待胶黏剂完全固化后,在厚度为7.0~7.4mm的硬质酸钠改性后的丁基阻尼橡胶表面均匀加工出孔径为2mm、孔间距为8mm的半通孔,常温常压下,用A型胶粘剂将硬质酸钠改性后的丁基阻尼橡胶层复合在弹性体表面,待胶黏剂完全固化后,通过高压水切切割开孔至指定尺寸。

  本实施例制备的收敛型防弹复合材料厚度为19.7mm,面密度为19.5kg/m2,V50为567~584m/s、破片散射角2.6~15.9°,氧指数为44.3%。共振状态下结构损耗因子为0.033~0.039、降噪量为16.4~19.8dB(A)、中子辐射屏蔽系数1.63~1.69,该数据指标存在本领域可接受的误差范围。

《一种破片收敛型防弹复合材料的制备方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)