欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 涂覆钢基体独创技术12040字

涂覆钢基体

2021-03-23 19:07:52

涂覆钢基体

  本发明涉及涂覆有包含具有特定横向尺寸的纳米石墨和粘合剂的涂层的钢基体、用于制造该涂覆钢基体的方法。其特别好地适合于钢铁工业。

  在钢流程生产中,在炼钢步骤之后,以连续铸造铸造钢。由此获得半成品,例如板坯、小型坯或初轧坯。通常,在再加热炉中在高温下将半成品再加热以溶解在连续铸造期间形成的析出物并且以获得可热加工性。然后对其进行去氧化皮和热轧。然而,在再加热步骤期间,半成品可能具有一些问题,例如以氧化皮的形式氧化或者脱碳。

  为了克服这些问题,已知在半成品上沉积涂层,所述涂层允许再加热步骤期间的良好保护。

  对于钢工件(基体)的表面在高温下的氧化和脱碳,以及在热处理、锻造、热轧、辊轧成形加热期间的氧化气氛下的表面氧化脱碳的情况,特别是对于在钢工件在热处理中的高温下容易氧化和脱碳的情况,导致碳原子和碳含量减少,并且表面(基底)显微组织的改变导致硬度降低,耐磨性降低和整体使用寿命短,专利申请CN101696328公开了用于钢件的表面的保护涂层,以防止所述表面在高温下氧化和脱碳,并且以改善硬度和耐磨性,并最终增加钢工件的整体使用寿命。

  在该专利中,涂层具有以下组成:石墨、水玻璃和表面渗透剂,其中石墨与硅酸钠的体积比为1:3至1:7,表面渗透剂占涂层体积的0.05%至0.15%。然而,未提及涂层粘附特性。

  因此,本发明的目的是提供包括再加热期间的保护涂层的钢基体,所述保护涂层良好地粘附在钢上。

  这通过提供根据权利要求1所述的涂覆钢基体实现。涂覆钢基体还可以包括根据权利要求2至7所述的任何特征。

  本发明还涵盖根据权利要求8至18所述的用于制造涂覆钢基体的方法。

  本发明还涵盖根据权利要求19至22所述的用于制造热轧钢产品的方法。

  最后,本发明涵盖根据权利要求23所述的热轧钢产品的用途。

  为了说明本发明,将特别参照以下附图描述非限制性实例的各种实施方案和试验:

  图1示出了根据本发明的涂覆钢基体的实例。

  图2示出了根据本发明的一个纳米石墨片的实例。

  本发明的其他特征和优点将由本发明的以下详细描述变得明显。

  本发明涉及包括包含横向尺寸为1μm至60μm的纳米石墨和粘合剂的涂层的涂覆钢基体,所述粘合剂包含硅酸钠或者所述粘合剂包含硫酸铝和添加剂,所述添加剂为氧化铝,其中按重量百分比计,钢基体具有以下组成:

  0.31%≤C≤1.2%,

  0.1%≤Si≤1.7%,

  0.15%≤Mn≤3.0%,

  P≤0.01%,

  S≤0.1%,

  Cr≤0.5%,

  Ni≤0.5%,

  Mo≤0.1%,

  以及在完全任选的基础上,诸如以下的一种或更多种元素:

  Nb≤0.05%,

  B≤0.003%,

  Ti≤0.06%,

  Cu≤0.1%,

  Co≤0.1%,

  N≤0.01%,

  V≤0.05%,

  所述组成的剩余部分由铁和由加工产生的不可避免的杂质构成。

  不希望受任何理论约束,看起来具有上述特定钢组成的钢基体上的包含横向尺寸为1μm至60μm的纳米石墨和粘合剂的涂层很好地粘附在钢基体上使得钢基体被很好地保护,所述粘合剂包含硅酸钠或者所述粘合剂包含硫酸铝和添加剂,所述添加剂为氧化铝。发明人已发现,不仅钢组成,而且涂层的性质对涂层粘附性起着重要的作用。实际上,如果涂层无法粘附到钢基体上,则存在以下严重的风险:涂层开裂并分离,使钢基体暴露于氧化和/或脱碳等。

  如图1所示,认为在涂层(1)中具有这种特定横向尺寸的纳米石墨片(2)很好地分散在粘合剂(3)中呈曲折路径(4)的形式。因此,避免了诸如氧化和脱碳的问题。最后,认为使用横向尺寸为1μm至60μm的纳米石墨允许包含大量纳米石墨片的团簇,从而导致各纳米石墨颗粒之间的空间更窄。因此,曲折路径更难以穿过,从而允许对钢基体(5)的高保护。

  关于钢的化学组成,优选地,C的量为0.31重量%至1.0重量%。

  优选地,Mn的量为0.15重量%至2.0重量%,更优选为0.15重量%至1.5重量%,并且有利地为0.15重量%至0.7重量%。

  有利地,Cr的量小于或等于0.3重量%。

  优选地,Ni的量小于或等于0.1重量%。

  有利地,Mo的量小于或等于0.1%。

  图2示出了根据本发明的纳米石墨的实例。在该实例中,横向尺寸意指纳米片在X轴上的最大长度,厚度意指纳米片在Z轴上的高度。纳米片的宽度在Y轴上示出。

  优选地,纳米颗粒的横向尺寸为20μm至55μm并且更优选为30μm至55μm。

  优选地,涂层的厚度为10μm至250μm。例如,涂层的厚度为10μm至100μm或100μm至250μm。

  优选地,涂层还包含有机金属化合物。例如,有机金属化合物包括二丙二醇单甲醚(CH3OC3H6OC3H6OH)、1,2-乙二醇(HOCH2CH2OH)和2-乙基己酸锰盐(C8H16MnO2)。实际上,不希望受任何理论约束,认为有机金属化合物允许涂层的快速固化,这避免了高温下的干燥步骤。

  有利地,钢基体为板坯、小型坯或初轧坯。

  本发明还涉及用于制造根据本发明的涂覆钢基体的方法,包括相继的以下步骤:

  A.提供具有上述钢组成的钢基体,

  B.使用水性混合物进行涂层沉积以形成涂层,

  C.任选地,将步骤B)中获得的涂覆钢基体干燥。

  优选地,在步骤B)中,涂层沉积通过旋涂、喷涂、浸涂或刷涂来进行。

  有利地,在步骤B)中,水性混合物包含1g/L至60g/L的纳米石墨和150g/L至250g/L的粘合剂。更优选地,水性混合物包含1g/L至35g/L的纳米石墨。

  优选地,在步骤B)中,其中水性混合物包含纳米石墨,所述纳米石墨包含大于95重量%并且有利地99重量%的C。

  有利地,在步骤B)中,纳米石墨相对于粘合剂的重量比小于或等于0.3。

  优选地,在步骤B)中,水性混合物包含有机金属化合物。更优选地,有机金属化合物的浓度等于或小于0.12重量%。实际上,不希望受任何理论约束,认为该浓度在没有任何固化的情况下或者在室温下固化的情况下允许优化的涂层。

  在一个优选的实施方案中,在步骤C)中干燥涂层。不希望受任何理论约束,认为干燥步骤允许涂层粘附性的改善。实际上,由于水蒸发,因此粘合剂变得更粘且更粘稠,从而导致硬化状态。在一个优选的实施方案中,在步骤C)中,干燥在室温或在50℃至150℃,优选80℃至120℃的温度下进行。

  在另一个优选的实施方案中,不进行干燥步骤。

  优选地,在步骤C)中,当施加干燥时,干燥步骤用热空气来进行。

  有利地,在步骤C)中,当施加干燥时,干燥进行持续5分钟至60分钟,例如15分钟至45分钟。

  本发明还涉及用于制造热轧钢产品的方法,其包括以下相继的步骤:

  I.提供根据本发明的涂覆钢基体,

  II.将涂覆钢基体在再加热炉中在750℃至1300℃的温度下再加热,

  III.对步骤II)中获得的经再加热的涂覆钢板进行去氧化皮,以及

  IV.对经去氧化皮的钢产品进行热轧。

  优选地,在步骤II)中,再加热在750℃至900℃或900℃至1300℃的温度下进行。

  优选地,在步骤III)中,去氧化皮使用压力下的水来进行。例如,水压力为100巴至150巴。在另一个实施方案中,去氧化皮以机械式进行,例如通过对氧化皮层进行刮擦或刷光。

  用根据本发明的方法,与现有技术相比,获得了具有高重量质量的热轧钢产品。

  例如,在热轧之后,可以对热产品进行卷取、冷轧、在退火炉中退火以及也可以对其用金属涂层进行涂覆。

  最后,本发明涉及能够由根据本发明的方法获得的热轧钢产品用于制造机动车辆、轨道、线材或弹簧的部件的用途。

  现在将以仅用于信息性而进行的试验对本发明进行说明。这些试验不是限制性的。

  实施例:

  在实施例中,使用以重量百分比计具有以下钢组成的钢基体:

  试验2铸造成板坯的形式以及试验1和3铸造成方坯的形式。

  实施例1:粘附性测试

  在该测试中,将包含纳米石墨和粘合剂的不同水性混合物沉积在钢2上。将水性混合物喷涂在钢2上。然后,将涂层在100℃下干燥持续30分钟。通过外观检验对水溶液的悬浮体进行评估以及通过光学显微术评估涂层粘附性以检查在厚度上以及另外在覆盖度方面的均匀性。结果在下表1中:

  

  *:根据本发明

  根据本发明的试验1和6具有高稳定性和可喷涂性(即,可以容易喷涂),并且在钢基体上具有高的粘附性。

  实施例2:氧化测试

  对于试验1、3、5和7,通过将实施例1的水性混合物1或6喷涂到钢上对钢2和3进行涂覆。然后,将涂层在100℃下干燥持续30分钟。

  然后,将未经涂覆的钢(试验2、4、6和8)和经涂覆的钢(试验1、3、5和7)在800℃和1000℃下再加热。在再加热之后,对所有试验进行称量。对于每个试验,通过从再加热之前的重量中减去再加热之后的重量来确定Δ重量。然后用下式计算经涂覆的试验的重量增加的百分比:

  

  结果在下表2中:

  

  *:根据本发明。

  根据本发明的试验显示出重量增加的百分比的显著增加。实际上,根据本发明的具有特定钢组成的钢基体在再加热步骤期间受到水性混合物1和6的很好保护。

  实施例3:脱碳测试

  对于试验9、10、12、13、14、15和17,通过将实施例1的水性混合物1喷涂到钢上对钢1或2进行涂覆。然后,任选地,将涂层在室温下或在100℃下干燥持续30分钟。

  然后,将未经涂覆的钢(试验11、16和18)和经涂覆的钢(试验9、10、12、13、14、15和17)在1250℃下再加热。在再加热之后,通过光学显微术(optical microscopy,OM)对试验进行分析。0意指在再加热期间试验表面处几乎不存在脱碳区域(即,几乎没有发生脱碳),1意指在试验的表面处存在许多脱碳区域。

  结果在下表3中:

  

  *:根据本发明。

  对于根据本发明的试验,试验表面处非常少量的碳被除去。相反,对于比较试验,存在许多脱碳区域,从而允许显微组织的变化并因此允许机械特性的变化。实际上,在存在大量碳消耗的区域(即脱碳区域)中形成铁素体而非珠光体。

  实施例4:显微硬度测试

  在这种情况下,在1250℃下再加热之后,将一些试验在水中淬火以形成马氏体,并通过显微硬度测量确定从热钢产品表面至1500μm深度的显微硬度变化。实际上,当形成马氏体时,马氏体的碳含量与显微组织中碳的量成正比。因此,显微硬度越高,碳含量越高。

  结果在下表4中:

  

  *:根据本发明。

  试验12和17的显微硬度清楚地显示,与试验16和18相比,根据本发明的涂覆钢基体的脱碳显著减少。

《涂覆钢基体.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)