欢迎光临小豌豆知识网!
当前位置:首页 > 化学技术 > 高分子化合> 一种钙钛矿量子点光学复合膜及其应用独创技术19612字

一种钙钛矿量子点光学复合膜及其应用

2021-02-08 01:34:32

一种钙钛矿量子点光学复合膜及其应用

  技术领域

  本申请涉及一种钙钛矿量子点光学复合膜及其应用,属于量子点光学膜技术领域

  背景技术

  锰离子掺杂氟化物是一种新型的窄带红色荧光粉,对于锰离子掺杂氟化物,由于2Eg→4A2跃迁是自旋禁阻,发射主要由零声子线和振动相关的Stokes和反Stokes组成,呈现出峰值为630nm左右的窄带发射,在紫外和蓝色区域有宽带吸收,对绿光不吸收。锰离子掺杂氟化物的合成条件相对简便,物料成本较低,直接用溶液法即可得到,其发射的红光发射色纯度高。氮化物荧光粉激光波段宽,具有良好的温度稳定性,能较好地满足高显色的要求。

  钙钛矿量子点具有高量子效率、精确可控的荧光颜色、发光光谱半峰宽窄等特性,还具有良好的溶液加工特性、光/化学稳定性,在液晶背光应用中具有得天独厚的优势。量子点作为背光时,可实现广色域从而提升显示色彩纯度。在显示领域中,使用蓝光LED作为光源,配合绿色量子点和红色量子点,可以得到白色背光源。红色量子点可以吸收比发射波长短的光源,包括绿色量子点的发射光,从而使得红绿复合膜的亮度降低。

  现有的硒化镉量子点黄色光学膜,由于其含有对人体和环境有害的重金属镉元素,因而其应用受到较大的限制。钙钛矿红色量子点由于自身的碘元素存在,其在湿热条件下的稳定性很差。将钙钛矿绿色量子点与红色荧光粉结合,可以避免重金属镉元素的应用,还可实现高亮度和广色域。

  发明内容

  根据本申请的一个方面,提供了一种钙钛矿量子点光学复合膜,该钙钛矿量子点光学复合膜将红色荧光粉和聚合物基体混合,与钙钛矿绿色量子点层结合,结合蓝光LED芯片,使用在显示背光结构中,不含重金属镉元素,还具有亮度高、色域广的优势。

  根据本申请的一方面,提供了一种钙钛矿量子点光学复合膜,所述钙钛矿量子点光学复合膜从上至下依次设置有红色荧光粉层、隔离层、钙钛矿绿色量子点层和阻隔层;

  所述钙钛矿绿色量子点膜包括钙钛矿绿色量子点和聚合物A;所述钙钛矿绿色量子点嵌入所述聚合物A中。

  可选地,所述钙钛矿绿色量子点层的厚度为1~100μm。

  可选地,所述钙钛矿绿色量子点层的厚度上限独立地选自100μm、80μm、60μm、40μm、20μm、10μm、5μm,下限独立地选自1μm、80μm、60μm、40μm、20μm、10μm、5μm。

  可选地,所述钙钛矿绿色量子点的结构式为R1NH3DX3或(R2NH3)2DX4;

  其中,D和X构成配位八面体结构,R1NH3或R2NH3填充在D和X构成的配位八面体间隙中;

  R1为甲基,R2为长链有机分子基团;

  D为金属Ge、Sn、Pb、Cu、Mn、Sb、Bi中的任一种;

  X为Cl、Br、I中的任一种。

  可选地,所述聚合物A选自聚偏氟乙烯、聚醋酸乙烯酯、醋酸纤维素、聚砜、芳香聚酰胺、聚酰亚胺、聚碳酸酯、聚苯乙烯中的任一种。

  可选地,所述红色荧光粉层包括红色荧光粉和基体;

  所述红色荧光粉选自锰离子掺杂氟化物荧光粉、氮化物红色荧光粉中的至少一种;

  所述基体选自UV固化胶、热固化树脂、聚合物B胶液中的至少一种;

  所述UV固化胶和热固化树脂由树脂经过固化反应得到;

  所述聚合物B胶液选自聚偏氟乙烯胶液、聚甲基丙烯酸甲酯胶液、聚苯乙烯胶液、聚碳酸酯胶液中的至少一种。

  可选地,所述UV固化胶和热固化树脂由树脂与固化剂反应制备得到。

  可选地,所述固化剂选自固化剂593、三乙烯四胺、二乙烯三胺、D400聚醚胺中的至少一种。

  可选地,所述树脂选自环氧树脂、有机硅树脂中的至少一种。

  优选地,所述环氧树脂包括环氧树脂E51、酚醛环氧树脂638、脂肪族环氧树脂UVR-6103、环氧化端羟基聚丁二烯中的至少一种;

  所述有机硅树脂选自硅氢苯基硅树脂、甲基苯基硅树脂、乙烯基苯基硅树脂中的至少一种。

  可选地,所述红色荧光粉的粒径为3~30μm。

  可选地,所述红色荧光粉的粒径上限独立地选自30μm、25μm、20μm、15μm、10μm、5μm,下限独立地选自3μm、25μm、20μm、15μm、10μm、5μm。

  可选地,所述红色荧光粉层中红色荧光粉的质量含量为1~80%。

  可选地,所述红色荧光粉层中红色荧光粉的质量含量上限独立地选自80%、70%、60%、50%、40%、30%、20%、10%、5%,下限独立地选自1%、70%、60%、50%、40%、30%、20%、10%、5%。

  可选地,所述红色荧光粉层厚度为10~200μm。

  可选地,所述红色荧光粉层厚度上限独立地选自200μm、180μm、160μm、140μm、120μm、100μm、80μm、60μm、40μm、20μm,下限独立地选自10μm、180μm、160μm、140μm、120μm、100μm、80μm、60μm、40μm、20μm。

  可选地,所述锰离子掺杂氟化物荧光粉选自具有式II-1所示化学式的化合物、具有式II-2所示化学式的化合物、具有式II-3所示化学式的化合物中的至少一种;

  A2MF6:Mn4+式II-1

  BMF6:Mn4+式II-2

  A3ZF6:Mn4+式II-3

  在式II-1和II-3中,A代表锂元素、钠元素、钾元素、铷元素、铯元素中的至少一种;

  在式II-2中,B代表钡元素、锌元素中的至少一种;

  在式II-1和式II-2中,M代表硅元素、锗元素、锡元素、钛元素、锆元素、铪元素、铌元素、钽元素中的至少一种;

  在式II-3中,Z代表铝元素、镓元素、钪元素中的至少一种。

  可选地,所述氮化物红色荧光粉选自具有式III所示化学式的化合物中的至少一种;

  C2Si5N8:Eu2+式III

  在式III中,C代表钙元素、锶元素、钡元素中的至少一种。

  可选地,所述锰离子掺杂氟化物荧光粉选自具有式II-4所示化学式的化合物中的至少一种;

  A2A’ZF6:Mn4+式II-4

  在式II-4中,A代表锂元素、钠元素、钾元素、铷元素、铯元素中的至少一种;

  A’代表锂元素、钠元素、钾元素、铷元素、铯元素中的至少一种;

  其中,A和A’代表不同的元素。

  可选地,本申请中红色荧光粉层制备方法是:将红色荧光粉和基体混合均匀,涂布后得到。

  可选地,本申请中红色荧光粉层的制备方法是:将红色荧光粉、树脂和固化剂混合均匀,涂布后得到。

  可选地,所述涂布的方式选自光辊涂布、网辊涂布、刮刀式涂布中的任一种。

  可选地,本申请中红色荧光粉与基体的质量比例为50:1~1:50。

  具体地,本申请中红色荧光粉层的制备方法是:将红色荧光粉与基体经过机械搅拌,时间为0.1~3h,混合均匀后涂布在使用阻隔膜封装后的钙钛矿绿色量子点膜表面,然后在UV照射和/或60-120℃下成膜。

  可选地,所述阻隔膜的厚度为10~150μm。

  可选地,所述阻隔膜的厚度上限独立地选自150μm、120μm、90μm、60μm、30μm,下限独立地选自10μm、120μm、90μm、60μm、30μm。

  可选地,所述隔离层选自阻隔膜、PET光学膜、PC光学膜中的任一种。

  可选地,所述阻隔膜选自蒸镀型阻隔膜、溅射型阻隔膜、涂布阻隔膜、有机无机杂化阻隔膜、有机多层共挤阻隔膜中的任一种。

  本申请中的钙钛矿绿色量子点膜需要使用阻隔膜封装。

  可选地,所述蒸镀型阻隔膜选自蒸镀氧化铝阻隔膜;所述溅射型阻隔膜选自溅射氧化硅阻隔膜;所述涂布阻隔膜选自PVDC涂布阻隔膜;所述有机多层共挤阻隔膜选自EVOH共挤阻隔膜。

  可选地,所述钙钛矿量子点光学复合膜的雾度为70%-99%。

  可选地,所述钙钛矿量子点光学复合膜的透过率为60%-99%。

  本申请的另一方面,还提供了一种上述钙钛矿量子点光学复合膜在电视、手机、笔记本、iPad、车载显示屏的液晶显示中的应用。

  可选地,在所述红色荧光粉层上还可设置有阻隔膜。对于耐湿热较差的红色荧光粉层,可以采用阻隔膜封装,阻隔膜与荧光粉红膜之间使用压敏胶等胶水贴合。

  可选地,本申请中的钙钛矿量子点光学复合膜的制备采用以下方法制备:将制备得到的钙钛矿绿色量子点膜使用阻隔膜进行封装,然后将红色荧光粉与基体混合,机械搅拌10-60min,将得到的混合液涂布在封装后的钙钛矿绿色量子点膜表面,在60℃下固化,即可得到本申请中钙钛矿量子点光学复合膜。

  本申请中的钙钛矿绿色量子点膜的具体制备方法参见专利CN104861958A中钙钛矿/聚合物复合发光材料的制备方法,本申请中使用的是绿色钙钛矿量子点光学膜,通过控制制备时,无机卤化物盐和有机铵卤盐中溴元素与氯和碘元素的摩尔比为1:(0.001-0.5)即可。

  本申请中的钙钛矿绿色量子点为有机无机杂化量子点,与纯无机钙钛矿量子点相比,可以实现更长的发射波长,具有高亮度、广色域的优点。。

  本申请中的钙钛矿绿色量子点膜采用原位制备的方式生产,与传统的先合成量子点再与聚合物混合的方式相比,具有工艺简单,成本更低、更薄的优势。本申请中的钙钛矿绿色量子点复合膜的厚度更薄,可以应用在手机、iPad等小尺寸产品的背光结构中。

  本申请能产生的有益效果包括:

  (1)本发明将钙钛矿绿色量子点与红色荧光粉结合使用,可以有效提高复合膜的亮度,实现高色域的显示效果;

  (2)量子点光学膜使用在背光结构中,通常是和扩散膜或扩散板等结构复合。锰离子掺杂氟化物荧光粉红膜中的锰离子掺杂氟化物荧光粉为具有一定粒径分布的颗粒,与聚合物基体混合后涂布在光学膜表面,具有一定的雾度,可以不使用扩散膜或者扩散板,有利于降低成本。

  (3)该复合膜中不含有镉元素,减少了对人体和环境的危害。

  附图说明

  图1为钙钛矿量子点光学复合膜结构示意图;

  图2为钙钛矿量子点光学复合膜另一结构示意图;

  图3为实施例1中制备得到的钙钛矿量子点光学复合膜的光谱曲线图;

  图4为实施例6中制备得到的钙钛矿量子点光学复合膜的光谱曲线图。

  具体实施方式

  下面结合实施例详述本申请,但本申请并不局限于这些实施例。

  如无特别说明,本申请的实施例中的原料和溶剂均通过商业途径购买。

  本申请实施例中的光谱采用荧光分光光度计(型号FLS980,EdinburghInstruments)测试。

  本申请实施例中的雾度透过测试采用雾度仪TH-100(杭州彩谱科技有限公司)进行测试。

  本申请实施例中的钙钛矿绿色量子点膜的制备方法参见专利CN104861958A中钙钛矿/聚合物复合发光材料的制备方法。本申请实施例中的钙钛矿绿色量子点膜的封装方法见专利CN201921766799.X一种基于钙钛矿量子点的光学膜。

  本申请实施例中得到的钙钛矿量子点光学复合膜的结构如图1所示,共四层,从上至下依次为:红色荧光粉层、隔离层、钙钛矿绿色量子点层和阻隔层。

  钙钛矿量子点光学复合膜的另一结构如图2所示,共五层,从上至下依次为:阻隔膜、红色荧光粉层、隔离层、钙钛矿绿色量子点层和阻隔层。

  实施例1

  本实施例中的钙钛矿绿色量子点膜中的钙钛矿绿色量子点为甲胺铅溴量子点,聚合物A为聚偏氟乙烯,钙钛矿绿色量子点和聚合物A的质量比为1:100,钙钛矿绿色量子点膜的厚度为5μm。

  将上述钙钛矿绿色量子点膜使用蒸镀氧化铝阻隔膜封装,阻隔膜厚度为30μm。

  使用5gK2SiF6:Mn4+荧光粉(粒径为15μm)与25g环氧树脂E51按照质量比为1:5进行混合,机械搅拌20min后,加入固化剂5935g。然后将得到的混合液涂布在封装后的钙钛矿绿色量子点膜表面,在50℃下固化10min,即可得到新型的钙钛矿量子点光学复合膜A(其中锰离子掺杂氟化物荧光粉红膜的厚度为50μm)。

  实施例2

  本实施例中的钙钛矿绿色量子点膜中的钙钛矿绿色量子点为甲胺铅溴量子点,聚合物A为聚甲基丙烯酸甲酯,钙钛矿绿色量子点和聚合物A的质量比为1:100,钙钛矿绿色量子点膜的厚度为5μm。

  将上述钙钛矿绿色量子点光学膜使用蒸镀氧化铝阻隔膜封装,阻隔膜厚度为30μm。

  使用5gK2SiF6:Mn4+荧光粉(粒径为15μm)与25gPVDF胶液(PVDF胶液为PVDF聚合物溶解在DMF溶剂中,固含量为12%)按照质量比为1:5进行混合,机械搅拌20min。然后将得到的混合液涂布在封装后的钙钛矿绿色量子点膜表面,在80℃下5min可以成膜,即可得到新型的钙钛矿量子点光学复合膜B(其中锰离子掺杂氟化物荧光粉红膜的厚度为60μm)。

  实施例3

  本实施例中的钙钛矿绿色量子点膜中的钙钛矿绿色量子点为甲胺铅溴量子点,聚合物A为聚甲基丙烯酸甲酯,钙钛矿绿色量子点和聚合物A的质量比为1:100,钙钛矿绿色量子点膜的厚度为5μm。

  将上述钙钛矿绿色量子点光学膜使用蒸镀氧化铝阻隔膜封装,阻隔膜厚度为30μm。

  使用5gCsNaGeF6:Mn4+荧光粉(粒径为20μm)与25gPVDF胶液(PVDF胶液为PVDF聚合物溶解在DMF溶剂中,固含量为12%)按照质量比为1:5进行混合,机械搅拌20min。然后将得到的混合液涂布在封装后的钙钛矿绿色量子点膜表面,在80℃下5min可以成膜,然后使用蒸镀氧化铝阻隔膜和压敏胶贴合,即可得到新型的钙钛矿量子点光学复合膜C(其中锰离子掺杂氟化物荧光粉红膜的厚度为50μm)。

  实施例4

  本实施例中的钙钛矿绿色量子点膜中的钙钛矿绿色量子点为甲胺铅溴量子点,聚合物A为聚甲基丙烯酸甲酯,钙钛矿绿色量子点和聚合物A的质量比为1:100,钙钛矿绿色量子点膜的厚度为5μm。

  将上述钙钛矿绿色量子点光学膜使用蒸镀氧化铝阻隔膜封装,阻隔膜厚度为30μm。

  使用5gRb2SnF6:Mn4+荧光粉(粒径为18μm)与25gPVDF胶液(PVDF胶液为PVDF聚合物溶解在DMF溶剂中,固含量为12%)按照质量比为1:5进行混合,机械搅拌20min。然后将得到的混合液涂布在封装后的钙钛矿绿色量子点膜表面,在80℃下5min可以成膜,然后使用蒸镀氧化铝阻隔膜和压敏胶贴合,即可得到新型的钙钛矿量子点光学复合膜D(其中锰离子掺杂氟化物荧光粉红膜的厚度为50μm)。

  实施例5

  本实施例中的钙钛矿绿色量子点膜中的钙钛矿绿色量子点为甲胺铅溴量子点,聚合物A为聚甲基丙烯酸甲酯,钙钛矿绿色量子点和聚合物A的质量比为1:100,钙钛矿绿色量子点膜的厚度为5μm。

  将上述钙钛矿绿色量子点光学膜使用蒸镀氧化铝阻隔膜封装,阻隔膜厚度为30μm。

  使用3gK2SnF6:Mn4+荧光粉(粒径为12μm)与18gPVDF胶液(PVDF胶液为PVDF聚合物溶解在DMF溶剂中,固含量为12%)按照质量比为1:6进行混合,机械搅拌20min。然后将得到的混合液涂布在封装后的钙钛矿绿色量子点膜表面,在80℃下5min可以成膜,即可得到新型的钙钛矿量子点光学复合膜E(其中锰离子掺杂氟化物荧光粉红膜的厚度为55μm)。

  实施例6

  本实施例中的钙钛矿绿色量子点膜中的钙钛矿绿色量子点为甲胺铅溴量子点,聚合物A为聚甲基丙烯酸甲酯,钙钛矿绿色量子点和聚合物A的质量比为1:100,钙钛矿绿色量子点膜的厚度为5μm。

  将上述钙钛矿绿色量子点光学膜使用蒸镀氧化铝阻隔膜封装,阻隔膜厚度为30μm。

  使用1.5g氮化物红色荧光粉Ca2Si5N8:Eu2+(粒径为14μm)与18g环氧E51树脂(固化剂为聚醚胺D400,树脂与固化剂比例为100:11)进行混合,机械搅拌20min。然后将得到的混合液涂布在封装后的钙钛矿绿色量子点膜表面,在80℃下5min可以成膜,即可得到新型的钙钛矿量子点光学复合膜F(其中红色荧光粉层的厚度为40μm)。

  实施例7雾度透过率测试

  对实施例1至实施例6得到的钙钛矿量子点光学复合膜进行雾度测试,测试仪器为雾度仪TH-100,杭州彩谱科技有限公司,以实施例1至实施例3为典型代表,结果如表1所示,从表1可看出,将钙钛矿绿色量子点光学膜与锰离子掺杂氟化物荧光粉红膜复合,复合膜具有较高的雾度,达到97%以上,透过率在70%以上,在背光结构应用时无需与额外的扩散膜复合。

  表1

  实施例8光谱测试

  分别对实施例1至实施例6得到的钙钛矿量子点光学复合膜进行光谱测试,采用荧光分光光度计(型号FLS980,Edinburgh Instruments)测试,以实施例1和实施例6为典型代表,实施例1测试的光谱如图3所示,色坐标为(0.29,0.27),亮度为3500nits,可看出,该复合膜的绿光峰位为527nm,半峰宽为24nm,红光的主峰为630nm,主峰的半峰宽为7nm,该复合膜可以实现较高的亮度和色域显示效果。

  实施例6测试的光谱如图4所示,色坐标为(0.27,0.26),亮度为4600nits,可看出,该复合膜的绿光峰位为528nm,半峰宽为23nm,红光的主峰为630nm,主峰的半峰宽为75nm,该复合膜可以实现较高的亮度和色域显示效果。

  实施例9

  分别对实施例1至实施例6得到的钙钛矿量子点光学复合膜进行色域测试,将其放在背光结构中,以实施例1和实施例6为典型代表,实施例1得到的钙钛矿量子点光学复合膜的NTSC色域面积比为111%,DCI-P3的色域覆盖率为90%,Rec.2020色域覆盖率为82%。因而该复合膜可以实现广色域的显示效果。

  实施例6得到的钙钛矿量子点光学复合膜的NTSC色域面积比为92%,DCI-P3的色域覆盖率为92.1%,Rec.2020色域覆盖率为69%。因而该复合膜可以实现广色域的显示效果。

  以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

《一种钙钛矿量子点光学复合膜及其应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)