欢迎光临小豌豆知识网!
当前位置:首页 > 物理技术 > 摄像光波> 受引导的图案化装置的检查独创技术176699字

受引导的图案化装置的检查

2021-02-08 11:15:56

受引导的图案化装置的检查

  相关申请的交叉引用

  本申请要求于2018年2月23日提交的美国申请62/634,607的优先权,其内容通过整体引用合并于此。

  技术领域

  本公开涉及改善器件制造工艺的性能的技术。该技术可以与光刻设备或量测设备结合使用。

  背景技术

  光刻设备是一种将所期望的图案施加到衬底的目标部分上的机器。光刻设备可以被用于例如集成电路(IC)的制造中。在这种情况下,图案化装置(其也被称为掩模或掩模版)可以被用于生成与IC的单个层相对应的电路图案,并且该图案可以被成像到具有辐射敏感材料(抗蚀剂)层的衬底(例如,硅晶片)的目标部分(例如,包括一个或几个裸片的一部分)上。通常,单个衬底将包含被连续曝光的相邻目标部分的网络。已知的光刻设备包括所谓的步进器,和所谓的扫描器,在该步进器中通过将整个图案一次曝光到目标部分上来辐照每个目标部分,在该扫描器中通过在给定方向(“扫描”方向)上利用光束对图案进行扫描、同时与该方向平行或反平行地同步扫描衬底,来辐照每个目标部分。

  在将电路图案从图案化装置转印到衬底之前,衬底可以经历各种过程,诸如涂底料、抗蚀剂涂覆和软烘烤。在曝光之后,可以对衬底进行其他过程,诸如对所转印的电路图案进行后曝光烘烤(PEB)、显影、硬烘烤和测量/检查。这一系列过程被用作制造器件(例如,IC)的单个层的基础。然后,衬底可以经历各种工艺,诸如蚀刻、离子注入(掺杂)、金属化、氧化、化学机械抛光等,所有这些工艺都旨在完成器件的单个层。如果器件中需要几层,则对每一层重复整个过程或该整个过程的变型。最终,器件将呈现在衬底上的每个目标部分中。然后,通过诸如切割或锯切等技术将这些器件彼此分离,从而可以将单个器件安装在载体上、连接到引脚,等等。

  因此,制造诸如半导体器件等类似的器件通常涉及使用众多制造工艺来处理衬底(例如,半导体晶片)以形成器件的各种特征和多个层。这种层和特征通常使用例如沉积、光刻、蚀刻、化学机械抛光和离子注入来制造和处理。可以在衬底上的多个裸片上制造多个器件,并且然后将其分离成单个器件。该器件制造工艺可以被认为是图案化工艺。图案化工艺涉及用于将图案化装置上的图案转印到衬底上的图案化步骤,诸如使用光刻设备中的图案化装置进行光学和/或纳米压印光刻,并且通常但可选地涉及一个或多个相关的图案处理步骤,诸如通过显影设备进行抗蚀剂显影、使用烘烤工具对衬底进行烘焙,利用蚀刻设备使用图案进行蚀刻,等等。

  发明内容

  根据实施例,提供一种用于图案化装置的检查的方法。该方法包括:获取(i)图案化装置制造工艺的图案化装置设备数据;(ii)基于图案化装置设备数据的图案化装置衬底图;以及(iii)基于图案化装置衬底图的、经预测的与图案化装置相对应的工艺窗口限制的图案位置;以及由硬件计算机系统基于工艺窗口限制的图案位置,将图案化装置检查设备引导到工艺窗口限制的图案位置以进行缺陷检查。

  在实施例中,图案化装置设备数据包括衬底高度图、光束方向、强度和/或焦距。

  在实施例中,图案化装置衬底图通过建模和/或模拟来标识光束方向、高度图、强度和/或焦距对图案化装置图案的贡献。

  在实施例中,经预测的工艺窗口限制的图案位置是通过对图案化装置衬底图的图案保真度分析进行模拟和/或建模来确定的。

  在实施例中,图案保真度分析包括标识图案化装置内的、具有与图案化装置图案有关的相对较高的边缘位置误差的位置。

  在实施例中,引导图案化装置检查设备包括:由硬件计算机系统生成信号以在图案化装置检查设备保持静止的同时,相对于图案化装置检查设备移动图案化装置设备的图案化装置支撑件,以使得能够在与图案化装置相对应的工艺窗口限制的图案位置处进行测量。

  在实施例中,引导图案化装置检查设备包括:由硬件计算机系统生成信号以在图案化装置保持静止的同时,相对于图案化装置移动图案化装置检查设备,以使得能够在与图案化装置相对应的工艺窗口限制的图案位置处进行测量。

  在实施例中,引导图案化装置检查设备还包括:由硬件计算机系统生成信号以调节检查设备的光学系统,从而将照射光束定向到与图案化装置相对应的工艺窗口限制的图案位置。

  此外,根据实施例,提供一种用于图案化装置的检查的方法。该方法包括:获取(i)图案化装置量测数据,该图案化装置量测数据包括图案化装置上的图案的临界尺寸数据、侧壁角度数据和厚度数据,(ii)基于图案化装置量测数据的图案化装置衬底图,以及(iii)基于图案化装置衬底图的、经预测的与图案化装置相对应的工艺窗口限制的图案位置;以及由硬件计算机系统基于工艺窗口限制的图案位置,将图案化装置检查设备引导到工艺窗口限制的图案位置以进行缺陷检查。

  此外,根据实施例,提供一种用于图案化装置的检查的方法。该方法包括:获取(i)图案化装置量测数据,该图案化装置量测数据包括图案化装置上的图案的临界尺寸数据、侧壁角度数据和厚度数据,(ii)基于图案化装置量测数据的图案化装置的图案化装置衬底图,以及(iii)图案化装置的图案化装置缺陷图;由硬件计算机系统基于图案化装置的图案化装置衬底图和图案化装置缺陷图来预测工艺窗口限制的图案位置;以及由硬件计算机系统基于工艺窗口限制的图案位置,将图案化装置检查设备引导到工艺窗口限制的图案位置以进行缺陷检查。

  此外,根据实施例,提供一种用于图案化装置的检查的方法。该方法包括:获取(i)图案化装置量测数据,该图案化装置量测数据包括图案化装置上的图案的临界尺寸数据、侧壁角度数据和厚度数据,(ii)基于图案化装置量测数据的图案化装置的图案化装置衬底图,iii)图案化装置的图案化装置缺陷图,以及(iv)图案化装置的基准图;并且由硬件计算机系统基于基准图与图案化装置衬底图和图案化装置缺陷图的组合图的比较,来确定晶片级别校正。

  在实施例中,组合图在以下之间建立相关性:在图案化装置衬底图中标识的工艺窗口限制的图案位置、与由图案化装置缺陷图标识的缺陷。

  在实施例中,引导图案化装置检查设备包括:由硬件计算机系统生成信号以在图案化装置检查设备保持静止的同时,相对于图案化装置检查设备移动图案化装置设备的图案化装置支撑件,以使得能够在工艺窗口限制的图案位置处进行测量。

  在实施例中,引导图案化装置检查设备包括:由硬件计算机系统生成信号以在图案化装置保持静止的同时,相对于图案化装置移动图案化装置检查设备,以使得能够在工艺窗口限制的图案位置处进行测量。

  在实施例中,该信号还包括调节检查设备的光学系统以将照射光束定向到与图案化装置衬底相对应的工艺窗口限制的图案位置。

  根据实施例,提供一种用于图案化装置的检查的系统。该系统包括:用于制造图案化装置的图案化装置设备;图案化装置检查设备,被配置为与图案化装置设备进行通信;处理器,被配置为:获取(i)图案化装置设备数据,(ii)基于图案化装置设备数据的图案化装置衬底图,以及(iii)基于图案化装置衬底图的、经预测的与图案化装置相对应的工艺窗口限制的图案位置;以及基于工艺窗口限制的图案位置,将图案化装置检查设备引导到工艺窗口限制的图案位置以进行缺陷检查。

  在实施例中,经预测的工艺窗口限制的图案位置是通过对图案化装置衬底图的图案保真度分析进行模拟和/或建模来确定的。

  在实施例中,图案保真度分析包括标识图案化装置内具有与图案化装置图案有关的相对较高的边缘位置误差的位置。

  在实施例中,处理器还被配置为生成信号以在图案化装置检查设备保持静止的同时相对于图案化装置检查设备移动图案化装置设备的图案化装置支撑件,以使得能够在与图案化装置相对应的工艺窗口限制的图案位置处进行测量。

  在实施例中,处理器还被配置为:生成信号以在图案化装置保持静止的同时,相对于图案化装置移动图案化装置检查设备,以使得能够在与图案化装置相对应的工艺窗口限制的图案位置处进行测量。

  在实施例中,处理器还被配置为:生成信号以调节检查设备的光学系统,从而将照射光束定向到与图案化装置相对应的工艺窗口限制的图案位置。

  在实施例中,图案化装置设备数据包括衬底高度图、光束方向、强度或焦距。

  在实施例中,图案化装置衬底图通过建模和/或模拟来标识光束方向、高度图、强度和/或焦距对图案化装置图案的贡献。

  附图说明

  图1示意性地描绘了根据实施例的光刻设备。

  图2示意性地描绘了光刻单元或簇的实施例。

  图3示意性地描绘了示例检查设备和量测技术。

  图4示意性地描绘了示例检查设备。

  图5图示了检查设备的照射点与量测目标之间的关系。

  图6示意性地描绘了基于测量数据而派生多个感兴趣变量的过程。

  图7示出了处理变量的示例类别。

  图8示意性地示出了可能对量测数据有贡献的处理变量的变化。

  图9示意性地示出了派生对处理变量的组合贡献的示例。

  图10示意性地示出了从量测数据中派生对处理变量的贡献的示例。

  图11示意性地示出了根据实施例的方法的流程。

  图12示意性地示出了根据实施例的方法的流程。

  图13示意性地示出了根据实施例的方法的流程。

  图14示意性地示出了根据实施例的方法的流程。

  图15示意性地示出了根据实施例的用于使用图案化装置工具数据来进行受引导的图案化装置检查的方法的流程。

  图16示意性地示出了根据实施例的用于使用图案化装置相关数据来进行受引导的图案化装置检查的方法的流程。

  图17示意性地示出了根据实施例的用于使用图案化装置相关数据来进行受引导的图案化装置检查的方法的流程。

  图18A示意性地示出了根据实施例的用于使用图案化装置相关数据进行受引导的图案化装置检查的方法的流程。

  图18B是根据实施例的在图16、17和18A的方法中使用的示例数据。

  图19是示例计算机系统的框图。

  具体实施方式

  在详细描述实施例之前,介绍可以在其中实现实施例的示例环境是有益的。

  图1示意性地描绘了光刻设备LA的实施例。该装置包括:

  -照射系统(照射器)IL,被配置为调节辐射束B(例如,UV辐

  射或DUV辐射);

  -支撑结构(例如,掩模台)MT,被构造为支撑图案化装置(例如,掩模)MA并且连接到第一定位器PM,该第一定位器PM被配置为根据某些参数准确地定位图案化装置;

  -衬底台(例如,晶片台)WT(例如,WTa、WTb或两者),被构造为保持衬底(例如,涂覆有抗蚀剂的晶片)W并且连接到第二定位器PW,该第二定位器PW被配置为根据某些参数准确地定位衬底;以及

  -投影系统(例如,折射投影透镜系统)PS,被配置为:将由图案化装置MA赋予到辐射束B的图案投影到衬底W的目标部分C(例如,包括一个或多个裸片,并且通常被称为场)上,投影系统被支撑在参考框架(RF)上。

  如这里描绘的,该设备是透射型的(例如,采用透射掩模)。备选地,该设备可以是反射型的(例如,采用上述类型的可编程反射镜阵列,或者采用反射掩模)。

  照射器IL从辐射源SO接收辐射束。例如,当光源是准分子激光器时,光源和光刻设备可以是分开的实体。在这种情况下,不认为光源形成光刻设备的一部分,并且借助于包括例如合适的定向镜和/或扩束器的光束传输系统BD,将辐射束从光源SO传递到照射器IL。在其他情况下,例如当光源是水银灯时,光源可以是该设备的组成部分。光源SO和照射器IL、以及光束传输系统BD(如果需要的话)可以一起被称为辐射系统。

  照射器IL可以改变光束的强度分布。照射器可以布置为限制辐射束的径向范围,使得在照射器IL的光瞳平面中的环形区域内强度分布不为零。附加地或备选地,照射器IL可以可操作为限制光束在光瞳平面中的分布,使得在光瞳平面中的多个相等间隔的扇形中强度分布不为零。辐射束在照射器IL的光瞳平面中的强度分布可以被称为照射模式。

  因此,照射器IL可以包括被配置为调节光束的(角度/空间)强度分布的调节器AM。通常,强度分布在照射器的光瞳平面中的至少外部和/或内部的径向范围(通常分别被称为外部σ和内部σ)可以被调节。照射器IL可以可操作为改变光束的角度分布。例如,照射器可以可操作为改变光瞳平面中强度分布不为零的扇形的数目和角度范围。通过调节光束在照射器的光瞳平面中的强度分布,可以实现不同的照射模式。例如,通过限制强度分布在照射器IL的光瞳平面中的径向和角度范围,强度分布可以具有多极分布,诸如偶极、四极或六极分布。可以例如通过将提供照射模式的光学器件插入照射器IL中或者使用空间光调制器来获取期望的照射模式。

  照射器IL可以可操作为改变光束的偏振,并且可以可操作为使用调节器AM来调节偏振。辐射束跨照射器IL的整个光瞳平面的偏振状态可以被称为偏振模式。不同偏振模式的使用可以允许在衬底W上所形成的图像中获取更大的对比度。辐射束可以是非偏振的。备选地,照射器可以布置为使辐射束线性偏振。辐射束的偏振方向可以跨照射器IL的整个光瞳平面变化。在照射器IL的光瞳平面中的不同区域辐射的偏振方向可以不同。辐射的偏振状态可以根据照射模式来选择。对于多极照射模式,辐射束的每个极的偏振通常可以垂直于该极在照射器IL的光瞳平面中的位置向量。例如,对于偶极照射模式,可以在基本上垂直于将偶极的两个相对扇形二等分的线的方向上将辐射线性偏振。可以在两个不同的正交方向中的一个方向上将辐射束偏振,这可以被称为X偏振态和Y偏振态。对于四极照射模式,可以在基本上垂直于将该扇形二等分的线的方向上,将每个极的扇形中的辐射线性偏振。该偏振模式可以被称为XY偏振。类似地,对于六极照射模式,可以在基本上垂直于将该扇形二等分的线的方向上,将每个极的扇形中的辐射线性偏振。该偏振模式可以被称为TE偏振。

  此外,照射器IL通常包括各种其他组件,诸如积分器IN和聚光镜CO。照射系统可以包括用于定向、整形或控制辐射的各种类型的光学组件,诸如折射、反射、磁性、电磁、静电或其他类型的光学组件或其任何组合。

  因此,照射器提供经调节的辐射束B,该辐射束B在其横截面中具有期望的均匀性和强度分布。

  支撑结构MT以取决于图案化装置的定向、光刻设备的设计和其他条件(诸如例如,图案化装置是否被保持在真空环境中)的方式来支撑图案化装置。支撑结构可以使用机械、真空、静电或其他夹紧技术来保持图案化装置。支撑结构可以是例如框架或台,其可以根据需要是固定的或是可移动的。支撑结构可以确保图案化装置例如相对于投影系统处于期望位置。本文中对术语“掩模版”或“掩模”的任何使用可以被认为与更通用的术语“图案化装置”同义。

  本文中使用的术语“图案化装置”应当被广义地解释为指代可以被用于在衬底的目标部分中施加图案的任何装置。在实施例中,图案化装置是可以被用于向辐射束的横截面赋予图案以在衬底的目标部分中产生图案的任何装置。应当注意,例如,如果图案包括相移特征或所谓的辅助特征,则被赋予辐射束的图案可能不完全对应于衬底的目标部分中的期望图案。通常,被赋予辐射束的图案将对应于器件中的特定功能层,该特定功能层在诸如集成电路等的目标部分中产生。

  图案化装置可以是透射的或反射的。图案化装置的示例包括掩模、可编程反射镜阵列和可编程LCD面板。掩模在光刻中是众所周知的,并且包括诸如二元型、交替相移型和衰减相移型等掩模类型、以及各种混合的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,每个小反射镜可以被单个地倾斜,以便在不同方向上反射入射的辐射束。倾斜的反射镜将图案赋予在辐射束中,该辐射束被反射镜矩阵反射。

  本文中使用的术语“投影系统”应当被广义地解释为涵盖任何类型的投影系统,包括折射、反射、反射折射、磁性、电磁和静电的光学系统、或其任何组合,以适合于所使用的曝光辐射,或者适合于其他因素,诸如浸没液体的使用或真空的使用。本文中对术语“投影透镜”的任何使用可以被认为与更通用的术语“投影系统”同义。

  投影系统PS具有可能不均匀的光学传递函数,这会影响成像在衬底W上的图案。对于非偏振辐射,可以通过两个标量图很好地描述这种影响,这两个标量图将从投影系统PS射出的辐射的透射(变迹)和相对相位(像差)描述为其光瞳平面中的位置的函数。这些标量图(其可以被称为透射图和相对相位图)可以被表示为完整的基函数的集合的线性组合。一个特别方便的集合是Zernike多项式,它形成在单位圆上定义的正交多项式的集合。每个标量图的确定可以涉及确定这种扩展中的系数。由于Zernike多项式在单位圆上正交,因此Zernike系数可以通过以下方式来确定:利用每个Zernike多项式依次计算所测量的标量图的内积并且将其除以该Zernike多项式的范数的平方。

  透射图和相对相位图取决于场和系统。即,通常,每个投影系统PS将具有针对每个场点(即,对于在其图像平面中的每个空间位置)而不同的Zernike展开。投影系统PS在其光瞳平面中的相对相位可以通过以下方式来确定:例如将辐射从投影系统PS的物平面(即,图案化装置MA的平面)中的点状源投影,通过投影系统PS并且使用剪切干涉仪测量波前(即,具有相同相位的点的轨迹)。剪切干涉仪是公共路径干涉仪,并且因此,有利地,不需要次级的参考光束来测量波前。剪切干涉仪可以包括在投影系统(即,衬底台WT)的图像平面中的衍射光栅(例如,二维栅格)、以及布置为检测与投影系统PS的光瞳平面共轭的平面中的干涉图案的检测器。在剪切方向上,干涉图案与辐射的相位相对于光瞳平面中的坐标的导数有关。检测器可以包括感测元件(诸如例如,电荷耦合器件(CCD))的阵列。

  光刻设备的投影系统PS可能不会产生可见的条纹,并且因此波前确定的准确性可以使用诸如例如移动衍射光栅等相位步进技术来增强。可以在衍射光栅的平面中并且在垂直于测量的扫描方向的方向上执行步进。步进范围可以是一个光栅周期,并且可以使用至少三个(均匀分布)相位步进。因此,例如,可以在y方向上执行三个扫描测量,对于x方向上的不同位置执行每个扫描测量。衍射光栅的这种步进将相位变化有效地转换为强度变化,从而允许确定相位信息。光栅可以在垂直于衍射光栅的方向(z方向)上进行步进以校准检测器。

  可以在两个垂直方向上顺序地扫描衍射光栅,该两个垂直方向可以与投影系统PS的坐标系的轴(x和y)一致,或者可以与这些轴成诸如45度等角度。可以在整数个光栅周期内执行扫描,例如在一个光栅周期内。扫描可以对一个方向上的相位变化求平均,从而使另一方向上的相位变化重构。这允许根据两个方向来确定波前。

  投影系统PS在其光瞳平面中的透射(变迹)可以通过以下方式来确定:例如将辐射从投影系统PS的物平面(即,图案化装置MA的平面)中的点状源投影,通过投影系统PS并且使用检测器测量与投影系统PS的光瞳平面共轭的平面中的辐射强度。可以使用与被用于测量波前的检测器相同的检测器来确定像差。

  投影系统PS可以包括多个光学(例如,透镜)元件,并且还可以包括被配置为调节一个或多个光学元件以校正像差(跨整个场的光瞳平面的相位变化)的调节机构AM。为了实现这一点,调节机构可以可操作为以一种或多种不同方式来操纵投影系统PS内的一个或多个光学元件(例如,透镜)。投影系统可以具有坐标系,其中其光轴在z方向上延伸。调节机构可以可操作为进行以下各项的任何组合:移动一个或多个光学元件;倾斜一个或多个光学元件;和/或使一个或多个光学元件变形。光学元件的位移可以是在任何方向上(x、y、z或其组合)。光学元件的倾斜通常是通过在x和/或y方向上绕轴旋转而位于垂直于光轴的平面外,尽管绕z轴的旋转可以被用于非旋转对称的非球面光学元件。光学元件的变形可以包括低频形状(例如,像散)和/或高频形状(例如,自由形式的非球面)。光学元件的变形例如可以通过以下方式来进行:使用一个或多个致动器在光学元件的一个或多个侧面上施加力、和/或通过使用一个或多个加热元件来加热光学元件的一个或多个选定区域。通常,可能无法调节投影系统PS以变迹(跨光瞳平面的透射变化)进行校正。当设计用于光刻设备LA的图案化装置(例如,掩模)MA时,可以使用投影系统PS的透射图。使用计算光刻技术,可以将图案化装置MA设计为至少部分地针对变迹进行校正。

  光刻设备可以是具有两个(双级)或多个台(例如,两个或多个衬底台WTa、WTb、两个或多个图案化装置台、衬底台WTa和在没有专用于例如便于测量和/或清洁等衬底的情况下,在投影系统下方的工作台WTb)的类型。在这种“多级”机器中,可以并行使用附加工作台,或者可以在一个或多个工作台上执行准备步骤的同时,使用一个或多个其他工作台进行曝光。例如,可以进行使用对准传感器AS进行对准测量和/或使用水平传感器LS进行水平(高度、倾斜等)测量。

  光刻设备也可以是如下类型:其中衬底的至少一部分可以被具有相对较高折射率的液体(例如,水)覆盖度,以至于填充投影系统与衬底之间的空间。也可以将浸没液体施加到光刻设备中的其他空间,例如在图案化装置与投影系统之间。浸没技术在本领域中是众所周知的,其用于增加投影系统的数值孔径。如本文中使用的术语“浸没”并不意味着诸如衬底等结构必须被淹没在液体中,而是仅意味着在曝光期间液体位于投影系统与衬底之间。

  因此,在光刻设备的操作中,由照射系统IL调节并且提供辐射束。辐射束B入射在被保持在支撑结构(例如,掩模台)MT上的图案化装置(例如,掩模)MA上,并且由图案化装置进行图案化。在穿过图案化装置MA之后,辐射束B经过投影系统PS,该投影系统PS将光束聚焦到衬底W的目标部分C上。借助于第二定位器PW和位置传感器IF(例如,干涉仪、线性编码器、二维编码器或电容传感器),可以准确地移动衬底台WT,例如,以便在辐射束B的路径中定位不同的目标部分C。类似地,第一定位器PM和另一位置传感器(其未在图1中明确示出)可以被用于相对于辐射束B的路径准确地定位图案化装置MA,例如在从掩模库中进行机械检索之后或者在扫描期间。通常,支撑结构MT的移动可以借助于形成第一定位器PM的一部分的长行程模块(粗略定位)和短行程模块(精细定位)来实现。类似地,衬底台WT的移动可以使用形成第二定位器PW的一部分的长行程模块和短行程模块来实现。在步进器(与扫描器相反)的情况下,支撑结构MT可以仅连接到短行程致动器,或者可以是固定的。可以使用图案化装置对准标记M1、M2和衬底对准标记P1、P2来对准图案化装置MA和衬底W。尽管所示出的衬底对准标记占据专用的目标部分,但是它们可以位于目标部分之间的空间中(这些被称为划道对准标记)。类似地,在图案化装置MA上提供有多于一个裸片的情况下,图案化装置对准标记可以位于裸片之间。

  所描绘的装置可以被用于以下模式中的至少一种模式:

  1.在步进模式下,支撑结构MT和衬底台WT基本上保持静止,同时将被赋予到辐射束的整个图案一次投影到目标部分C上(即,单次静态曝光)。然后,衬底台WT在X和/或Y方向上移动,使得不同的目标部分C可以被曝光。在步进模式下,曝光场的最大尺寸限制了在单次静态曝光中所成像的目标部分C的尺寸。

  2.在扫描模式下,同步地扫描支撑结构MT和衬底台WT,同时将被赋予到辐射束的图案投影到目标部分C上(即,单次动态曝光)。衬底台WT相对于支撑结构MT的速度和方向可以通过投影系统PS的(缩小)放大率和图像反转特性来确定。在扫描模式下,曝光场的最大尺寸限制了单次动态曝光中目标部分的宽度(在非扫描方向上),而扫描运动的长度决定了目标部分的高度(在扫描方向上)。

  3.在另一模式下,支撑结构MT保持基本静止以保持可编程图案化装置,并且移动或扫描衬底台WT,同时将被赋予到辐射束的图案投影到目标部分C上。在这种模式下,在衬底台WT的每次移动之后或者在扫描期间的连续辐射脉冲之间,通常采用脉冲辐射源并且根据需要来更新可编程图案化装置。这种操作模式可以容易地应用于利用可编程图案化装置的无掩模光刻,诸如上述类型的可编程反射镜阵列。

  也可以采用上述使用模式的组合和/或变型、或完全不同的使用模式。

  尽管在本文中可以具体参考光刻设备在IC的制造中的使用,但是应当理解,本文中描述的光刻设备可以具有其他应用,诸如集成光学系统、用于磁畴存储器的引导和检测图案、液晶显示器(LCD)、薄膜磁头等的制造。本领域技术人员将理解,在这种备选应用的上下文中,本文中对术语“晶片”或“裸片”的任何使用可以分别被认为是与更通用的术语“衬底”或“目标部分”的同义词。本文中指代的衬底可以在曝光之前或之后例如在轨道(通常将抗蚀剂层施加到衬底上并且显影曝光的抗蚀剂的工具)或量测或检查工具中进行处理。在适用的情况下,本文中的公开内容可以应用于这种和其他衬底处理工具。此外,例如可以为了制造多层IC而对衬底进行不止一次的处理,因此本文中使用的术语“衬底”也可以指代已包含多个处理过的层的衬底。

  本文中使用的术语“辐射”和“光束”涵盖所有类型的电磁辐射,包括紫外线(UV)辐射(例如,波长为365、248、193、157或126nm)和极紫外线(EUV)辐射(例如,波长在5-20nm的范围内)以及粒子束(诸如离子束或电子束)。

  在图案化装置上或由图案化装置提供的各种图案可以具有不同的工艺窗口。例如,将在规范内产生在处理变量空间下的图案。与潜在的系统缺陷有关的图案规范的示例包括针对颈缩、线拉回、线细化、CD、边缘位置、交叠、抗蚀剂顶部损失、抗蚀剂底切和/或桥接的检查。可以通过合并(例如,交叠)每个单个图案的工艺窗口来获取图案化装置或其区域上的所有图案的工艺窗口。所有图案的工艺窗口的边界包含某些单个图案的工艺窗口的边界。换言之,这些单个图案限制了所有图案的工艺窗口。这些图案可以被称为“热斑”或“工艺窗口限制图案(PWLP)”,这两者可以在本文中互换使用。当控制图案化工艺的一部分时,专注于热斑是可能且经济的。当热斑没有缺陷时,最有可能的是,所有图案都没有缺陷。

  如图2所示,光刻设备LA可以形成光刻单元LC的一部分,有时也称为光刻单元或簇,其还包括用于在衬底上执行前曝光和后曝光工艺的装置。通常,这些包括用于沉积一个或多个抗蚀剂层的一个或多个旋涂器SC、用于显影曝光后的抗蚀剂的一个或多个显影剂DE、一个或多个激冷板CH和/或一个或多个烘烤板BK。衬底处理机或机械手RO从输入/输出端口I/O1、I/O2拾取一个或多个衬底,在不同的处理装置之间移动它们,并且将它们传送到光刻设备的进料台LB。这些装置(通常被统称为轨道)受轨道控制单元TCU的控制,轨道控制单元TCU本身由监督控制系统SCS控制,监督系统SCS也经由光刻控制单元LACU来控制光刻设备。因此,可以操作不同的装置以使生产量和处理效率最大化。

  为了正确且一致地曝光被光刻设备曝光的衬底和/或为了监测包括至少一个图案转印步骤(例如,光刻步骤)的图案化工艺(例如,器件制造工艺)的一部分,期望检查衬底或其他物体以测量或确定一个或多个性质,诸如对准、覆盖度(例如,其可以是在覆盖度层中的结构之间,或者是在同一层中的结构之间,例如通过双重图案化工艺而单独地提供给该同一层)、线宽、临界尺寸(CD)、离焦偏置、材料性质等。因此,光刻机LC位于其中的制造设施通常也包括量测系统MET,该量测系统MET测量已在光刻单元或光刻单元中的其他物体中被处理过的一些或全部衬底W。量测系统MET可以是光刻机LC的一部分,例如它可以是光刻设备LA(诸如对准传感器AS)的一部分。

  例如,一个或多个所测量的参数可以包括:在图案化衬底内或图案化衬底上形成的连续层之间的覆盖度、例如在图案化衬底内或图案化衬底上形成的特征的临界尺寸(CD)(例如,临界线宽)、光学光刻步骤的焦距或焦距误差、光学光刻步骤的剂量或剂量误差、光学光刻步骤的光学像差等。该测量可以在产品衬底本身的目标上和/或在衬底上所提供的专用量测目标上执行。该测量可以在抗蚀剂的显影之后但在蚀刻之前执行,或者可以在蚀刻之后执行。

  有多种技术用于测量在图案化工艺中形成的结构,包括使用扫描电子显微镜、基于图像的量测工具和/或各种专用工具。如上所述,一种快速且非侵入形式的专业量测工具是如下工具:其中将辐射束定向到衬底表面上的目标上,并且测量散射(衍射/反射)光束的性质。通过评估由衬底散射的辐射的一种或多种性质,可以确定衬底的一种或多种性质。这可以被称为基于衍射的量测。该基于衍射的量测的一个这种应用是对目标内的特征不对称性的测量。例如,这可以被用作覆盖度的度量,但是其他应用也是已知的。例如,不对称性可以通过比较衍射光谱的相对部分(例如,比较周期性光栅的衍射光谱中的-1阶和+1阶)来测量。这可以通过以上所述的并且例如在美国专利申请公开US 2006-066855中所描述的内容进行,该申请通过整体引用并入本文。基于衍射的量测的另一应用是对目标内的特征宽度(CD)的测量。这种技术可以使用下文中描述的设备和方法。

  因此,在器件制造工艺(例如,图案化工艺或光刻工艺)中,可以在该工艺期间或之后对衬底或其他物体进行各种类型的测量。该测量可以确定特定衬底是否有缺陷,可以对该工艺和在该工艺中使用的设备进行调节(例如,将衬底上的两层对准或者将图案化装置对准衬底),可以测量工艺和设备的性能,或者可以用于其他目的。测量的示例包括光学成像(例如,光学显微镜)、非成像的光学测量(例如,基于衍射的测量,诸如ASML YieldStar量测工具、ASML SMASH量测系统)、机械测量(例如,使用触笔进行轮廓线分析、原子力显微镜(AFM)和/或非光学成像(例如,扫描电子显微镜(SEM))。如美国专利No.6,961,116(其全部内容通过引用并入本文)所描述的SMASH(SMart对准传感器混合)系统采用自参考干涉仪,该干涉仪产生对准标记的两个交叠且相对旋转的图像,检测图像的傅立叶变换会产生干涉的光瞳平面中的强度,并且从表现为干涉级的强度变化的两个图像的衍射级之间的相位差中提取位置信息。

  可以直接或间接地将量测结果提供给监督控制系统SCS。如果检测到误差,则可以对后续衬底的曝光进行调节(尤其是在可以尽快且足够快地进行检查使得批次中的一个或多个其他衬底仍然要曝光的情况下),和/或对被曝光的衬底的后续曝光进行调节。而且,可以剥离和再加工已被曝光的衬底以提高产率,或者将其丢弃,从而避免对已知有缺陷的衬底执行进一步处理。在衬底的仅一些目标部分有缺陷的情况下,可以仅对良好的目标部分执行进一步的曝光。

  在量测系统MET内,量测设备被用于确定衬底的一个或多个性质,尤其是确定不同衬底的一个或多个性质如何变化或者同一衬底的不同层之间如何变化。如上所述,量测设备可以被集成到光刻设备LA或光刻单元LC中,或者可以是独立设备。

  为了实现量测,可以在衬底上设置一个或多个目标。在实施例中,目标被特别地设计并且可以包括周期性结构。在实施例中,目标是装置图案的一部分,例如装置图案的周期性结构。在实施例中,装置图案是存储器件的周期性结构(例如,双极晶体管(BPT)、位线接触(BLC)等结构)。

  在实施例中,衬底上的目标可以包括一个或多个一维周期性结构(例如,光栅),该结构被印刷使得在显影之后,周期性结构特征由固体抗蚀剂线形成。在实施例中,目标可以包括一个或多个二维周期性结构(例如,光栅),该结构被印刷使得在显影之后,一个或多个周期性结构由抗蚀剂中的固体抗蚀剂柱或过孔形成。备选地,可以将条、柱或过孔蚀刻到衬底中(例如,蚀刻到衬底上的一层或多层中)。

  在实施例中,图案化工艺的感兴趣参数之一是覆盖度。可以使用暗场散射法来测量覆盖度,在暗场散射法中,零阶衍射(对应于镜面反射)被阻挡,仅更高阶被处理。暗场量测的示例可以在PCT专利申请公开No.WO 2009/078708和WO 2009/106279(其全部内容通过引用合并于此)中找到。在美国专利申请公开US2011-0027704、US2011-0043791和US2012-0242970(其全部内容通过引用合并于此)中描述了该技术的进一步发展。使用对衍射级的暗场检测的基于衍射的覆盖度使得能够在较小的目标上进行覆盖度测量。这些目标可以小于照射点,并且可以被衬底上的器件产品结构围绕。在实施例中,可以在一个辐射捕获中测量多个目标。

  图3描绘了示例检查设备(例如,散射仪)。它包括将辐射投影到衬底W上的宽带(白光)辐射投影仪2。重定向的辐射被传递到光谱仪检测器4,光谱仪检测器4测量镜面反射辐射的光谱10(强度根据波长而变化),如例如在图表中的左下方所示。根据该数据,可以由处理器PU重构产生检测到的光谱的结构或轮廓线,例如通过严格耦合波分析和非线性回归,或者通过与模拟光谱库进行比较,如图3的右下方所示。通常,对于重构,结构的一般形式是已知的,并且根据制造结构的工艺的知识中假定一些变量,仅剩下一些结构变量根据所测量的数据待被确定。这种检查设备可以被配置为正入射检查设备或倾斜入射检查设备。

  图4中示出了可以使用的另一检查设备。在该设备中,使用透镜系统12对由辐射源2发射的辐射进行准直并且透射通过干涉滤光片13和偏振器17,被部分反射表面16反射,并且经由物镜15被聚焦到衬底W上的光斑S中,该物镜15具有高数值孔径(NA),期望为至少0.9或至少0.95。浸没检查设备(使用相对较高折射率的流体,诸如水)甚至可以具有大于1的数值孔径。

  如在光刻设备LA中,可以提供一个或多个衬底台以在测量操作期间保持衬底W。衬底台的形式可以与图1的衬底台WT相似或相同。在检查设备与光刻设备集成的示例中,它们甚至可以是相同的衬底台。粗略定位器和精细定位器可以被提供给第二定位器PW,第二定位器PW被配置为相对于测量光学系统准确地定位衬底。例如,提供各种传感器和致动器以获取感兴趣目标的位置并且将其放置在物镜15下方。通常,将对在跨衬底W的不同位置处的目标进行很多测量。衬底支撑件可以在X和Y方向上移动以获取不同的目标,并且可以在Z方向上移动以获取目标相对于光学系统的焦距的期望位置。例如,当光学系统在实践中可以保持基本静止(通常在X和Y方向上,但是也许也可以在Z方向上)并且只有衬底移动时,就可以如同将物镜带到相对于衬底的不同位置一样方便地进行思考和描述操作。如果衬底和光学系统的相对位置正确,则原则上以下都是无关紧要的:无论在现实世界中哪个移动,或者两者都在移动,或者以下组合:光学系统的一部分正在移动(例如,在Z和/或倾斜方向上)而光学系统的其余部分保持静止并且衬底正在移动(例如,在X和Y方向上,但是也可以在Z和/或倾斜方向上)。

  然后,由衬底W重定向的辐射穿过部分反射表面16进入检测器18以便检测光谱。检测器18可以位于背投影的焦平面11处(即,在透镜系统15的焦距处),或者平面11可以利用辅助光学器件(未示出)被重新成像到检测器18上。检测器可以是二维检测器,从而可以测量衬底目标30的二维角散射光谱。检测器18可以是例如CCD或CMOS传感器的阵列,并且可以使用例如每帧40毫秒的积分时间。

  例如,参考光束可以被用于测量入射辐射的强度。为此,当辐射束入射在部分反射表面16上时,辐射束的一部分透过部分反射表面16作为参考光束朝向参考反射镜14。然后,参考光束被投影到相同检测器18的不同部分上,或者备选地被投影到不同检测器(未示出)上。

  一个或多个干涉滤光片13可用于选择例如在405-790nm或甚至更低(诸如200-300nm)范围内的感兴趣波长。干涉滤光片可以是可调的,而不包括不同滤光片的集合。可以使用光栅代替干涉滤光片。可以在照射路径中提供孔径光阑或空间光调制器(未示出),以控制辐射在目标上的入射角范围。

  检测器18可以测量被重定向的辐射在单个波长(或窄波长范围)处的强度、在多个波长处的单独强度、或整个波长范围上的积分强度。此外,检测器可以分别测量横向磁极化辐射和横向电极化辐射的强度和/或横向磁极化辐射与横向电极化辐射之间的相位差。

  衬底W上的标目标30可以是一维光栅,该一维光栅被印刷使得在显影之后,光栅由固态抗蚀剂线形成。目标30可以是二维光栅,该二维光栅被印刷使得在显影之后,光栅由抗蚀剂中的固体抗蚀剂柱或过孔形成。可以将条、柱或过孔蚀刻到衬底中或衬底上(例如,到衬底上的一层或多层中)。图案(例如,条、柱或过孔)对于图案化工艺中的处理的变化(例如,光刻投影设备(特别是投影系统PS)中的光学像差、焦距变化、剂量变化等)敏感,并且将表现为印刷光栅的变化。因此,所测量的印刷光栅的数据被用于重构光栅。一维光栅的一个或多个参数(诸如线宽和/或形状)或二维光栅的一个或多个参数(诸如柱或过孔宽度或长度或形状)可以被输入到重构工艺中,该重构工艺由处理器PU根据印刷步骤和/或其他检查工艺的知识来执行。

  除了通过重构来测量参数,角度分辨散射法还可以用于测量产品和/或抗蚀剂图案中的特征的不对称性。不对称性测量的一种特殊应用是用于覆盖度的测量,其中目标30包括叠加在另一组周期性特征上的一组周期性特征。例如,使用图3或图4的仪器进行的不对称性测量的概念在美国专利申请公开US2006-066855(全部内容合并于此)中所描述。简而言之,虽然仅通过目标的周期性来确定目标的衍射光谱中的衍射级的位置,但是衍射光谱中的不对称性表示构成目标的单个特征中的不对称性。在图4的仪器中,其中检测器18可以是图像传感器,衍射级中的这种不对称性直接呈现为由检测器18记录的光瞳图像中的不对称性。该不对称性可以通过单元PU中的数字图像处理来测量,并且可以对照已知覆盖度值进行校准。

  图5图示了典型目标30的平面图、以及图4的设备中的照射点S的范围。为了获取不受周围结构干扰的衍射光谱,在实施例中,目标30是大于照射光斑S的宽度(例如,直径)的周期性结构(例如,光栅)。光斑S的宽度可以小于目标的宽度和长度。换言之,目标被照射“欠填充”,并且衍射信号基本上没有来自目标自身外部的产品特征等的任何信号。照射布置2、12、13、17可以被配置为跨物镜15的后焦平面提供均匀强度的照射。备选地,通过例如在照射路径中包括孔径,照射可以被限制到轴上或离轴方向上。

  图6示意性地描绘了基于使用量测而获取的测量数据来确定目标图案30'的一个或多个感兴趣变量的值的示例过程。由检测器18检测到的辐射提供测量到的针对目标30'的辐射分布108。

  对于给定目标30',可以使用例如数值麦克斯韦求解器210根据参数化模型206计算/模拟辐射分布208。参数化模型206示出了组成目标和与目标相关联的各种材料的示例层。参数化模型206可以包括针对所考虑的目标的一部分的特征和层的变量中的一个或多个,这些变量可以被改变和派生。如图6所示,一个或多个变量可以包括一个或多个层的厚度t、一个或多个特征的宽度w(例如,CD)、一个或多个特征的高度h、和/或一个或多个特征的侧壁角α。尽管未示出,但是一个或多个变量还可以包括但不限于一个或多个层的折射率(例如,实数或复数折射率、折射率张量等)、一个或多个层的消光系数、一个或多个层的吸收率、显影期间的抗蚀剂损失、一个或多个特征的地位、和/或一个或多个特征的线边缘粗糙度。变量的初始值可以是所测量的目标的期望值。然后在212处将测量辐射分布108与计算辐射分布208进行比较以确定两者之间的差异。如果存在差异,则可以改变参数化模型206的一个或多个变量的值,计算新的计算辐射分布208,并且将其与测量辐射分布108进行比较,直到测量辐射分布108与计算辐射分布208之间有足够的匹配。此时,参数化模型206的变量的值提供了与实际目标30'的几何形状的良好或最佳匹配。在实施例中,当测量辐射分布108与计算辐射分布208之间的差在公差阈值之内时,存在充分的匹配。

  图案化工艺的变量称为“处理变量”。图案化工艺可以包括光刻设备中实际图案转印的上游和下游工艺。图7示出了处理变量370的示例类别。第一类别可以是光刻设备或在光刻工艺中使用的任何其他设备的变量310。该类别的示例包括光刻设备的照射、投影系统、衬底台等变量。第二类别可以是在图案化工艺中执行的一个或多个过程的变量320。该类别的示例包括焦距控制或焦距测量、剂量控制或剂量测量、带宽、曝光持续时间、显影温度、显影中使用的化学成分等。第三类别可以是设计布局的变量330以及其在图案化装置中或使用图案化装置的实现。该类别的示例可以包括辅助特征的形状和/或位置、通过分辨率增强技术(RET)而施加的调节、掩模特征的CD等。第四类别可以是衬底的变量340。示例包括抗蚀剂层下方的结构的特性、抗蚀剂层的化学组成和/或物理尺寸等。第五类别可以是图案化工艺的一个或多个变量的时间变化的特性350。该类别的示例包括:高频台移动特性(例如,频率、幅度等)、高频激光带宽改变(例如,频率、幅度等)和/或高频激光波长改变。这些高频变化或移动是高于用于调节基本变量(例如,工作台位置、激光强度)的机制的响应时间的变化或移动。第六类别可以是在光刻设备中图案转印的上游或下游过程的特性360,诸如旋涂、曝光后烘烤(PEB)、显影、蚀刻、沉积、掺杂和/或封装。

  应当理解,这些变量中的很多变量(如果不是全部的话)将对图案化工艺的参数、通常是感兴趣参数产生影响。图案化工艺的参数的非限制性示例可以包括临界尺寸(CD)、临界尺寸均匀性(CDU)、焦距、覆盖度、边缘位置(position)或位置(placement)、侧壁角度、图案移位等。通常,这些参数表示与标称值(例如,设计值、平均值等)的误差。参数值可以是单个图案的特性的值,或者是一组图案的特性的统计信息(例如,平均值、方差等)。

  一些或所有处理变量或与之相关的参数的值可以通过合适的方法来确定。例如,这些值可以根据利用各种量测工具(例如,衬底量测工具)而获取的数据来确定。这些值可以从图案化工艺中的设备的各种传感器或系统来获取,例如,光刻设备的传感器(诸如水平传感器或对准传感器)、光刻设备的控制系统(例如,衬底或图案化装置工作台控制系统),轨道工具中的传感器等。这些值可以来自图案化工艺的操作者。

  现在,主要在所花费的时间方面越来越多的量测已成为负担。例如,这在半导体工业中出现多种图案化技术的情况下尤其如此。借助于多种图案化技术,诸如光刻-蚀刻-光刻-蚀刻(LELE)和/或侧壁辅助双重图案化(SADP),处理步骤的数目已显著增加,并且因此用于控制和产率监测的量测步骤的数量也大大增加了。此外,随着在多个图案化步骤中使用更多的层,并且每层使用更多的图案化步骤,每个节点的量测量增加(即,特征尺寸减小)。

  附加地或备选地,对于缺陷确定和/或受引导的缺陷检查的需求增加。这涉及比以前更加密集的焦距、覆盖度和/或CD量测。

  附加地或备选地,关于器件上CD、覆盖度和/或焦距性能一直有严格的规范。这推动了从一个节点到下一节点的例如曝光工具和处理工具(例如,沉积、蚀刻、轨道、化学机械抛光(CMP)等)的制造设备规范。因此,这推动了对性能的更严格的控制和监测,从而又推动了对不断增长的量测量的控制和监测测量的需求。

  附加地或备选地,根据关于器件上CD、焦距和/或覆盖度性能的规范的严格要求,可能需要高阶校正。高阶校正本质上是一种校正动作,该校正动作跨整个或部分衬底在小空间尺度上是选择性的(例如,具有高空间分辨率的校正)。高阶校正涉及用于量测的每个衬底的更密集的采样,从而增加了量测负担,可能超出量测设备生产率的实际极限。

  附加地或备选地,衬底到衬底的变化可能需要进一步的单个衬底水平控制(与例如批次水平控制相比)和相关联的监测,以实现期望的CD、焦距和/或覆盖度性能。这可能导致每批测量更多衬底,并且从而导致所使用的测量量的增加,可能超出量测设备生产率的实际极限。

  但是,为了满足增加的数据需求,仅增加量测设备或增加量测设备生产率可能是不够的。而且,它可能无法解决所有问题,诸如无法及时地获取跨衬底的密集的CD、焦距和/或覆盖度轮廓线。

  因此,期望量测效率。例如,这将获取每个衬底更高数据密度、以及每个批次中的更多衬底的数据。

  因此,在实施例中,提供一种用于例如帮助提高量测效率的方法。在该方法中,来自多个源的量测数据被组合和操纵以便针对跨衬底的多个位置中的每个位置,而派生一个或多个图案化工艺参数(例如,CD、焦距、覆盖度、边缘位置等)的准确估计值。然后,在实施例中,提供针对例如在图案化工艺中处理的所有衬底以及针对例如在图案化工艺中在这种衬底上处理的所有层的密集的量测数据(例如,针对每平方mm)。

  实际上,在实施例中,该方法的结果是跨衬底的一个或多个图案化工艺参数的值的“虚拟”或模拟分布,这是通过组合各种量测数据来实现的。然后,该方法可以为一种或多种图案化工艺参数(例如,焦距、CD、覆盖度等)提供用于混合量测的有效方法。并且,尽管本文中的实施例将主要考虑图案化工艺参数(即,焦距、CD和覆盖度)的特定示例,但是应当理解,一个或多个其他或附加的图案化工艺参数可以是本文中技术的主题。

  如上所述,该方法涉及量测和来自各种来源的其他数据的组合。在实施例中,该方法包括将感兴趣的图案化工艺参数的测量结果与来自图案化工艺中的一个或多个设备的数据(诸如来自光刻设备的一个或多个传感器的数据)组合。然后,该数据的组合将被用于以例如如下形式来预测主产品性能:图案化工艺参数,诸如CD、覆盖度、焦距、图案偏移、边缘位置(例如,边缘位置误差)等;和/或根据图案化工艺参数派生的参数,诸如产率、缺陷(例如,缺陷风险、缺陷计数等)等。

  因此,该方法的基本原理是隔离和估计感兴趣的图案化工艺参数的变化的单个根本原因,然后将其组合以计算主产品性能。目标是使用诸如图3-6所述的工具利用尽可能多的可用信息以避免使用越来越多的离线(和/或在线)量测来确定感兴趣的图案化工艺参数。

  因此,在实施例中,期望标识对感兴趣的图案化工艺参数(诸如CD误差、焦距误差、覆盖度等)的改变的各种贡献。然后这些贡献可以被用于各种组合以实现对主产品性能的期望估计。通常,这些贡献将是误差和/或残差。例如,器件在进行校正时可能会产生误差,其然后可以实现感兴趣的图案化工艺参数的改变。作为另一示例,传感器系统可以测量误差,该误差是或对图案化工艺参数的改变有贡献。作为另一示例,被用于确定器件的设置的器件或数学模型可能无法实现某个期望的或最佳的物理效果(例如,期望的物理校正与通过器件可以实现的物理校正之间的差异、期望的物理效果(诸如剂量、焦距等)与通过器件可以实现的物理效果之间的差异、期望的物理校正或效果与能够通过数学模型确定的校正或效果之间的差异等),并且从而实现残差,该残差是或对图案化工艺参数的变化有贡献。在实施例中,可以通过实验或经验来确定贡献。

  对在空间上跨裸片、场或衬底分布的感兴趣的图案化工艺参数的这些贡献中的每个可以被表征为指纹。并且,类似地,跨裸片、场或衬底的组合贡献可以被表征为指纹。

  因此,这些贡献中的多个贡献可以被组合以产生派生指纹。例如,产品衬底上的焦距指纹可以是例如由于以下各项而引起的焦距贡献的复合:该衬底的不平坦度、在衬底的曝光期间与光刻设备的投影系统相关联的焦距误差、在曝光期间由衬底位置控制环产生的高度误差、以及光刻设备的焦距设置的残留指纹。下面参考图9描述其示例。

  类似地,可以从派生或测量的指纹中去除一个或多个指纹以产生(另外的)派生指纹。例如,可以从衬底的所测量的焦距指纹中去除以下各项的焦距贡献:该衬底的不平坦度、在衬底的曝光期间与光刻设备的投影系统相关联的焦距误差、在曝光期间由衬底位置控制环产生的高度误差、以及光刻设备的焦距设置的残留指纹。由于误差未被去除的指纹捕获,这可能会产生残留的焦距指纹。下面参考图10描述其示例。

  因此,在实施例中,该方法可以例如将指纹分解成单个贡献指纹,和/或通过组合指纹来派生指纹。

  因此,参考图8,描绘了贡献(指纹)的组合的实施例。处理变量311(例如,在焦距的上下文中为高度误差)的改变可以对衬底上的图案的图案化工艺参数352(例如,在的上下文中为焦距)具有贡献312,并且处理变量321(例如,在焦距上下文中为焦距设置的残差)的改变可以对图案化工艺参数352具有贡献322。即,图案化工艺参数352可以具有一个或多个处理变量的改变的组合贡献。这些贡献312和322可以简单地相加(其可以包括加权或线性相加),或者可以通过其他函数(例如,使用(去)卷积,使用神经网络、RMS相加、缩放等)进行组合。图案化工艺参数352可以具有其他变量的变化的贡献。因此,利用下文中将进一步讨论的实现,各种贡献可以被确定,或者可以被用于派生图案化工艺参数的估计。在实施例中,贡献312和/或322可以通过对一个或多个可适用的处理变量进行建模来确定。贡献312和/或322可以被表达为一个或多个可适用的处理变量的函数。该函数可以是线性的或非线性的。

  图9示意性地示出了获取对衬底的图案化工艺参数的派生贡献470的示例,该派生贡献是多个处理变量的贡献(它们的一个或多个可以是派生贡献)的组合。在这种情况下,派生贡献470是(离焦)聚焦。因此,可以使用多个处理变量的贡献来获取派生贡献470,诸如在衬底的曝光期间与光刻设备的投影系统相关联的焦距误差(FE)400、在曝光期间由衬底位置控制环产生的高度误差(例如,移动标准偏差(MSDZ)410、以及该衬底的不平坦度(P)420。重要的是,该数据可以从光刻设备获取,并且可以是作为图案化工艺的一部分而生产衬底的副产品。这些标识出的贡献中的任何一个都不需要使用例如关于图3-6描述的工具来测量在衬底上被图案化的特征。

  因此,在焦距情况下,将处理变量400对焦距的贡献的示例示为贡献430,将处理变量410对焦距的贡献的示例示为贡献440,并且将处理变量420对焦距的贡献的示例示为贡献440。然后将这些贡献中的每个贡献组合在一起460以实现派生贡献470。虽然元素460(和图中的其他元素)示出了加号,但是460处的操作不必是加法,例如,通过使用神经网络等,它可以是乘法、卷积。对于一个或多个贡献,该操作可以与另外的一个或多个贡献不同(例如,将430与440相加并且将总和与贡献450进行卷积)。在一个示例中,组合贡献可以表示为

  F(x,y)=a1*F(FE)(x,y)+b1*F(MSDz)(x,y)+c1*F(P)(x,y)+…。各种功能可以通过模拟、数学建模和/或实验来获取。此外,可以存在此处未示出的交叉项(诸如焦距等,其作为FE乘以MSD的函数)。为了获取焦距的绝对值,可以将焦距的标称值或模拟值与贡献组合。诸如a1、b1、c1等系数是焦距相对于相应处理变量或其功能的敏感度。在该示例中,贡献跨衬底,但是在实施例中,一个或多个贡献可以针对每个裸片/场(其然后可以根据例如在每种情况下的适用条件而跨衬底重复)。如上所述,由于贡献470可以跨衬底/裸片/场在空间上被定义,因此贡献470可以被表征为指纹。此外,贡献到绝对值的转变可以被表征为指纹,因为其可以跨衬底/裸片/场在空间上被定义。应当理解,来自使用图案化工艺对多个衬底进行处理的数据可以被用于派生相应的贡献。该数据可能已经是可用的,因为它可能是处理衬底的副产品。

  现在,在CD的上下文中,可以使用关于图9描述的相同技术。例如,派生的对CD的贡献470可以是归因于多个处理变量的贡献的组合(其可以包括派生贡献),诸如焦距(F)400、在衬底的法线方向上衬底移动的移动标准偏差(MSDZ)410)、以及在平行于衬底的方向上衬底移动的移动标准偏差(MSDX)420。因此,在这种情况下,焦距(F)400对CD的贡献的示例是贡献430,移动标准偏差(MSDZ)410对CD的贡献的示例是贡献440,并且移动标准偏差(MSDX)420对CD的贡献的示例是贡献440。然后将这些贡献中的每个贡献组合在一起460以实现派生贡献470。在示例中,组合贡献可以被表示为CD(x,y)=a1*CD(F2)(x,y)+b1*CD(MSDx)(x,y)+c1*CD(MSDz2)(x,y)+…。此外,此处可以存在未示出的交叉项,并且关系可以不同(例如,诸如焦距和/或MSDZ等关系可以不是纯粹的二次项,并且可以具有线性和三阶项)。在实施例中,贡献430、440、450可以分别是焦距(F)400、移动标准偏差(MSDZ)410和移动标准偏差(MSDX)420分布,在这种情况下,将使用CD模型将它们组合成CD分布。此外,此处可以存在未示出的交叉项(诸如CD等,作为F乘以MSD的函数)。为了获取CD的绝对值,可以将CD的标称值或模拟值与贡献组合。诸如a1、b1、c1等系数是CD相对于处理变量或其功能的敏感度。

  应用上述原理,图10示意性地示出了通过去除对感兴趣的图案化工艺参数的贡献,而针对衬底的感兴趣的图案化工艺参数根据图案化衬底量测数据获取派生贡献510的示例。在这种情况下,图案化衬底量测数据是通过测量至少部分通过图案化工艺处理的衬底上的特征(例如,装置图案特征、与装置图案分离的量测目标等)而获取的感兴趣参数的值。这种量测数据通常可以使用诸如关于图3-6描述的量测或检查工具来获取。

  针对感兴趣参数的图案化衬底量测数据500可以具有至少两个贡献。因此,可以通过去除图案化衬底量测数据内的一个或多个其他贡献来获取图案化衬底量测数据内的一个或多个贡献。因此,可以通过从图案化衬底量测数据500中去除505贡献520来获取贡献510。尽管元素505(以及图中的其他元素)示出了减号,但是505处的操作不必是减法,例如,通过使用神经网络等,它可以是乘法、(去)卷积。贡献520可以是派生贡献,诸如贡献470,或者可以是根据其他数据派生的贡献,诸如任何一个或多个贡献430、440和450。此外,可以去除多个贡献。例如,与处理变量530相关联的可选贡献540可以与贡献520一起从图案化衬底量测数据500中被去除。应当理解,来自使用图案化工艺的对多个衬底进行处理的数据可以被用于获取图案化衬底量测数据。

  在实施例中,图案化衬底量测数据来自与装置图案分离的图案,例如,在裸片的非功能区域处、在裸片之间或在测试衬底上的量测特征。因此,例如,可以从这种量测数据中去除一个或多个处理变量的贡献,从而获取一个或多个处理变量对这种量测数据的剩余贡献。然后,可以基于剩余贡献来获取相同或不同衬底上的装置图案对量测数据的可比贡献,而无需从装置图案实际获取量测数据。例如,由于可适用的一个或多个处理变量具有与装置图案和单独图案相当的效果,因此可以估计装置图案对量测的贡献与剩余的贡献相同。在实施例中,单独的图案是用于测试目的的图案(例如,量测目标),并且在单独的图案上执行量测不影响衬底上的装置图案。

  因此,通过组合贡献和/或从图案化衬底量测数据中去除贡献,可以获取衬底的感兴趣参数的估计,而不必必须获取该衬底的图案化衬底量测数据。这是通过认识各种贡献的性质来完成的。

  在实施例中,一个或多个处理变量的贡献可以是特定于设备(例如,光刻设备)的;即,贡献是特定于某个实际设备或设备组合的。因此,在实施例中,可以跨每个衬底重复使用一个或多个处理变量的贡献。因此,一个或多个处理变量的贡献可以被预先表征,并且可以从数据库获取以用于各种组合/去除工艺。贡献可以是整体设备特定的或是设备的特定部分(例如,蚀刻室)的。这种变量的示例可以包括但不限于光刻设备中图案转印的上游或下游工艺的各种特征,诸如旋涂、曝光后烘烤、显影、蚀刻、沉积、掺杂和/或封装。

  在实施例中,一个或多个处理变量的贡献并不特定于特定衬底(并且因此可以跨衬底使用)。因此,一个或多个处理变量的贡献可以被预先表征,并且稍后从数据库中获取以用于各种组合/去除工艺。通过将其与特定衬底的一个或多个变量的数据和灵敏度关系相结合,可以将一个或多个处理变量的这种贡献应用于特定衬底。这种变量的示例可以包括但不限于以下变量:照射、投影系统、焦距、剂量、带宽、曝光持续时间、高频台移动特征(例如,衬底台的移动的移动标准偏差(MSD)、衬底台移动的移动平均值、频率、幅度等)、高频激光带宽变化(例如,频率、幅度等)、高频激光波长变化、和/或衬底的平坦度。

  在实施例中,一个或多个处理变量的贡献可以是特定于衬底的。例如,可以确定每个衬底或特定的一组衬底的贡献。这种变量的示例可以包括但不限于:衬底的几何形状(高度图、变形图)、衬底处理条件、照射变量、投影系统变量、焦距、剂量、带宽、曝光持续时间、高频台移动特征(例如,衬底台移动的移动标准偏差(MSD)、衬底台的移动的移动平均值等)、高频激光带宽变化(例如,频率、幅度等)、高频激光波长变化、和/或衬底的平坦度。

  在实施例中,一个或多个处理变量的贡献可以是特定于图案或图案化装置的;即,贡献是特定于某一实际图案化装置或待由图案化装置提供的特定图案。该贡献还可以与衬底无关。因此,图案或图案化装置的特定贡献可以被预先表征并且随后从数据库获取以用于各种组合工艺。这种变量的示例可以包括但不限于:图案化装置特征CD、辅助特征的形状和/或位置、通过分辨率增强技术(RET)进行的调节等。

  在实施例中,与不同的处理变量相关联的贡献可以具有不同的空间均匀性。例如,一些处理变量的贡献可以跨整个衬底在空间上基本均匀,而一些其他处理变量的贡献可以跨整个衬底在空间上不那么均匀。这种差异可以归因于处理变量的不同性质。例如,与抗蚀剂层、抗蚀剂层的显影和/或衬底的蚀刻相关联的一个或多个处理变量的贡献倾向于在空间上基本均匀,因为整个衬底通常涂覆有抗蚀剂层,该抗蚀剂层在相同的时间和相同的条件下被显影或蚀刻,或者例如在很多这些工艺中由于衬底的旋转而趋于对称。例如,与图案转印或光刻设备相关联的一个或多个处理变量的贡献在空间上趋于不那么均匀,这是因为,图案转印倾向于特定于位置并且一个或多个处理变量可以在针对一个位置的图案转印与针对另一位置的图案转印之间改变。因此,如果可以从图案化衬底量测数据中去除在空间上不是基本均匀的贡献,则可以从图案化衬底量测数据获取在空间上基本均匀的贡献。

  因此,在特定示例中,可以针对衬底上曝光的每个点从光刻设备收集处理变量数据,诸如水平信息、衬底移动的移动平均值(MA)、MSDxyz、剂量、激光带宽、光瞳形状等。在光刻设备中该数据通常已经(例如,在诊断文件中)可用。根据该数据,上述贡献可以使用感兴趣参数的模型来生成,该模型描述感兴趣参数对一个或多个处理变量的敏感度。一个或多个敏感度可以根据模拟或实验获取。假定轨道和抗蚀剂模型校准是完美的,以这种方式生成的贡献则是在抗蚀剂显影之后的测量期间预期看到的。一旦衬底被测量,例如在显影之后或在蚀刻之后,就从图案化衬底量测数据中去除该贡献。现在,剩余的贡献是图案转印工艺之前或之后(例如,通过通常是场间的轨道和/或蚀刻设备)的贡献和图案化装置(场内)的贡献。光刻设备误差将根据图案化衬底量测数据得以校正。类似地,可以测量图案化装置贡献并且去除其贡献以留下转印工艺之前或之后的贡献。可以按工艺流程(例如,所使用的图案化工艺步骤和/或装置的组合)或按特定设备或其一部分(例如,蚀刻设备或蚀刻室)去除贡献。

  因此,通过这些技术,可以通过建模的关系或通过从图案化衬底量测数据中去除已知贡献来获取对感兴趣参数的贡献。此外,一个或多个贡献可以是设备特定的,也可以是与衬底无关的。但是,一个或多个其他贡献可以是衬底特定的。因此,通过适当地混合和匹配贡献,可以估计在图案化工艺中的某个点处的感兴趣参数的估计。

  因此,现在将在焦距、CD和覆盖度的上下文中描述这些贡献的应用的一些具体示例,以确定衬底的相应焦距、CD和覆盖度的估计。应当理解,可以处理和估计另外的或其他的感兴趣参数。

  为了实现这些示例,使用各种数据。例如,光刻设备具有集成在其中的显著的量测能力,该量测能力被用于图案转印控制。这种集成量测的示例是用于伺服控制的衬底和/或图案化装置的位置量测设备(例如,传感器IF)、用于测量衬底表面以进行水平控制的水平传感器(例如,传感器LS)、用于测量衬底的取向、位置和/或变形以实现覆盖度控制的对准传感器(例如,传感器AS)、和/或用于控制投影系统的波前的像差传感器(例如,上述剪切干涉仪)。光刻设备将使用来自这些传感器的数据进行控制,以使其满足其总体CD、覆盖度和/或焦距预算,但同时还跟踪在控制之后留下的残差和/或误差。这些残差和/或误差可以被用于计算在图案转印期间产生了多大的CD、覆盖度和/或焦距误差,即光刻设备对CD、覆盖度和/或焦距指纹的贡献。应当理解,在图案化工艺中使用的其他设备可以具有与用于设备的可适用量测的信息的类似信息。

  此外,光刻设备设置或控制可以使用一个或多个数学模型来确定相应的校准或控制校正。但是,这种一个或多个模型可以具有内置的假定或限制,从而导致非零残留误差。这种模型残差可以被用于计算产生了多大的CD、覆盖度和/或焦距误差,即模型对CD、覆盖度和/或焦距指纹的贡献。应当理解,在图案化工艺中使用的其他设备可以具有类似的模型信息。

  此外,可以通过使用电阻内测量来设置光刻设备,以帮助去除一个或多个参数(例如,焦距、覆盖度等)的任何全局和局部指纹。但是,全局指纹会从上一次执行校准开始随时间推移而漂移。为了监测和控制该设置状态,监测可以被曝光和测量的衬底以监测全局指纹。监测衬底可以是在衬底中具有明确限定图案的、在其上施加有抗蚀剂层的基础衬底,利用与明确限定图案有关的图案进行曝光、显影,并且然后被测量。一旦被测量,就可以剥离监测衬底上的抗蚀剂,以留下明确限定的图案,从而可以施加新的抗蚀剂层。基于这些测量,可以对光刻设备进行校正,并且因此在确定贡献时需要考虑这些校正。在实施例中,监测衬底可以被用于通过使用明确限定的图案来确定覆盖度,和/或通过使用抗蚀剂图案来确定焦距。

  转到焦距示例,该技术实质上涉及两个主要部分。第一部分有效地是一种用于确定光刻设备的基本焦距贡献的设置过程,该贡献没有反映在被用于确定在估计过程中针对特定衬底的焦距估计的一种或多种类型的光刻设备处理变量中。第二部分是估计过程,该过程使用与针对所考虑的衬底的那些一种或多种类型的光刻设备处理变量相关联的焦距贡献,来确定针对特定衬底的焦距估计。

  因此,在根据实施例的设置过程中,获取一个或多个衬底的图案化衬底焦距量测数据,并且然后去除一种或多种类型的光刻设备处理变量的贡献,类似于上述图10中所述。可以被去除的一种类型的贡献是与例如光刻设备的水平传感器相关联的衬底高度残差或误差图的焦距贡献。可以被去除的另一种类型的贡献是投影系统像平面偏差(IPD)的焦距贡献,该贡献可以例如根据剪切干涉仪和/或投影系统模型残差来获取。可以被去除的另一种类型的贡献是图案化装置和/或衬底的伺服控制(例如,MA)的焦距贡献,该贡献可以根据可适用的定位器、位置量测设备(例如,传感器IF)和/或伺服控制模型的残差来获取。如上所述,从处理变量到焦距贡献的转换可以通过模拟、数学建模和/或实验来确定。

  根据需要,可以将贡献指纹重新网格化到相同的网格(其可以与贡献指纹之一的网格相同或者是不同的网格)。类似地,可以将贡献指纹重新网格化到图案化衬底量测数据,反之亦然。在实施例中,重新网格化包括上采样或下采样。

  在实施例中,期望在将贡献与另一贡献组合之前,将滤波(例如,移动平均、去卷积、FFT等)应用于贡献。

  在实施例中,光刻设备的基本焦距贡献可以被有效地一次确定并且被用于各种焦距估计,因此与测量每个衬底相比,量测的量可以显著减少。在实施例中,可以通过相对稀疏地采样衬底上的位置(例如,衬底上的500个目标或更少)和/或一个或多个批次的衬底的数目(例如,一批25个或更多衬底中的10个或更少的衬底)来获取图案化衬底焦距量测数据。

  在实施例中,图案化衬底焦距量测数据可以是如上所述的监测衬底的所测量的焦距指纹。因此,可以使用已被捕获的数据。因此,所测量的焦距指纹可以针对如从光刻设备传感器信息中派生的光刻设备的影响进行校正,诸如投影系统图像平面偏差(IPD)的焦距贡献、衬底高度残差或误差图的焦距贡献、和/或图案化装置和/或衬底伺服控制的焦距贡献,以获取光刻设备的基本焦距贡献。

  然后,存储光刻设备的基本焦距贡献,以用于焦距的主产品估计。可以为多个光刻设备确定光刻设备的基本焦距贡献。可以针对所使用的光刻设备的器件的特定组合来确定光刻设备的基本焦距贡献。例如,光刻设备可以具有在其上衬底可以被曝光的多于一个的衬底台,并且因此可以针对所使用的器件的特定组合和/或多个组合来确定光刻设备的基本焦距贡献。

  然后,针对主产品估计,获取感兴趣衬底的与焦距有关的一种或多种类型的光刻设备处理变量的误差或残差,并且确定其焦距贡献。例如,针对感兴趣衬底,可以获取投影系统图像平面偏差(IPD)的焦距贡献、衬底高度残差或误差图的焦距贡献、和/或图案化装置和/或衬底伺服控制的焦距贡献。可以被添加的另一种类型的贡献是图案化装置误差的焦距贡献,该贡献归因于图案化装置被用于特定感兴趣衬底,该贡献可以通过测量来获取。如果在不将图案化装置用于感兴趣衬底的情况下,获取光刻设备的可适用的基本焦距贡献,则可以特别使用该贡献。

  此外,如上所述,获取光刻设备的可适用的基本焦距贡献。然后,类似于以上关于图9所述,将光刻设备的可适用的基本焦距贡献与感兴趣衬底的一个或多个特定焦距贡献组合,以获取估计的针对感兴趣衬底的焦距指纹。因此,可以在任何衬底上的任何位置或几乎任何位置处确定焦距误差的估计。

  现在,转向CD示例,原则上,有很多处理变量可能导致衬底中CD发生变化。在该实施例中,考虑跨衬底的某些CD变化。特别地,考虑关于焦距、焦距模糊、剂量和整个过程的CD变化贡献。也可以考虑作为CD变化的场内贡献者的图案化装置,但是仅出于方便起见将不再进一步描述。

  对CD的焦距贡献可以基于如上所述的焦距贡献,具体地是针对所考虑的衬底基本光刻设备焦距贡献与光刻设备的一个或多个处理变量的焦距贡献的组合。鉴于可以通过实验或模拟得知例如特征的Bossung行为(光刻后和/或蚀刻后),原则上,针对任何图案特征,这种密集的焦距信息可以被转换为跨场和/或跨衬底的ΔCD贡献。因此,对于衬底上具有焦距值的任何位置(x,y),可以计算与该衬底位置(x,y)相对应的CD值:

  CD(HDFMx,y)=Φl(HDFMx,y)

  其中HDFM对应于焦距图,诸如上面在焦距示例中描述的派生的高密度焦距图。

  可以使用诸如伺服信息(例如,z方向上的MSD)等光刻设备数据来获取对CD的焦距模糊贡献。可以将焦距模糊信息跨扫描方向且跨底转换为ΔCD贡献。该焦距模糊数据到CD的转换也是特定于特征的,并且可以通过实验或模拟来获知:

  CD(fblurx,y)=Φ2(fblurx,y)

  其中fblur对应于焦距模糊。

  对CD的剂量贡献归因于光刻设备的剂量变化(例如,由剂量映射系统确定)。使用可适用特征的合适剂量灵敏度,在曝光期间跨衬底的剂量变化可以被转化为ΔCD贡献,这可以通过实验或模拟获知:

  CD(dosex,y)=Φ3(dosex,y)

  对CD的总体工艺贡献是CD的变化,该CD的变化是作为图案化工艺的一部分而与单独的图案转印分开的各个工艺步骤引起的。因此,在实施例中,总体工艺贡献是最终蚀刻步骤之后CD变化的状态,并且不归因于在估计CD变化时所考虑的各种其他CD变化。因此,在实施例中,该贡献是由例如膜沉积变化、烘烤和/或显影变化和/或蚀刻工艺变化引起的所有未说明的工艺变化的累积效应。有助于对CD的总体工艺贡献的处理变量的示例可以包括:抗蚀剂层下方的结构特征、抗蚀剂层的化学组成和/或物理尺寸、和/或光刻设备中图案转印的上游或下游的一个或多个工艺的特征,诸如旋涂、曝光后烘烤、显影、蚀刻、沉积、掺杂和/或封装。并且,尽管对CD的总体工艺贡献是根据蚀刻之后描述的,但是可以在图案化工艺中的不同点获取总体工艺贡献,例如,在显影之后但是在蚀刻之前获取。

  因此,类似于焦距示例的设置过程,可以使用归因于焦距、焦距模糊和剂量的所有这些ΔCD贡献,并且将其从衬底CD测量中减去,以估计总体工艺贡献。即,在实施例中,可以根据蚀刻后的锚定特征CD测量,生成蚀刻后总体工艺贡献,以从中去除针对焦距、焦距模糊和剂量(用于锚定特征)的ΔCD贡献。如上所述,总体工艺贡献是根据合适的锚定特征来估计的。因此,在实施例中,可以根据锚定特征来确定其他特征的总体工艺贡献。例如,总体工艺贡献的其余部分可以被表示为锚定特征的特性的一部分。如果在图案化工艺中的不同点获取总体工艺贡献,例如在显影之后但是在蚀刻之前获取,则可以使用显影后但蚀刻之前的CD测量。

  在实施例中,总体工艺贡献可以被有效地一次确定并且被用于各种CD估计,因此与测量每个衬底相比,可以显著减少量测的量。在实施例中,可以通过相对稀疏地采样衬底上的位置(例如,衬底上的500个目标或更少)和/或一个或多个批次的衬底的数目(例如,一批25个或多个衬底中的10个或更少的衬底),来获取图案化衬底焦距量测数据。

  然后,存储总体工艺贡献以用于CD的主产品估计。可以针对特定和/或多种设备配置来确定总体工艺贡献(例如,一个或多个特定的蚀刻室、蚀刻室和烘烤板的一个或多个特定组合、衬底台和蚀刻室的一个或多个特定组合等)。

  然后,类似于上述焦距估计步骤,可以获取主产品CD的估计。在实施例中,获取针对感兴趣衬底的、与CD有关的一种或多种类型的光刻设备处理变量的误差或残差,并且确定其CD贡献。例如,可以获取针对感兴趣衬底的焦距、焦距模糊和/或剂量的CD贡献。可以被添加的另一种类型的贡献是图案化装置误差的CD贡献,该贡献可归因于将图案化装置用于特定感兴趣衬底,该贡献可以通过测量来获取。

  此外,如上所述,获取可适用的对CD的总体工艺贡献。然后,类似于上面关于图9所述,将可适用的对CD的总体工艺贡献与感兴趣衬底的一个或多个特定CD贡献组合,以获取估计的针对感兴趣衬底的CD指纹。因此,可以在任何衬底上的任何位置或几乎任何位置处确定CD误差的估计。

  此外,可以获取衬底上一个或多个特定感兴趣图案特征(诸如热斑)的估计。如上所述,针对特定锚定特征确定对CD的总体工艺贡献,但是可以针对一个或多个特定感兴趣特征进行缩放。此外,可以基于适当敏感度,针对CD变化与一种或多种类型的光刻设备处理变量之间的一个或多个特定特征,来计算一种或多种类型的光刻设备处理变量(诸如焦距、焦距模糊和/或剂量)的CD贡献。可以例如通过模拟和/或实验来获取这种灵敏度。因此,可以获取多个CD衬底指纹,每个指纹用于图案的不同热斑或其他感兴趣特征。

  可以例如在一个或多个相关模型(例如,图案化装置和/或像差模型)中利用更多参数来改进该方法。该方法可以通过以下方式被扩展:例如通过将总体工艺贡献拆分成不同的贡献者(例如,对不同特征具有不同敏感度的沉积、光刻和/或蚀刻)来估计总体工艺贡献。

  在实施例中,被应用为图案化工艺的一部分的剂量校正可以在结果中得以校正。例如,光刻单元可以使用ASML的Dosemapper系统应用剂量校正。因此,在确定CD的估计时考虑该校正。

  现在转到覆盖度示例,使用来自到衬底上的至少两个不同图案转印的数据。该技术类似于以上关于焦距和CD示例所述的技术。

  该技术基本上涉及两个主要部分。第一部分有效地是一种用于确定光刻设备的基本覆盖度贡献的设置过程,该贡献没有反映在被用于确定在估计过程中针对特定衬底的覆盖度估计的一种或多种类型的光刻设备处理变量中。可选地,类似于上述CD示例的总体工艺CD贡献,总体工艺覆盖度贡献也可以被确定。第二部分是估计过程,该过程使用与针对所考虑衬底的、用于至少两个图案转印中的每一个的、那些一种或多种类型的光刻设备处理变量相关联的覆盖度贡献,来确定特定衬底的覆盖度估计。

  因此,在根据实施例的设置过程中,获取一个或多个衬底的图案化衬底覆盖度量测数据,并且然后去除至少两个图案转印中的每一个的一种或多种类型的光刻设备处理变量的贡献,类似于上述图10中所述。可以被去除的一种类型的贡献是例如从光刻设备的水平传感器获取的衬底高度图的覆盖度贡献。可以找到两次图案转印的衬底高度图的差异,并且然后可以将该差异转换为覆盖度值,并且从而转换为覆盖度贡献。例如,通过将高度差视为衬底的翘曲或弯曲、并且使用第一原理来计算X和/或Y位移,可以将Z高度差转换为X和/或Y位移(例如,位移可以是Z的变化量相对X或Y的变化量乘以衬底的厚度的一半(例如在衬底的夹持区域中的),或者可以使用Kirchoff-Love板理论在例如衬底的非夹持区域中计算位移)。在实施例中,高度到覆盖度贡献的转换可以通过模拟、数学建模和/或实验来确定。因此,通过在每次图案转印中使用这种衬底高度信息,可以观察和解释由于焦距或卡盘点而引起的覆盖度影响。

  可以被去除的另一种类型的贡献是图案化装置和/或衬底伺服控制(例如,MA)在X和/或Y方向(包括围绕Z的旋转)上的覆盖度贡献,该贡献可以根据可适用的定位器、位置量测设备(例如,传感器IF)和/或伺服控制模型的残差来获取。可以发现针对两次图案转印,跨衬底的伺服控制值存在差异,然后该差异可以表示覆盖度贡献。在需要时,从伺服控制值到覆盖度贡献的转换可以通过模拟、数学建模和/或实验来确定。

  可以被去除的另一种类型的贡献是投影系统像差(例如,其可以根据剪切干涉仪获取)和/或投影系统模型残差的覆盖度贡献。从像差和/或残差到覆盖度贡献的转换可以通过模拟、数学建模和/或实验来确定。

  可以被去除的另一种类型的贡献是对准系统模型残差的覆盖度贡献,该贡献可以由光刻设备提供。从残差到覆盖度贡献的转换可以通过模拟、数学建模和/或实验来确定。在实施例中,对于不同的图案转印步骤,对准系统模型残差可以不同,并且因此针对不同图案转印步骤的对准系统模型残差的组合/差异可以被用于获取覆盖度贡献。在实施例中,可以针对衬底高度校正对准模型残差。

  根据需要,可以将贡献指纹重新网格化到相同的网格。类似地,可以将贡献指纹重新网格化到图案化衬底量测数据,反之亦然。

  在实施例中,光刻设备的基本覆盖度贡献可以被有效地一次确定并且被用于各种覆盖度估计,因此与测量每个衬底相比,可以显著减少量测的量。在实施例中,可以通过相对稀疏地采样衬底上的位置(例如,衬底上的500个目标或更少)和/或一个或多个批次的衬底的数目(例如,一批25个或多个衬底中的10个或更少衬底),来获取图案化衬底覆盖度量测数据。

  在实施例中,图案化衬底覆盖度量测数据可以是如上所述的监测衬底的所测量的覆盖度指纹。因此,可以使用已被捕获的数据。因此,所测量的覆盖度指纹可以针对如从光刻设备传感器信息中派生的光刻设备影响进行校正,诸如投影系统的覆盖度贡献、衬底高度的覆盖度贡献、对准模型残差的覆盖度贡献、和/或/或图案化装置和/或衬底伺服控制的覆盖度贡献,以获取光刻设备的基本覆盖度贡献。在实施例中,所测量的覆盖度指纹数据将被一次捕获以用于产品衬底的第一图案转印,并且然后被捕获以用于第二图案转印(在图案转印之间对监测衬底进行返工的情况下)。在实施例中,图案化衬底覆盖度量测数据是根据以下两者之间的差值而获取的覆盖度增量(delta)指纹:在第一图案转印之后根据一个或多个监测衬底测量的覆盖度指纹、以及在第二图案转印之后根据一个或多个监测衬底测量的覆盖度指纹。因此,通过以与产品层大约相同的时间曝光一组监控衬底,可以量化光刻设备在短期漂移方面对覆盖度的贡献。即,然后利用覆盖度增量指纹,可以获取由于第一图案转印与第二图案转印之间的短期漂移而引起的光刻设备对场间覆盖度的贡献。

  可选地,在需要蚀刻后覆盖度的情况下,可以确定对覆盖度的蚀刻工艺贡献,这是由蚀刻引起的覆盖度变化。为了获取蚀刻工艺覆盖度贡献,可以从蚀刻后图案化衬底量测数据中去除显影后但蚀刻前的图案化衬底量测数据,以获取蚀刻工艺覆盖度贡献。在实施例中,蚀刻工艺覆盖度贡献可以被有效地一次确定并且被用于覆盖度估计,并且因此与测量每个衬底相比,可以显著减少量测的量。在实施例中,可以通过相对稀疏地采样衬底上的位置(例如,衬底上的500个目标或更少)和/或一个或多个批次的衬底的数目(例如,一批25个或多个衬底中的10个或更少衬底)来获取图案化衬底覆盖度量测数据。假定在每次图案转印之后蚀刻指纹都是相同的,可以在蚀刻第一图案转印或第二图案转印中的另一个之后在以下两者之间:在显影之后但在蚀刻覆盖度测量之前、与蚀刻覆盖度测量之后,利用增量指纹来推导在第一图案转印或第二图案转印时引起的蚀刻工艺指纹。

  然后,存储光刻设备的基本覆盖度贡献(和可选的蚀刻工艺覆盖度贡献),以用于覆盖度的主产品估计。可以为多个光刻设备确定光刻设备的基本覆盖度贡献。可以针对所使用的光刻设备的器件的特定组合来确定光刻设备的基本覆盖度贡献。例如,光刻设备可以具有在其上衬底可以被曝光的多于一个的衬底台,并且因此可以针对所使用的器件的特定组合和/或多个组合来确定光刻设备的基本覆盖度贡献。可以针对特定和/或多种设备配置(例如,一个或多个特定蚀刻室)来确定蚀刻工艺覆盖度贡献。

  然后,对于主产品估计,获取针对感兴趣衬底的与覆盖度有关的一种或多种类型的光刻设备处理变量的误差或残差,并且确定其覆盖度贡献。例如,针对感兴趣衬底,可以获取投影系统的覆盖度贡献、衬底高度的覆盖度贡献、对准模型残差的覆盖度贡献、和/或图案化装置和/或衬底伺服控制的覆盖度贡献,以获取光刻设备的基本覆盖度贡献。在实施例中,仅获取衬底高度的覆盖度贡献。

  此外,如上所述,获取光刻设备的可适用的基本覆盖度贡献,并且可选地,获取可适用的蚀刻工艺覆盖度贡献。然后,类似于以上关于图9所述的,将光刻设备的可适用的基本覆盖度贡献(以及可选地,可选的蚀刻工艺覆盖度贡献)与感兴趣衬底的一个或多个特定覆盖度贡献组合,以获取针对感兴趣衬底的估计覆盖度指纹。因此,可以在任何衬底上的几乎任何位置处确定覆盖度的估计。

  在实施例中,被应用为图案化工艺的一部分的覆盖度校正可以在结果中得以校正。例如,光刻机可以使用例如ASML的Baseliner系统,基于监测衬底的测量结果来应用覆盖度校正。因此,该校正在确定覆盖度的估计时被考虑。

  在实施例中,在多次图案化工艺中,期望在第一图案转印步骤与第二图案转印步骤之间曝光和光刻设备条件(例如,曝光剂量、图案化装置透射率、图案化装置资格误差、照射设置、光刻设备衬底夹持误差等)两者非常相似。此外,期望在第一图案转印步骤与第二图案转印步骤之间,在场内水平处的曝光和加热识别标志相似,并且因此对覆盖度的这种影响应当很小。

  此外,在实施例中,可以组合多个预测。例如,可以组合覆盖度预测和CD预测。例如,在使用不同的图案转印步骤创建彼此相邻的结构、并且这些结构之间具有间隙的多重图案化情况下,与单独的覆盖度或CD估计相比,一个或多个不同图案转印步骤的CD以及不同图案转印步骤的覆盖度的组合可以更好地预测间隙的大小。

  然后,图11示意性地示出了根据实施例的方法的流程。特别地,它示出了广义贡献(诸如光刻设备的基本焦距贡献、对CD的总体工艺贡献、和/或光刻设备的基本覆盖度贡献(以及可选的可适用的蚀刻工艺覆盖度贡献))如何被应用于针对感兴趣衬底的特定信息,以获取对衬底的感兴趣参数的估计。因此,贡献912对应于特定衬底的一个或多个处理变量,并且例如对应于热斑。这可以通过根据装置信息等进行建模来确定。此外,获取了可适用于多个衬底的贡献922,诸如光刻设备的基本焦距贡献、对CD的总体工艺贡献、和/或光刻设备的基本覆盖度贡献(以及可选的适用的蚀刻工艺覆盖度贡献)。贡献922可以使用本文中描述的任何技术来获取。可以针对多个衬底(例如,针对每个感兴趣衬底)确定贡献912,然而可以跨很多衬底重复使用贡献922。贡献912和贡献922被组合以获取例如热斑的感兴趣参数的估计950,而不必要求获取针对热斑的图案化衬底量测数据。在过程970中,基于感兴趣参数的估计来确定采取行动,诸如在热斑处是否存在缺陷。

  因此,可以利用装置传感器数据来增强抗蚀剂内和/或蚀刻后的测量,以获取计算后的量测,该计算后的量测例如可以为每个衬底提供密集的量测,而不必对衬底进行密集的采样和/或提供对于很多(如果不是每一个)衬底的量测,从而无需获取针对每个这种衬底的图案化衬底量测数据。此外,密集的计算后的量测可以实现例如更高阶的校正。计算后的量测还可以实现更大的控制,包括可能的每个衬底控制,而不必获取针对每个这种衬底的图案化衬底量测数据和/或不必密集地测量衬底上的图案化衬底量测数据。

  此外,来自这些计算后的量测技术的估计可以实现各种应用,诸如图案化工艺控制(例如,一个或多个工艺变量的调节)、图案化处理监测、故障检测、缺陷预测、图案化工艺设计等。

  在实施例中,派生贡献(诸如使用图10派生的)可以被用于对数学模型参数化,该数学模型用于确定一个或多个处理变量的变化对感兴趣参数的贡献。即,可以针对派生贡献拟合数学模型,从而获取该数学模型的一个或多个参数、常数等的值。因此,作为示例,期望具有模型以及表示在模型中的任何灵敏度,以适应工艺和/或衬底堆叠的变化。因此,在实施例中,可以生成针对将被测量的每个衬底的预测衬底指纹。为此,可以建立感兴趣参数的模型,例如,对于CD,包括

  CD=al*DOSE+a2*FOCUS2+a3*MSDx+a4*MSDy+a5*MSDz+...的模型。通过对衬底的测量,可以去除预处理和/或后处理(例如,轨道/蚀刻)指纹和图案化装置指纹。剩余的指纹测量结果可以与预测值进行比较。在这种情况下,现在存在一组等式(与测量点一样多的等式),其中CD、剂量、焦距、MSD-xyz、像差等已知。可以针对期望的灵敏度(a1、a2、……)求解这组等式。当针对测量的多个衬底执行该操作用于某种装置图案时,将存在可以重新估计期望灵敏度的大量数据。如果使用来自多个光刻设备的数据和/或以相同的方式使用来自焦距曝光矩阵曝光的数据,则输入信号的充分变化(例如,焦距、剂量、MSD、CD等)可以实现对灵敏度的适当估计。此外,该技术可以被应用于其他感兴趣参数,诸如焦距深度、曝光范围、覆盖度、边缘位置等。

  在实施例中,可以使用训练算法来增加进一步的准确性。例如,当解决了针对像差的敏感度时,可以考虑边界条件,即,像差只能在狭缝上变化并且在拟合这些敏感度之前对CD(或覆盖度)数据进行预过滤。在实施例中,通过不时地或连续地重新评估灵敏度,其可以抵抗图案化工艺的变化,而变得稳健。

  在上述贡献/指纹的另一应用中,可以使用一个或多个贡献/指纹来预测图案的轮廓线。在该上下文中,轮廓线是被转印到衬底的图案特征的形状的轮廓。轮廓线可以例如通过处理衬底的图像(例如,扫描电子显微镜图像)以提取被转印到衬底的图案特征的形状的外边界而可视化。但是,也可以通过数学处理(例如,模拟)来生成轮廓线,以创建如预期被转印到衬底的图案特征的电子表示。尽管轮廓线通常为线的形式,但是本文中使用的轮廓线可以被概括为描述特征的边界的数据。轮廓线不必是连续的;即,如果不连续的轮廓线和/或数据足以描述特征的边界,则在特征周围的轮廓线和/或数据可以是不连续的。在实施例中,轮廓线可以是二维的(即,限定平面)或三维的。在实施例中,轮廓线可以在基本平行于其上形成有图案的衬底表面的平面中延伸。在实施例中,轮廓线可以在基本垂直于其上形成有图案的衬底表面的平面中延伸;在这种情况下,它可以被表征为轮廓,并且可以是二维或三维形式。

  为了预测轮廓线,可以如本文所述获取一个或多个贡献/指纹,并且将其用于选择某个基准轮廓线和/或修改基准轮廓线,以便获取预测轮廓线。于2017年2月22日提交的美国申请No.62/462,201(其全部内容通过引用并入本文)中描述了使用一种或多种贡献/指纹对轮廓线的这种预测和轮廓线的用途的细节、以及本文中描述的一种或多种贡献/指纹的其他用途的细节。

  如上所述,在实施例中,本文中的计算量测技术可以使用来自图案化工艺的设备(例如,光刻设备)的数据、和来自量测设备(例如,上面关于图3-5描述的量测设备之一)的数据的组合,来生成针对衬底的图案化工艺的特定感兴趣参数(例如,覆盖度、边缘位置误差等)的派生贡献或指纹。因此,在这种计算量测应用中,基于量测和图案化工艺设备(例如,光刻设备)的输入,来生成特定感兴趣参数的混合密集指纹。例如,对于覆盖度指纹,输入可以是例如使用一个或多个监测衬底进行的测量、来自图案化工艺制造设备(例如,光刻设备)的数据或测量、和/或来自量测设备(诸如上面针对图3-5描述的量测设备之一)的测量(诸如蚀刻后检查(AEI)或显影后检查(ADI)的测量结果)。

  对于上述混合密集指纹,使用测量量测目标(例如,ADI和/或AEI)的量测设备,对感兴趣参数进行相对密集的测量,以实现来自目标的参数测量与装置图案响应之间的良好匹配,从而生成指纹。因此,期望例如能够通过测量量测目标的量测设备使用对感兴趣参数的密度较小的测量。使用密度较小的测量可以能够提高生产量,因为可能需要对量测目标的较少测量。

  附加地或备选地,上述所得到的指纹对于所有装置图案特征可以是通用的,并且可以不参考例如关键装置图案特征(也被称为热斑)。因此,期望能够针对装置图案的多个特征中的每个特定特征,生成特定于装置图案的特定特征的指纹。在实施例中,指纹可以特定于一个或多个关键装置图案特征。具有与关键装置图案特征相关联的感兴趣参数(例如,覆盖度、焦距、CD、对准等)的密集图可能是更有益的(例如,在装置产率控制方面)。通过专注于关键装置图案特征,可以通过例如考虑装置图案的特定特征,来创建图案化工艺的基于产率的设计、控制、修改等。

  参考图12,示意性地描绘了生成和使用特定于装置图案的特定特征的指纹的方法实施例。概括而言,该方法涉及通过模拟(例如,全芯片模拟)、使用量测目标的量测测量(例如,针对覆盖度指纹的ADI/AEI覆盖度测量)和装置上图案测量的组合,跨至少部分衬底针对一个或多个特定的装置图案特征,创建感兴趣的指纹(图)参数。例如,可以针对一个或多个关键装置图案特征中的每一个创建参数指纹。通过一个或多个参数指纹(例如,用于一个或多个关键装置图案特征),可以使用一个或多个参数指纹来设计、校正、控制、修改等图案化工艺的一个或多个方面(例如,设备、子工艺、所使用的消耗品(例如,图案化装置)等)。在实施例中,相应装置图案特征的可用的多个参数指纹的加权组合,可以被用于图案化工艺的设计、校正、控制、修改等方面;即,与相应特定装置图案特征相关联的一个或多个参数指纹,和与其他相应装置图案特征相关联的一个或多个其他参数指纹相比可以具有更高的权重。这种设计、校正、控制、修改等可以包括在图案化工艺中使用的设备(例如,光刻设备、蚀刻工具、沉积工具等)的设置的配置,以使用图案化工艺在衬底上制造装置图案。在实施例中,设计、校正、控制、修改等可以包括对光刻设备设置的修改(例如,诸如衬底等物体的X、Y或Z运动控制的修改、投影系统像差的特定校正(例如,在投影系统中使用致动器或其他波前操纵装置)、用于曝光衬底的照射剂量的变化(例如,通过控制辐射源和/或在照射系统中使用剂量调制装置)等)。

  在1100处,描绘了具有装置图案特征的图案化装置图案以及如在图案化装置处提供的量测目标的高度示意性的示例布局。装置图案特征被标记为特征A、B、C和D。应当理解,特征A的每个实例基本上是相同类型的图案布局,特征B的每个实例基本上是相同类型的图案布局,特征C的每个实例基本上是相同类型的图案布局,特征D的每个实例基本上是相同类型的图案布局。此外,特征A-D中的每个特征可以与其他特征不同。此外,量测目标被标记为目标1、2和3。应当理解,目标1的每个实例基本上是相同类型的量测目标,目标2的每个实例基本上是相同类型的量测目标,目标3的每个实例基本上是相同类型的量测目标。在实施例中,量测目标1-3中的每个量测目标可以与其他目标不同(例如,在目标周期性结构的节距方面不同,在目标周期性结构的特征的分段方面不同,在占空比方面不同,等等)。众所周知,使用光刻工艺将装置图案特征和量测目标转印到衬底。在针对覆盖度的量测目标的情况下,目标1、2和3可以是针对衬底上的下层的目标,或者是针对衬底上的上层的目标,其中目标1、2或3通常位于下层中的对应目标之上,或者上层中的对应目标通常位于目标1、2或3之上。

  在1110处,例如在图案化工艺的各种条件下,诸如远离图案化工艺的基准条件的一定量的扰动,执行将图案化装置图案转印到衬底的模拟。例如,图13的图案化模拟方法可以被用于生成图案化装置图案(包括一个或多个量测目标)到衬底的预测转印。类似地,例如在多个测量光束波长和/或多个测量偏振下,同样对作为被模拟的图案化工艺一部分的、对所创建的一个或多个量测目标进行的测量进行模拟。例如,可以使用图14的量测模拟方法来模拟测量。基于这些模拟,确定一个或多个测量目标和、待在衬底上产生的所模拟的一个或多个装置图案特征中的每个的感兴趣参数(例如,覆盖度),并且根据模拟结果来确定一个或多个测量目标与待在衬底上产生的所模拟的图案化装置图案的一个或多个装置特征之间的参数的关系。例如,取决于图案转印条件并且对于作为感兴趣参数的覆盖度,装置图案特征偏移可以与覆盖度目标偏移相关。在实施例中,出于关系的目的,一个或多个量测目标的感兴趣参数可以与一个或多个装置特征的感兴趣参数不同;例如,一个或多个量测目标的感兴趣参数可以是覆盖度,而一个或多个装置特征的感兴趣参数是边缘位置误差。附加地或备选地,可以建立其他关系,诸如感兴趣参数的一种或多种光学像差灵敏度、感兴趣参数的一种或多种焦距灵敏度、感兴趣参数的一种或多种剂量灵敏度、感兴趣参数的一种或多种节距依赖性等。

  在1130,从一个或多个衬底获取适用的感兴趣参数的测量,使用针对在1110处执行的模拟的图案化工艺将图案化装置图案转印到该一个或多个衬底上。在实施例中,跨衬底获取测量,该衬底具有转印到其上的图案化装置图案的多个实例。在实施例中,根据多个衬底获取测量,已将图案化装置图案多次转印到每个衬底上。在实施例中,根据一个或多个量测目标获取测量,作为图案化工艺的一部分将该一个或多个量测目标转印到一个或多个衬底。在实施例中,感兴趣参数是覆盖度,并且测量是使用一个或多个量测目标的ADI和/或AEI而获取的覆盖度测量。在实施例中,在多个测量光束波长和/或多个测量光束偏振下获取覆盖度测量。

  在1120,将来自一个或多个量测目标的感兴趣参数的测量与模拟结果相匹配。即,使用根据模拟确定的一个或多个关系,可以将所测量的感兴趣参数转换为针对装置图案特征的可适用的感兴趣参数的等效值(例如,相同的感兴趣参数或不同的感兴趣参数)。例如,在覆盖度的上下文中,可以使用一个或多个所模拟的关系将来自量测目标的覆盖度测量转换为相关联的装置图案特征的预期覆盖度。在实施例中,跨衬底获取量测测量,并且因此由于在跨衬底的各个位置处的局部条件(例如,衬底不平坦度、蚀刻的变化等)而导致可能具有变化的值。因此,在实施例中,针对一个或多个特定装置图案特征中的每个,可以获取跨衬底的至少一部分的所预测的感兴趣参数的图。在实施例中,感兴趣参数可以是参数的误差或残差,例如CD误差。考虑覆盖度示例,可以通过使用一种或多种所模拟的关系,将跨衬底的至少一部分取得的量测目标覆盖度测量、与跨衬底的至少一部分创建的特定装置图案特征进行匹配,来确定跨衬底的至少一部分的特定装置图案特征的所预测的覆盖度图。可以针对其他多个特定装置图案特征中的每个创建相似的覆盖度图,具有其实例的每个装置图案特征跨衬底的至少一部分分布。在实施例中,覆盖度图有效地是跨衬底的至少一部分的覆盖度向量的空间分布,每个向量具有覆盖度的方向和覆盖度的大小。因此,结果是,可以将数据组合以产生每个装置图案特征的所预测的感兴趣参数(例如,覆盖度、边缘位置误差等)的衬底图。在实施例中,可以基于全芯片信息来构造衬底图,并且因此可以在场/衬底上密集地采样衬底图。

  在1140,从一个或多个衬底获取一个或多个图案化装置图案特征的测量,使用针对在1110处执行的模拟的图案化工艺将图案化装置图案转印到一个或多个衬底上。在实施例中,跨衬底获取测量,该衬底具有转印到其上的图案化装置图案的多个实例。在实施例中,根据多个衬底获取测量,已将图案化装置图案多次转印到每个衬底上。在实施例中,测量是装置上的测量。即,测量是属于装置特征本身的,而不是从装置图案周围的一个或多个量测目标而获取的测量。在实施例中,使用诸如电子显微镜的离子束(例如,电子束)测量技术来获取装置上测量。在实施例中,测量是装置图案特征的边缘位置、CD等。

  在1150,基于装置上测量,模拟的装置图案特征(例如,根据以上针对1110描述的模拟所确定的)、与测量的感兴趣参数(例如,在1130处确定并且在1120处与所模拟的装置图案特征相匹配)之间的关系可以是相关的。这种相关性可以通过分析装置特征的装置上测量来完成。例如,在覆盖度的上下文中,可以基于模拟的装置图案特征与来自相关联的量测目标的所测量的覆盖度之间的关系,针对覆盖度已被预测的特征,根据可以被标识的装置上测量确定边缘位置误差,并且所预测的覆盖度可以与所测量的装置上边缘位置误差相关。作为示例,在单独的图案化工艺执行中创建的相邻特征的边缘之间的距离误差可以与所预测的覆盖度相关。然后,可以使用相关性将预测的覆盖度转换为对覆盖度和/或装置特征的边缘位置误差的更准确的预测。因此,对于每个图案化装置图案特征,可以针对每个装置图案特征构造相当高预测性且准确的感兴趣参数(例如,覆盖度、边缘位置误差等)。

  可选地,每个装置图案特征的感兴趣参数衬底图可以具有其他相关联数据。例如,图可以包括关于与图案化工艺内的控制参数的交叉依赖性的信息,其中控制参数是通过图案化工艺在所使用的设备中被设置的参数,以改变图案化工艺的至少一部分的执行。在实施例中,控制参数是控制光刻设备的操作的参数。在实施例中,控制参数是用于控制光刻设备内的焦距、投影系统像差等的参数。因此,感兴趣参数衬底图可以包括与一个或多个光刻设备控制参数(例如,焦距、投影系统操作等)的一个或多个交叉相关性。然后,这种交叉相关性使得能够进行适当的校正,因为与装置图案的另一特征相比,装置图案的某个特征的感兴趣参数可能响应于控制参数值的改变而具有不同的改变值。

  虽然已经参考了多个图,但是应当理解,一个或多个图可以被组合成组合图(其被认为是在组合数据结构时被组合在一起的多个图)。在实施例中,可以将所有图组合成组合图,或者可以将图的子集组合成具有一个或多个剩余的单独图的组合图。例如,可以将用于多个装置图案特征中的每个装置图案特征的衬底图转换为组合衬底图,该组合衬底图将数据与组合衬底图中所包括的每个一个或多个装置图案特征的相关联采样进行组合。即,基于组合衬底图,可以基于可适用的采样定义来选择用于一个或多个相关装置图案特征的数据。

  因此,在步骤1120和1150,使用计算光刻和量测模拟以及装置上测量1140,已经将感兴趣参数的测量1130(使用一个或多个量测目标)转换为可适用的每个装置图案特征的感兴趣参数图(例如,该感兴趣参数与所测量的感兴趣参数相同或不同)。例如,在覆盖度的上下文中,使用计算光刻和测量学模拟(前馈)和装置上测量(反馈),可以将使用一个或多个覆盖度量测目标的覆盖度测量转换为每个装置图案特征的覆盖度图。将该技术放入上下文中,可以相对快速地获取测量1130,并且可以相对稀疏地跨衬底获取测量1130。此外,一个或多个量测目标被设计为基本上充当装置图案特征的行为的代理,而不是装置图案特征的实际行为的测量。因此,在步骤1120,通过使用一个或多个模拟关系将使用一个或多个量测目标的感兴趣参数的相对稀疏的测量转换为与一个或多个装置图案特征相对应的感兴趣参数(相同或不同)的值。特别地,将稀疏测量与各种装置图案特征相匹配,来为多个装置图案特征中的每个提供感兴趣参数的预测值,从而有效地产生针对每个装置图案特征的感兴趣参数衬底图。期望地,结果是通过将感兴趣参数的量测目标测量转换为多个装置图案特征中的每个,而产生跨衬底的感兴趣参数的更密集表示,其中每个装置图案特征可以具有其带有场/裸片的多个实例,并且其具有跨衬底的多个裸片/场的多个实例。现在,为了反映装置图案特征的实际行为,获取装置上测量,该装置上测量也可能相对稀疏。使用装置上测量,可以建立装置上测量之间的相关性以及建立模拟的图案特征与所测量的量测目标测量之间的关系,以使得能够更准确地预测装置图案特征的感兴趣参数。该相关性可以被用来改善预测的装置图案特征的感兴趣参数,以针对每个装置图案特征产生相当高预测性且精确的感兴趣衬底图。

  在1160至1180,每个装置图案特征的衬底图可以被用于在图案化工艺的以下方面(例如,设备(诸如光刻设备、蚀刻工具、沉积工具等)进行校正:、子工艺(例如,图案化步骤、蚀刻步骤等)、所使用的消耗品(例如,图案化装置)等)。该校正可以是前馈校正或反馈校正。在实施例中,使用光刻设备的一个或多个控制参数(例如,剂量的控制参数、焦距的控制参数(例如,衬底的Z位置的控制)、对准的控制参数(例如,衬底的X和/或Y位置的控制)、光学像差的控制参数等)在光刻设备中进行校正。

  在1160,在存在多个感兴趣参数衬底图(每个图对应于装置图案特征)的情况下,可以基于可适用的感兴趣参数衬底图以及关于图案化工艺的至少一部分的预期或实际行为的数据,来从多个装置图案特征中选择一个或多个装置图案特征的子集。例如,可以标识一个或多个关键装置图案特征,然后可以将一个或多个关键装置图案特征的相应感兴趣参数衬底图用于图案化工艺的至少一部分的校正。

  在实施例中,预期或实际行为数据包括来自被用于图案化工艺中的设备1180的数据1167,诸如在光刻设备的情况下,关于衬底的实际或预期的X、Y和/或Z位置的数据(例如,以移动平均值和/或运动标准偏差信息的形式、以衬底高度或不平坦度信息的形式、以对准误差的形式等)、关于光学像差的数据(例如,所测量的以例如Zernike像差规范形式的像差值)、关于剂量的数据(例如,可以由设备中的传感器测量的剂量误差)等。可以将行为数据作为测量值和/或作为装置的控制的一部分而生成的数据从装置输出。可以根据对先前衬底的处理收集行为数据,以用于控制一个或多个后续衬底的处理。行为数据可以根据数学模型生成,该数学模型基于某个输入(例如,来自对衬底的先前处理的数据)来预测行为。在实施例中,行为数据包括行为范围,诸如围绕或邻近基准行为的行为范围或行为集合。

  使用行为数据,可以确定行为对由装置图案特征的衬底图表示的感兴趣参数的预期影响。例如,在覆盖度和光刻设备的上下文中,基于覆盖度对这些行为中的一个或多个行为的敏感度(可以通过模拟或实验确定其敏感度),例如可以计算出一定的剂量误差、光学像差、位置误差等在覆盖度方面将导致的影响。可以利用多个覆盖度衬底图(对应每个装置图案特征的每个覆盖度衬底图)来处理该计算出的覆盖度,以确定在面对图案化工艺的至少一部分的行为时,可能产生不符合规范(例如,可能有缺陷)的哪个装置图案特征。阈值可以被用于标识由于该行为而可能会产生不符合规范的哪个或哪些装置图案特征。作为简单示例,用于特定装置图案特征的覆盖度衬底图可以标识:在衬底的特定区域中,期望该装置图案特征在正的X方向上具有2nm的覆盖度,并且装置图案特征的覆盖度的规范可以被设置为4nm(即,该装置图案特征可以接受4nm或更小的覆盖度)。然后,如果确定实际或预期的行为会导致在正的X方向上出现1-3nm的覆盖度,则该装置图案特征可以被认为是关键的,因为偏离衬底图2nm的覆盖度加上偏离实际或预期行为1-3nm的覆盖度可能导致装置图案特征不符合规范。当然,可以执行不同的分析。

  1160的分析结果是参数衬底图的集合1163,其中每个图用于被标识为关键装置图案特征的相应装置图案特征。这在图12中示意性地示出为针对特征A、特征B、特征C和特征D中的每个特征的覆盖度(在该示例中)的一组衬底图,在该示例中每个特征被标识为关键特征。如图12所示,每个覆盖度衬底图示出了其跨衬底的相关联的装置图案特征的覆盖度向量。可以看出,在某些区域中,向量的幅度相对较大,使得关键的装置图案特征具体取决于图案化工艺的行为。

  现在,分析1160可以进一步确定参数衬底图的权重,诸如被标识为用于关键装置图案特征的图。权重可以相对于针对第二特定装置图案特征的参数衬底图,来加重针对第一特定装置图案特征的参数衬底图的权重,作为确定待被进行的校正的一部分。例如,可以确定,鉴于实际或预期的行为,与第二装置图案特征相比,第一装置图案特征更可能不符合规范,被预期进一步不符合规范等。因此,与针对第二装置图案特征的参数衬底图相比,在校正分析中可以加重针对第一装置图案特征的参数衬底图的权重。因此,可以产生一个或多个权重1165,并且可以与参数衬底图的集合1163一起提供,其中每个图用于被标识为关键装置图案特征的相应装置图案特征。

  在1170,基于一个或多个感兴趣参数衬底图,确定图案化工艺的至少一部分的一个或多个校正,每个图是每个装置图案特征。例如,可以使用参数衬底图的集合1163来计算校正,其中每个图用于被标识为关键装置图案特征的相应装置图案特征。附加地或备选地,校正可以考虑一个或多个权重1165,例如,可以使用诸如al*F+. ..+an*Fn等加权度量,其中a对应于权重,F对应于特定装置图案特征(例如,关键特征)的参数衬底图,n是装置图案特征的数目。在实施例中,校正可以将图案化工艺的至少一部分的实际或预期行为考虑进来。

  在1180,可以通过在图案化工艺中所使用的设备来施加一个或多个校正。在实施例中,校正可以被转换/转译以供在设备中使用。在实施例中,在1180处,可以在设备中执行对步骤1110、1120、1150、1160和/或1170中的任何一个或多个的分析。

  因此,在实施例中,可以至少基于衬底图(例如,以加权方式)确定校正,该校正在图案化处理系统的一个或多个校正机制的能力之内,以产生改进的装置图案特征的创建。例如,在光刻设备的情况下,参数衬底图可以被用于创建光刻设备的一个或多个控制参数(例如,焦距、剂量、光学像差、X、Y和/或Z位置等)的值,该参数影响对一个或多个装置图案特征的产生的校正。在实施例中,基于装置图案特征权重,参数衬底图使得能够进行光刻设备图案转印控制,以将校正瞄准最关键的装置图案特征。

  在实施例中,出于设计、确定校正等的目的,可以将针对特定装置特征的参数衬底图与不同的感兴趣参数的一个或多个其他参数衬底图(可以是装置特征特定的或不特定的)一起使用。例如,覆盖度的衬底图可以与焦距和/或CD的衬底图(该衬底图可以特定于覆盖度图的特定特征或者可以是通用的)一起用于覆盖度校正。例如,由于例如投影系统像差,偏离焦距衬底图的散焦可以提供用于校正覆盖度偏移的信息。

  进行回顾,提供了通过计算光刻和量测模拟的组合(例如,全芯片计算光刻与量测目标量测模拟的组合)、量测目标测量(例如,ADI/AEI覆盖度测量)和装置上测量,针对每个装置图案特征创建感兴趣参数(例如,覆盖度)衬底图。有效地,提供了一种计算场内采样,以提供跨衬底的感兴趣参数的改进表示。利用一个或多个衬底图,可以基于一个或多个衬底图在图案化工艺中进行校正,以帮助改进针对一个或多个特定装置图案特征的感兴趣参数。例如,可以在光刻设备中进行校正(例如,衬底的X位置、Y位置和/或Z位置的校正、光学像差的校正、剂量的校正等)。在实施例中,以加权的组合使用多个衬底图(每个图对应于不同的装置图案特征)以进行校正。因此,可以在图案化工艺中将加权的装置图案特征的反馈提供给适当的设备以使得能够进行适当的校正。

  在覆盖度实施例中,本文中描述的技术可以基于例如装置图案布局信息和图案化工艺参数(诸如光学像差、剂量、台位置等),使用计算光刻来预测特定装置图案特征的覆盖度/图案移位(例如,对准)。然后,将来自量测目标的覆盖度/对准数据用于在选定位置锚定装置图案特征的预测覆盖度/对准。然后,基于预测的密集覆盖度(来自密集计算光刻)和稀疏覆盖度/对准测量,创建装置图案特征特定的密集覆盖度/对准图。装置上测量可以被用于将稀疏覆盖度/对准测量与预测的密集覆盖度相关联。使用这些装置图案特征特定的图,可以生成校正。例如,针对关键装置图案特征的图可以基于实际或预期的图案化工艺行为来被标识,并且被用于校正。此外,权重可以被分配给某些图,以便能够瞄准特定装置图案特征(诸如更关键的装置图案特征)。

  每个装置图案特征技术的该感兴趣参数衬底图可以产生一个或多个益处。例如,通过将可从模拟中获取的相对较高的密度与使用测量的数据(例如,量测目标数据和装置上量测数据)进行的验证组合,可以相对于可适用的装置图案特征降低感兴趣参数精度误差。此外,该技术可以使用有限的参数测量采样,因为空间信息可以基于模拟经由外推来获取,并且可以产生更高空间分辨率的参数信息。每个装置图案特征的衬底图还可以根据装置图案特征分离不同的处理指纹。不同的装置图案特征可以具有不同的场间和/或场内指纹,并且因此指纹的分离使得能够使用图案化处理系统内的校正机制来改善对误差的瞄准。此外,对装置图案特征的加权校正使得例如能够进行更适合的场内校正,其可以适合于能够在图案化处理系统内进行的校正机制。

  在实施例中,量测目标被定位成靠近装置图案特征,以在创建装置图案特征和量测目标时减小或最小化光学像差的差异。但是,在实施例中,模拟可以被用于通过适当的量测目标选择和灵敏度分析来“消除”任何差异。结果,可能需要更少的量测目标来预测装置图案特征的行为。

  在实施例中,计算量测模拟可以被用于设计针对某些装置图案特征的行为而进行优化的量测目标。即,可以选择某些量测目标的节距、分段等,以使得来自这些目标的测量的感兴趣参数能够相对于其他装置图案特征高度地(例如,大多数)表示某些装置图案特征(诸如关键装置图案特征)。因此,装置图案特征可以具有多种不同的量测目标类型,其中与其他装置图案特征相比,不同的量测目标类型更能表示一个或多个特定装置图案特征。

  在实施例中,装置上测量可以被用于验证计算光刻的正确性和/或校准计算光刻模型。

  本文中的方法的结果(或从本文中的方法的结果派生的另一结果(例如,缺陷预测))可以被用于各种目的,包括:对图案化工艺中的工艺或其中的设备的控制、对通过图案化工艺生产衬底的监测、图案化工艺的工艺或设备的设计等。例如,结果或从中派生的另一结果可以被用于:改变图案化工艺的设备或工艺,以用于进一步处理衬底或处理另一衬底。例如,结果可以被用于预测缺陷。缺陷的预测可以例如被用于:控制量测工具以检查受影响的区域和/或改变图案化工艺的设备或工艺,以用于进一步处理衬底或处理另一衬底。此外,结果可以被用于:例如通过派生用于校正光刻设备的剂量配方、实现图案化装置及其图案的设计、工艺的设置等,来设计图案化工艺。另外,结构可以被用于模型校准,例如,校准以下模型:光学邻近校正模型、源掩模优化模型、光刻制造检查模型、抗蚀剂模型、成像模型、测量模型(例如,对测量工艺进行建模)等。结果可以被用于确定工艺的一个或多个变量(例如,最佳曝光和/或最佳剂量),然后该变量可以被用于各种目的。应当理解,可以有很多其他用途。

  图13中图示了用于建模和/或模拟图案化工艺的各部分的示例性流程图。应当理解,这些模型可以表示不同的图案化工艺,并且不需要包括以下描述的所有模型。源模型1200表示图案化装置的照射的光学特性(包括辐射强度分布、带宽和/或相位分布)。源模型1200可以表示照射的光学特性,包括但不限于数值孔径设置、照射sigma(σ)设置以及任何特定照射形状(例如,离轴辐射形状,诸如环形、四极、偶极等),其中σ(或sigma)是照射器的外部径向范围。

  投影光学器件模型1210表示投影光学器件的光学特性(包括由投影光学器件引起的辐射强度分布和/或相位分布的变化)。投影光学器件模型1210可以表示投影光学器件的光学特性,包括像差、畸变、一个或多个折射率、一个或多个物理大小、一个或多个物理尺寸等。

  图案化装置/设计布局模型模块1220捕获如何在图案化装置的图案中布置设计特征,并且可以包括图案化装置的详细物理属性的表示,例如在美国专利No.7,587,704(其通过整体引用并入本文)中所述。在实施例中,图案化装置/设计布局模型模块1220表示设计布局(例如,与集成电路、存储器、电子设备等的特征相对应的器件设计布局)的光学特性(包括由给定设计布局引起的辐射强度分布和/或相位分布的变化),这是在图案化装置上或由图案化装置形成的特征布置的表示。由于可以改变在光刻投影设备中使用的图案化装置,因此期望将图案化装置的光学特性与至少包括照射和投影光学器件的光刻投影设备的其余部分的光学特性分开。模拟的目的通常是准确地预测例如边缘位置和CD,然后可以将其与器件设计进行比较。器件设计通常被定义为在OPC之前的图案化装置布局,并且将以标准化的数字文件格式(诸如GDSII或OASIS)来提供。

  可以根据源模型1200、投影光学器件模型1210和图案化装置/设计布局模型1220,模拟空间图像1230。空间图像(AI)是衬底级别的辐射强度分布。光刻投影设备的光学特性(例如,照射、图案化装置和投影光学器件的特性)决定了空间图像。

  衬底上的抗蚀剂层通过空间图像而被曝光,并且空间图像作为其中的潜在“抗蚀剂图像”(RI)被转印到抗蚀剂层。抗蚀剂图像(RI)可以被定义为抗蚀剂的溶解度在抗蚀剂层中的空间分布。可以使用抗蚀剂模型1240根据空间图像1230模拟抗蚀剂图像1250。抗蚀剂模型可以被用于根据空间图像计算抗蚀剂图像,其示例可以在美国专利申请公开No.US2009-0157360(其公开内容通过整体引用并入本文)中找到。抗蚀剂模型通常描述在抗蚀剂曝光、曝光后烘烤(PEB)和显影过程中发生的化学过程的影响,以便例如预测在衬底上形成的抗蚀剂特征的轮廓线,并且因此通常仅与抗蚀剂层的这种特性(例如,在曝光、曝光后烘烤和显影期间发生的化学过程的影响)相关。在实施例中,抗蚀剂层的光学性质(例如,折射率、膜厚度、传播和偏振效应)可以被捕获作为投影光学器件模型1210的一部分。

  因此,通常,光学模型与抗蚀剂模型之间的连接是模拟的抗蚀剂层内的空间图像强度,这是由辐射到衬底上的投影、在抗蚀剂界面处的折射、以及抗蚀剂膜堆叠中的多次反射引起的。通过吸收入射能量,辐射强度分布(空间图像强度)变成潜在的“抗蚀剂图像”,并且通过扩散过程和各种加载效果被进一步修改。对于全芯片应用而言,足够快的有效模拟方法可以通过二维空间(和抗蚀剂)图像逼近抗蚀剂堆叠中的实际3维强度分布。

  在实施例中,抗蚀剂图像可以被用作后图案转印工艺模型模块1260的输入。后图案转印工艺模型1260定义一个或多个后抗蚀剂显影工艺(例如,蚀刻、显影等)的执行。

  对图案化工艺的模拟可以例如预测抗蚀剂和/或蚀刻图像中的轮廓线、CD、边缘位置(例如,边缘位置误差)等。因此,模拟的目的是准确地预测例如印刷图案的边缘位置和/或空间图像强度斜率和/或CD等。可以将这些值与预期的设计进行比较,以例如校正图案化工艺,标识预计将发生缺陷的位置等等。预期的设计通常被定义为在OPC之前的设计布局,其可以以标准化的数字文件格式(诸如GDSII或OASIS)或其他文件格式来提供。

  因此,模型公式描述了整个过程中大多数(如果不是全部)已知的物理和化学过程,并且每个模型参数期望对应于不同的物理或化学作用。因此,模型公式设置了模型可以被用于模拟整个制造过程的程度的上界。

  图14中示出了用于对量测工艺进行建模和/或模拟的示例性流程图。应当理解,以下模型可以表示不同的量测工艺,并且不需要包括以下描述的所有模型(例如,某些模型可以被合并)。源模型1300表示量测目标的照射的光学特性(包括辐射强度分布、辐射波长、偏振等)。源模型1300可以表示照射的光学特性,包括但不限于:波长、偏振、照射sigma(σ)设置(其中σ(或西格玛)是照射在照射器中的径向范围)、任何特定的照射形状(例如,离轴辐射形状,诸如环形、四极、偶极等)等。

  量测光学器件模型1310表示量测光学器件的光学特性(包括由量测光学器件引起的辐射强度分布和/或相位分布的变化)。量测光学器件1310可以表示通过量测光学器件对量测目标的照射的光学特性、以及从量测目标向量测设备检测器的重定向辐射的传输的光学特性。量测光学器件模型可以表示各种特性,包括目标的照射、以及从量测目标向检测器的重定向辐射的传输,包括像差、畸变、一个或多个折射率、一个或多个物理大小、一个或多个物理尺寸等。

  量测目标模型1320可以表示被量测目标重定向的照射的光学特性(包括由量测目标引起的照射辐射强度分布和/或相位分布的变化)。因此,量测目标模型1320可以对由量测目标将照射辐射转换到重定向辐射的这种转换进行建模。因此,量测目标模型可以模拟来自量测目标的重定向辐射的最终照射分布。量测目标模型可以表示涉及目标的照射和根据量测而创建重定向辐射的各种特性,包括一个或多个折射率、量测的一个或多个物理大小、量测目标的物理布局等。由于可以改变所使用的量测目标,因此期望将量测目标的光学特性与至少包括照射和投影光学器件以及检测器的量测设备的其余部分的光学特性分开。模拟的目的通常是准确地预测例如强度、相位等,然后其可以被用于派生图案化工艺的感兴趣参数,诸如覆盖度、CD、焦距等。

  可以根据源模型1300、量测光学器件模型1310和量测目标模型1320,模拟光瞳或空间图像1330。光瞳或空间图像是检测器级别的辐射强度分布。量测光学器件和量测目标的光学特性(例如,照射、量测目标和量测光学器件的特性)决定了光瞳或空间图像。

  量测设备的检测器暴露于光瞳或空间图像,并且检测光瞳或空间图像的一个或多个光学性质(例如,强度、相位等)。检测模型模块1320表示来自量测光学器件的辐射如何通过量测设备的检测器来被检测。检测模型可以描述检测器如何检测光瞳或空间图像,并且可以包括信噪比、对检测器上的入射辐射的敏感度等。因此,通常,量测光学器件模型与检测器模型之间的连接是模拟的光瞳或空间图像,这由以下产生:光学器件对量测目标的照射、目标对辐射的重定向、以及重定向辐射到检测器的传输。通过吸收检测器上的入射能量,辐射分布(光瞳或空间图像)变成检测信号。

  量测工艺的模拟例如可以基于检测器对光瞳或空间图像的检测,来预测检测器处的空间强度信号、空间相位信号等、或来自检测系统的其他计算值,诸如覆盖度、CD等值。因此,模拟的目的是例如准确地预测与量测目标相对应的检测器信号或派生值,诸如覆盖度、CD等。可以将这些值与预期的设计值进行比较,以例如校正图案化工艺,标识预计将发生缺陷的位置,等等。

  因此,模型公式描述了整个量测工艺中的大多数(如果不是全部)已知物理和化学过程,并且每个模型参数期望对应于量测工艺中的不同的物理和/或化学作用。

  如上所述,诸如掩模等图案化装置被广泛用于将掩模图案转印到衬底(下文中称为晶片,以更好地区分掩模衬底和在其上转印掩模图案的衬底)的图案化工艺中。出于讨论的目的,图案化装置在下文中通常被称为掩模,并且不限制本公开的任何方面。此外,将用于制造图案化装置的设备称为图案化装置设备或掩模工具。掩模制造工艺可以类似于图案化工艺,其中期望图案经由图案制造设备(例如,电子束光刻)被转印到掩模衬底上。掩模衬底可以由例如玻璃板或石英板制成,其上可以涂覆有抗蚀剂和/或铬以将期望图案转印到铬上。随后,可以执行显影后工艺以产生可以在上述晶片图案化工艺中使用的最终掩模(称为“掩模”或“图案化装置”)。

  掩模制造工艺可能在衬底、吸收剂、抗蚀剂等中导致由于掩模制造工具或图案化装置设备(用于制造图案化装置)的误差或缺陷而引起的缺陷、热斑或工艺窗口限制图案。在晶片图案化装置上或由晶片图案化装置提供的各种晶片图案可以具有不同的工艺窗口。即,将在规范内生成图案的处理变量空间。与潜在的系统缺陷相关的图案规范的示例包括颈缩、线拉回、线细化、CD、边缘位置、抗蚀剂顶部损失、抗蚀剂底切和/或桥接的检查。可以通过合并(例如,交叠)每个单个图案的工艺窗口来获取图案化装置或其区域上的所有图案的工艺窗口。所有图案的工艺窗口的边界都包含某些单个图案的工艺窗口的边界。换言之,这些单个图案限制了所有图案的工艺窗口。这些图案可以被称为“热斑”。在实施例中,在晶片上与热斑相关联的位置可以被称为热斑位置(或工艺窗口限制的图案位置),这种位置可以例如经由光刻工艺模型(例如,光学器件模型、抗蚀剂模型等)的模拟被转换为图案化装置上的对应位置。

  通常,在图案化工艺中多次使用掩模以生产数千个甚至数百万个晶片。可以使用多于一个的掩模在晶片上产生复杂的图案。这样,掩模应当是高度准确的。然而,在掩模衬底自身上进行图案化的过程可能在掩模中引入不准确和/或缺陷。这种不准确和/或缺陷可以在例如图案形状、掩模上的位置、和/或图案的临界尺寸中。在图案化工艺中这些缺陷可能被转移到晶片上,从而导致不良或零产率并且降低良晶片(例如,满足质量要求(诸如期望CD值、产率或其他质量指标)的印刷晶片)的输出量。因此,通过掩模检查,应当尽可能完整地绘制偏离掩模上的预期图案的某些可接受的偏差,以前馈到图案化工艺的曝光步骤,因此可以在图案转印工艺期间进行适当的校正。掩膜检查的成功可以通过捕获率(即,发现缺陷的比例)来反映。然而,掩模检查还取决于生产量(例如,就成本和/或时间而言),因此,完全检查可能是不期望的;期望彻底和快速的检查以增加图案化工艺的生产量。

  为了增强掩模检查,可以使用被用于晶片上测量的设备(诸如Yieldstar和HermesMicrovision(HMI)工具),对掩模上的图案进行测量。此外,可以在掩模上进行多种测量,例如图像位置/配准、缺陷检查、缺陷复查、包括侧壁角度和图案高度在内的CD量测。在某些情况下,可以使用多个量测设备(来自多个供应商)来获取量测数据。这些掩模量测数据中的一种或组合可以被用于快速掩模缺陷测量或检测,和/或掩模缺陷、可以被进一步用于在晶片图案化工艺的曝光步骤中进行扫描器校正。公开以下方法来提供受引导的掩模检查以快速且有效地标识掩模上的缺陷位置。

  图15示意性地示出了根据实施例的用于使用掩模工具数据进行受引导的掩模检查的方法的流程。在该方法中,可以获取与掩模制造工艺有关的掩模工具数据1602。掩模工具(例如,电子束或光学掩模光刻设备)是指被用于制造掩模的工具。掩模工具数据可以包括例如图案位置记录、衬底高度图、光束方向、强度图案剂量记录、以及从掩模工具获取的其他数据。图案化装置包括设计图案或修正后的设计图案(例如,经OPC校正的设计图案),在图案化工艺期间将这些图案在一个或多个步骤中转印到晶片。

  基于掩模工具数据1602,可以例如通过建模或模拟来获取和/或生成与感兴趣参数(例如,焦距、CD等)有关的图案化装置的图案化装置衬底图1604。在实施例中,可以将掩模工具数据1602输入到与图案化装置制造工艺有关的建模和/或模拟,该工艺可以类似于图13所示的图案化工艺。例如,在实施例中,建模和/或模拟包括执行几个模型,这些模型包括图案化装置制造设备的投影光学器件模型、可以根据源模型模拟的空间图像模型、可以使用抗蚀剂模型根据空间图像模型而模拟的抗蚀剂图像模型。因此,通常,光学器件模型与抗蚀剂模型之间的联系是模拟的抗蚀剂层内的空间图像强度,这是由于到图案化装置衬底上的辐射投影、抗蚀剂界面处的折射、以及抗蚀剂膜堆叠中的多次反射引起的。因此,图案化装置衬底图1604表示掩模工具的一个或多个变量(例如,光束方向、强度、焦距等)跨图案化装置衬底的贡献的预测空间分布。

  基于图案化装置衬底图1604,可以获取和/或生成与图案化装置相对应的一个或多个热斑位置1606。在实施例中,例如,可以基于图案保真度分析通过建模和/或模拟来标识热斑位置,图案保真度分析可以涉及预期图案与在图案化工艺之后获取的图案之间的比较。例如,图案保真度可以涉及检查覆盖度误差、图案的边缘位置误差、确定在形状上偏离设计意图的偏差、缩颈、线拉回、或与设计意图有关的其他参数。然后,热斑位置可以是与图案化装置相对应的位置,例如,具有图案的相对较高的边缘位置误差或覆盖度误差的位置。

  在实施例中,对图案化装置的图案化工艺进行模拟,可以例如预测抗蚀剂和/或蚀刻图像中的轮廓线、CD、边缘位置(例如,边缘位置误差)等。因此,模拟的目的可以是准确地预测例如印刷图案的边缘位置和/或空间图像强度斜率和/或CD等。可以将这些值与预期设计和/或感兴趣参数的基准图进行比较,后者可以基于预期设计来获取。预期设计通常被定义为在OPC之前的设计布局,其可以以标准化的数字文件格式(诸如GDSII或OASIS)或其他文件格式来提供。

  在过程1610中,基于热斑位置,可以将图案化装置检查设备引导到热斑位置1606以进行缺陷检查。例如,如关于图1-4讨论的,可以引导和操作图案化装置检查设备。图案化装置检查设备的引导可以包括:基于特征的临界度、和/或强度、剂量、光束方向的贡献,对热斑位置进行排名,从而在特定位置处产生缺陷。总共数目的热斑位置可能覆盖度例如小于图案化装置衬底总面积的大约50%,因此,受引导的图案化装置检查可以快速且有效地进行,从而提高生产量和/或产率。在实施例中,如果检测到大量热斑,则表明例如图案化装置应当被替换,或者必须标识具有更好的特征分辨率或更好的掩模工具设置的新的图案化装置。

  图16示意性地示出了根据实施例的用于使用图案化装置相关的数据进行受引导的图案化装置检查的方法的流程。在该方法中,可以测量被图案化的图案化装置,和/或可以根据例如Yieldstar等图案化装置量测设备获取所测量的数据。图案化装置量测数据1702可以包括例如图案化装置上的图案的临界尺寸数据、侧壁角度数据和厚度数据。可以在隔离位置上执行图案化装置的量测。在实施例中,可以在整个图案化装置衬底上执行图案化装置量测。

  此外,基于图案化装置量测数据1702,可以获取和/或生成感兴趣参数(例如,焦距、CD等)的图案化装置衬底图1704。图案化装置衬底图1704表示跨图案化装置衬底的不同测量的空间分布。例如,在与图案的特定特征(例如,接触孔)有关的特定位置处获取的量测数据可以被应用于跨图案化装置衬底的其他位置,该其他位置具有可能暴露于图案化变量(例如,强度、光束方向等)的相似值的相似特征。可以使用图案化装置量测数据通过建模和/或模拟来获取和/或生成这种图案化装置衬底图1704。在实施例中,可以例如通过建模和/或模拟将图案化装置衬底图1604与量测数据1702组合以获取/生成图案化装置衬底图1704。

  基于图案化装置衬底图1704,例如,如先前关于图16讨论的,可以使用图案保真度分析来预测与整个图案化装置衬底相对应的一个或多个热斑位置1706。

  在过程1710中,基于热斑位置,可以将图案化装置检查设备(例如,HMI)引导到热斑位置1706以进行缺陷检查。例如,图案化装置检查设备的引导可以包括:基于特征的临界度、和/或强度、剂量、光束方向的贡献,对热斑位置进行排名,以在特定位置处产生缺陷。全部数目的热斑位置可能覆盖度例如小于图案化装置衬底总面积的大约50%,因此,受引导的图案化装置检查可以快速且有效地进行,从而提高生产量和/或产率。在实施例中,如果检测到大量热斑,则表明例如图案化装置应当被替换,或者必须标识具有更好的特征分辨率或更好的掩模工具设置的新的图案化装置。

  图17示意性地示出了根据实施例的、用于使用图案化装置相关的数据进行受引导的图案化装置检查的方法的流程。在该方法中,可以获取和/或生成图案化装置量测数据1702、以及基于图案化装置量测数据的图案化装置衬底图1704,如先前关于图16讨论的。

  此外,例如,可以根据由诸如HMI等图案化装置检查设备执行的测量,来获取图案化装置的图案化装置缺陷图1806。图案化装置缺陷图1806的示例可以包括:在图案化装置衬底上的隔离位置处测量的缺陷位置和/或热斑位置,如图18B所示。

  在过程1810中,可以使图案化装置量测数据1702、以及图案化装置衬底图1704和图案化装置缺陷图1806相关联,以预测跨整个图案化装置衬底在空间上分布的热斑位置1812。对热斑位置1812的预测可以基于建模和/或模拟,该建模和/或模拟考虑图案化装置量测数据1702(例如,光束方向、高度图、强度、焦距等),并且建立量测数据1702与在量测设备缺陷图1806中所标识的缺陷及其位置的关系(例如,通过诸如线性回归分析的统计建模)。基于该关系,模型/模拟还可以预测在图案化装置的其他位置(即,例如,HMI装置未测量出缺陷的位置)上的缺陷的产生。可以理解,与没有缺陷数据的热斑预测相比,在热斑预测中包括图案化装置缺陷图可以提供更准确的结果。

  在过程1814中,基于热斑位置1812,可以将图案化装置检查设备引导到热斑位置1812以进行缺陷检查。例如,图案化装置检查设备的引导可以包括:基于特征的临界度、和/或强度、剂量、光束方向的贡献,对热斑位置进行排名,以在特定位置处产生缺陷。全部数目的热斑位置可能覆盖度例如小于图案化装置衬底总面积的大约50%,因此,受引导的图案化装置检查可以快速且有效地进行,从而提高生产量和/或产率。在实施例中,如果检测到大量热斑,则表明例如图案化装置应当被替换,或者必须标识具有更好的特征分辨率或更好的掩模工具设置的新的图案化装置。

  图18A示意性地示出了根据实施例的、用于使用图案化装置相关数据进行受引导的图案化装置检查的方法的流程。在该方法中,可以获取和/或生成图案化装置量测数据1702、以及基于图案化装置量测数据的图案化装置衬底图1704,如先前关于图17讨论的。此外,可以如关于图17讨论的那样获取和/或生成图案化装置的图案化装置缺陷图1806。

  另外,可以获取和/或生成与感兴趣参数(例如,焦距、CD等)有关的图案化装置的基准图1908。基准图1908与待被压印在图案化装置上的预期设计图案或修正后的设计图案(例如,包括基于OPC的修正或校正)有关,该图案化装置可以被用于将图案转印到晶片上。

  在过程1910中,基于基准图1908与图案化装置衬底图1704和图案化装置缺陷图1806的组合图的比较,来确定晶片级校正1912。晶片级校正1912可以与例如使用数据1702、图1704和1806而被标识的热斑位置或缺陷有关。因此,可以在晶片的图案化工艺中至少部分补偿图案化装置中的缺陷,从而最终提高晶片图案化工艺的产率。

  图18B是根据实施例的在图16、17和18A的方法中使用的示例数据。在以上方法中使用的数据可以包括:图案化装置缺陷图1952(其是图案化装置缺陷图1806的示例)、临界尺寸均匀度图1954、来自诸如Yeldstar等量测设备的图案化装置测量、和基准图1958(基准图1908的示例),所述量测设备测量临界尺寸、侧壁角度和高度图,其还可以被用于生成图案化装置衬底图1956(其是图案化装置衬底图1704的示例)。

  图案化装置缺陷图1952可以根据来自诸如HMI等图案化装置检查设备的测量而被获取和/或生成。图案化装置缺陷图1952可以标识热斑HS1和HS2。这些热斑HS1和HS2可以基于量测设备的局部测量,但是,在可能未进行测量的位置处可能存在更多热斑。在实施例中,可以基于例如图案保真度分析算法来标识热斑,该算法将测量(例如,CD、侧壁角度等)与参考图案(例如,预期设计)进行比较。还可以基于例如在OPC建模中使用的边缘位置误差来标识热斑。在实施例中,图案保真度算法还可以包括边缘位置误差确定。

  图案化装置测量包括例如可以被用于生成图案化装置衬底图1956的图案化装置的临界尺寸、侧壁角度和高度图,例如,使用建模/模拟,如先前关于图17讨论的。这种图案化装置衬底图1956可以辅助标识(例如,通过模拟或建模)潜在的热斑、以及与图案化装置衬底相对应的热斑位置。

  当图案化装置衬底图1956与图案化装置缺陷图1952结合使用时,可以生成组合图,该组合图标识与整个图案化装置衬底相对应的热斑位置,并且具有确认的所测量的局部的热斑位置。组合图可以在衬底图的热斑与由图案化装置缺陷图标识的缺陷之间建立相关性,例如,侧壁角度误差可以与热斑位置HS1有关,CD误差可以与HS2有关,或者其组合。在实施例中,可以在掩模工具数据与缺陷图之间建立相关性。例如,光束方向可以与热斑位置HS1有关,而高度图数据可以与热斑位置HS2有关。

  在实施例中,假定没有制造和/或图案化装置衬底缺陷,可以例如通过建模/模拟来生成图案化装置的基准图1958。基准图1958表示当图案化装置制造过程中没有缺陷时应当在图案化装置上获取的期望图案。

  此外,可以将基准图1958和标识热斑位置的组合图进行比较以标识关键缺陷。基于缺陷的严重程度,某些热斑位置可能会比其他热斑位置排名更高。例如,在图案化装置衬底的中心处的热斑位置可以比在图案化装置衬底的边缘处的热斑位置排名更高。这样,可以将图案化装置检查设备引导到较高排名的热斑位置,以更快且更有效地标识缺陷,这可以在将图案化装置的图案转印到晶片上的图案化工艺期间进一步得到校正和/或解释。

  本文中描述的包括引导掩模/图案化装置检查设备的过程的方法还可以包括:生成信号以在图案化装置检查设备保持静止的同时,相对于图案化装置检查设备移动图案化装置设备的图案化装置支撑件,以使得能够在与图案化装置相对应的热斑位置处进行测量。为了能够引导图案形成检查设备,图案化装置检查设备被配置为与图案化装置设备进行通信。例如,检查设备可以经由网络和/或硬件计算机系统与图案化装置设备通信,该网络和/或硬件计算机系统使得能够在检查设备与图案化装置设备之间发送和接收信号(例如,以引导、移动、进行测量等)。

  在实施例中,引导图案化装置检查设备的过程包括:生成信号以在图案化装置保持静止的同时,相对于图案化装置移动图案化装置检查设备,以使得能够在与图案化装置相对应的热斑位置处进行测量。

  在实施例中,引导图案化装置检查设备还包括:生成信号以调节检查设备的光学系统,从而将照射光束指向与图案化装置相对应的热斑位置。

  在检查设备与具有相同衬底台的图案化装置集成在一起的示例中,第二定位器PW(图1-4)可以被配置为相对于测量光学系统准确地定位图案化装置,使得可以在热斑位置处执行测量。例如,提供各种传感器和致动器以获取感兴趣目标(例如,热斑内的目标或特征)的位置,并且将其放置在物镜15的下方。可以在X和Y方向上移动图案化装置支撑件以获取不同的目标,并且在Z方向上移动以获取目标相对于光学系统的焦距的期望位置。例如,当光学系统在实践中可以保持基本静止(通常在X和Y方向上,但是也许也可以在Z方向上)并且只有图案化装置移动时,就可以如同将物镜带到相对于图案化装置的不同位置一样,方便进行思考和描述操作。如果图案化装置和光学系统的相对位置正确,则原则上以下都是无关紧要的:无论哪个在现实世界中移动,或者两者都在移动,或者以下组合:光学系统的一部分正在移动(例如,在Z和/或倾斜方向上),而光学系统的其余部分保持静止并且衬底正在移动(例如,在X和Y方向上,但是也可以在Z和/或倾斜方向上)。

  在检查设备可以不与图案化装置集成的另一示例中,可以在图案化装置保持静止的同时,相对于图案化装置移动该设备。例如,检查设备可以在图案化装置上方移动,和/或检查设备的光学系统可以被调节成使得辐射/照射光束被指向热斑位置。取决于测量的类型(诸如光学或非光学),检查设备的相应测量元件(例如,照射/辐射束、探针等)可以被移动到热斑位置。

  图19是图示可以辅助实现本文中公开的方法和流程的计算机系统100的框图。计算机系统100包括总线102或用于传输信息的其他通信机制、以及与总线102耦合以用于处理信息的处理器104(或多个处理器104和105)。计算机系统100还包括主存储器106,诸如随机存取存储器(RAM)或其他动态存储设备,主存储器106耦合到总线102以用于存储待被处理器104执行的信息和指令。主存储器106还可以倍用于在待被处理器104执行的指令的执行期间,存储临时变量或其他中间信息。计算机系统100还包括只读存储器(ROM)108或耦合到总线102以用于存储处理器104的静态信息和指令的其他静态存储设备。提供诸如磁盘或光盘等存储设备110并且将其耦合到总线102以用于存储信息和指令。

  计算机系统100可以经由总线102耦合到显示器112,诸如用于向计算机用户显示信息的阴极射线管(CRT)或平板显示器或触摸面板显示器。包括字母数字键和其他键的输入设备114耦合到总线102以用于将信息和命令选择传递给处理器104。另一种类型的用户输入设备是光标控件116,诸如鼠标、轨迹球或光标方向键,光标控件116用于将方向信息和命令选择传输给处理器104、并且用于控制显示器112上的光标移动。该输入设备通常在两个轴(第一轴(例如,x)和第二轴(例如,y))上具有两个自由度,以允许设备指定平面中的位置。触摸面板(屏幕)显示器也可以被用作输入设备。

  根据一个实施例,可以由计算机系统100响应于处理器104执行主存储器106中所包含的一个或多个指令的一个或多个序列,来执行过程的一部分。可以从另一计算机可读介质(诸如存储设备110)将这种指令读取到主存储器106中。执行主存储器106中所包含的指令序列会使处理器104执行本文中描述的工艺步骤。也可以采用多处理布置中的一个或多个处理器来执行主存储器106中所包含的指令序列。在备选实施例中,可以使用硬连线电路系统代替软件指令或与软件指令相结合。因此,本文中的描述不限于硬件电路系统和软件的任何特定组合。

  如本文中使用的,术语“计算机可读介质”是指参与向处理器104提供指令以供执行的任何介质。这种介质可以采取很多形式,包括但不限于:非易失性介质、易失性介质和传输介质。非易失性介质包括例如光盘或磁盘,诸如存储设备110。易失性介质包括动态存储器,诸如主存储器106。传输介质包括同轴电缆、铜线和光纤,包括构成总线102的电线。传输介质也可以采用声波或光波的形式,诸如在射频(RF)和红外(IR)数据通信期间生成的声波或光波。计算机可读介质的常见形式包括:例如软盘、柔性盘、硬盘、磁带、任何其他磁介质、CD-ROM、DVD、任何其他光学介质、打孔卡、纸带、具有孔图案的任何其他物理介质、RAM、PROM和EPROM、FLASH-EPROM、任何其他存储芯片或盒、下文中所述的载波、或计算机可以从中读取的任何其他介质。

  各种形式的计算机可读介质可以涉及将一个或多个指令的一个或多个序列传输给处理器104以供执行。例如,指令最初可以承载在远程计算机的磁盘上。远程计算机可以将指令加载到其动态内存中,并且使用调制解调器通过电话线发送指令。计算机系统100本地的调制解调器可以通过电话线接收数据,并且使用红外发射器将数据转换为红外信号。耦合到总线102的红外检测器可以接收红外信号中携带的数据并且将数据放置在总线102上。总线102将数据携带到主存储器106,处理器104从主存储器106中检索并且执行指令。由主存储器106接收的指令可以可选地在由处理器104执行之前或之后被存储在存储设备110上。

  计算机系统100还理想地包括耦合到总线102的通信接口118。通信接口118提供耦合到网络链路120的双向数据通信,该网络链路连接到局域网122。例如,通信接口118可以是用于提供与对应类型的电话线的数据通信连接的集成服务数字网络(ISDN)卡或调制解调器。作为另一示例,通信接口118可以是用于提供与可兼容LAN的数据通信连接的局域网(LAN)卡。也可以实现无线链路。在任何这种实现中,通信接口118发送和接收携带表示各种类型信息的数字数据流的电、电磁或光信号。

  网络链路120通常提供通过一个或多个网络到其他数据设备的数据通信。例如,网络链路120可以提供以下的连接:通过本地网络122到主机计算机124、或到由互联网服务提供商(ISP)126操作的数据设备。ISP126进而通过全球分组数据通信网络(现在通常将其称为“互联网”128)提供数据通信服务。局域网122和互联网128都使用携带数字数据流的电、电磁或光信号。通过各种网络的信号以及在网络链路120上并且通过通信接口118的信号(其携带去往和来自计算机系统100的数字数据)是传送信息的载波的示例形式。

  计算机系统100可以通过网络、网络链路120和通信接口118发送消息并且接收数据(包括程序代码)。在互联网示例中,服务器130可能会通过互联网128、ISP 126、本地网络122和通信接口118为应用程序传输所请求的代码。例如,一个这样下载的应用可以提供实施例的照射优化。所接收的代码可以在被接收到时由处理器104执行,和/或被存储在存储设备110或其他非易失性存储装置中以供稍后执行。以这种方式,计算机系统100可以获取载波形式的应用代码。

  可以使用以下条款进一步描述实施例:

  1.一种用于图案化装置的检查的方法,该方法包括:

  获取(i)图案化装置制造工艺的图案化装置设备数据,(ii)基于图案化装置设备数据的图案化装置衬底图,以及(iii)基于图案化装置衬底图的、与图案化装置相对应的预测的工艺窗口限制的图案位置;以及

  由硬件计算机系统基于工艺窗口限制的图案位置,将图案化装置检查设备引导到工艺窗口限制的图案位置以进行缺陷检查。

  2.根据条款1的方法,其中图案化装置设备数据包括:衬底高度图、光束方向、强度和/或焦距。

  3.根据条款2的方法,其中图案化装置衬底图通过建模和/或模拟来标识光束方向、高度图、强度和/或焦距对图案化装置图案的贡献。

  4.根据条款1至3中任一项的方法,其中预测的工艺窗口限制的图案位置是通过对图案化装置衬底图的图案保真度分析进行模拟和/或建模来确定的。

  5.根据条款1至3中任一项的方法,其中图案保真度分析包括:标识图案化装置内具有与图案化装置图案有关的相对较高的边缘位置误差的位置。

  6.根据条款1至5中任一项的方法,其中引导图案化装置检查设备包括:由硬件计算机系统生成信号以在图案化装置检查设备保持静止的同时、相对于图案化装置检查设备移动图案化装置设备的图案化装置支撑件,以使得能够在与图案化装置相对应的工艺窗口限制的图案位置处进行测量。

  7.根据条款1至5中任一项的方法,其中引导图案化装置检查设备包括:由硬件计算机系统生成信号以在图案化装置保持静止的同时、相对于图案化装置移动图案化装置检查设备,以使得能够在与图案化装置相对应的工艺窗口限制的图案位置处进行测量。

  8.根据条款6或7中任一项的方法,其中引导图案化装置检查设备还包括:由硬件计算机系统生成信号以调节检查设备的光学系统,从而将照射光束定向到与图案化装置相对应的工艺窗口限制的图案位置。

  9.一种用于图案化装置的检查的方法,该方法包括:

  获取(i)图案化装置量测数据,该图案化装置量测数据包括在图案化装置上的图案的临界尺寸数据、侧壁角度数据和厚度数据,(ii)基于图案化装置量测数据的图案化装置衬底图,以及(iii)基于图案化装置衬底图的、与图案化装置相对应的预测的工艺窗口限制的图案位置;以及

  由硬件计算机系统基于工艺窗口限制的图案位置,将图案化装置检查设备引导到工艺窗口限制的图案位置以进行缺陷检查。

  10.一种用于图案化装置的检查的方法,方法包括:

  获取(i)图案化装置量测数据,该图案化装置量测数据包括在图案化装置上的图案的临界尺寸数据、侧壁角度数据和厚度数据,(ii)基于图案化装置量测数据的图案化装置的图案化装置衬底图,以及(iii)图案化装置的图案化装置缺陷图;

  由硬件计算机系统基于图案化装置的图案化装置衬底图和图案化装置缺陷图,来预测工艺窗口限制的图案位置;以及

  由硬件计算机系统基于工艺窗口限制的图案位置,将图案化装置检查设备引导到工艺窗口限制的图案位置以进行缺陷检查。

  11.一种用于图案化装置的检查的方法,该方法包括:

  获取(i)图案化装置量测数据,该图案化装置量测数据包括图案化装置上的图案的临界尺寸数据、侧壁角度数据和厚度数据的图案化装置量测数据,(ii)基于图案化装置量测数据的图案化装置的图案化装置衬底图,(iii)图案化装置的图案化装置缺陷图,以及(iv)图案化装置的基准图;以及

  由硬件计算机系统基于基准图与图案化装置衬底图和图案化装置缺陷图的组合图的比较来确定晶片级别校正。

  12.根据条款11的方法,其中组合图在以下两者之间建立相关性:在图案化装置衬底图中标识的工艺窗口限制的图案位置、与由图案化装置缺陷图标识的缺陷。

  13.根据条款9至12中任一项的方法,其中引导图案化装置检查设备包括:由硬件计算机系统生成信号以在图案化装置检查设备保持静止的同时、相对于图案化装置检查设备移动图案化装置设备的图案化装置支撑件,以使得能够在工艺窗口限制的图案位置处进行测量。

  14.根据条款9至12中任一项的方法,其中引导图案化装置检查设备包括:由硬件计算机系统生成信号以在图案化装置保持静止的同时、相对于图案化装置移动图案化装置检查设备,以使得能够在工艺窗口限制的图案位置处进行测量。

  15.根据条款13或14中任一项的方法,其中信号还包括调节检查设备的光学系统,以将照射光束定向到与图案化装置衬底相对应的工艺窗口限制的图案位置。

  16.一种用于图案化装置的检查的系统,该系统包括:

  图案化装置设备,用于制造图案化装置;

  图案化装置检查设备,被配置为与图案化装置设备进行通信;

  处理器,被配置为:

  获取(i)图案化装置设备数据,(ii)基于图案化装置设备数据的图案化装置衬底图,以及(iii)基于图案化装置衬底图的、与图案化装置相对应的预测的工艺窗口限制的图案位置;以及

  基于工艺窗口限制的图案位置,将图案化装置检查设备引导到工艺窗口限制的图案位置以进行缺陷检查。

  17.根据条款16的系统,其中预测的工艺窗口限制的图案位置是通过对图案化装置衬底图的图案保真度分析进行模拟和/或建模来确定的。

  18.根据条款16至17中任一项的系统,其中图案保真度分析包括:标识图案化装置内具有与图案化装置图案有关的相对较高的边缘位置误差的位置。

  19.根据条款16至18中任一项的系统,其中处理器还被配置为:生成信号以在图案化装置检查设备保持静止的同时、相对于图案化装置检查设备移动图案化装置设备的图案化装置支撑件,以使得能够在与图案化装置相对应的工艺窗口限制的图案位置处进行测量。

  20.根据条款16至19中任一项的系统,其中处理器还被配置为:生成信号以在图案化装置保持静止的同时、相对于图案化装置移动图案化装置检查设备,以使得能够在与图案化装置相对应的工艺窗口限制的图案位置处进行测量。

  21.根据条款19或20中任一项的系统,其中处理器还被配置为:生成信号以调节检查设备的光学系统,从而将照射光束定向到与图案化装置相对应的工艺窗口限制的图案位置。

  22.根据条款16至21中任一项的系统,其中图案化装置设备数据包括衬底高度图、光束方向、强度或焦距。

  23.根据条款22的系统,其中图案化装置衬底图通过建模和/或模拟,来标识光束方向、高度图、强度和/或焦距对图案化装置图案的贡献。

  本公开的实施例可以以硬件、固件、软件或其任何组合来实现。本公开的实施例还可以被实现为被存储在机器可读介质上的指令,该指令可以由一个或多个处理器读取和执行。机器可读介质可以包括用于以机器(例如,计算设备)可读的形式来存储或传输信息的任何机制。例如,机器可读介质可以包括:只读存储器(ROM);随机存取存储器(RAM);磁盘存储介质;光学存储介质;闪存设备;电、光、声或其他形式的传播信号(例如,载波、红外信号、数字信号等)等。此外,固件、软件、例程、指令在本文中可以被描述为执行某些动作。但是,应当理解,这种描述仅仅是为了方便,并且这种动作实际上是由计算设备、处理器、控制器或其他设备执行固件、软件、例程、指令等而引起的。

  在框图中,图示的组件被描绘为离散的功能块,但是实施例不限于如图所示组织本文中描述的功能的系统。由每个组件提供的功能可以由与当前描绘的不同组织的软件或硬件模块来提供,例如,这种软件或硬件可以被混合、结合、复制、拆解、分布(例如,在数据中心内或在地理上),或者被不同组织。本文中描述的功能可以由一个或多个计算机的一个或多个处理器执行有形的非暂态的机器可读介质上所存储的代码来提供。在某些情况下,第三方内容传递网络可以托管通过网络传达的部分或全部信息,在这种情况下,在供应或以其他方式提供信息(例如,内容)的程度上,可以通过发送从内容传送网络检索到该信息的指令来提供该信息。

  除非另有明确说明,否则根据讨论可以明显看出,应当理解,在整个说明书中,利用诸如“处理”、“计算(computing)”、“计算(calculating)”、“确定”等术语的讨论是指诸如专用计算机或类似的专用电子处理/计算设备等特定装置的动作或过程。

  如本文中使用的,除非另有明确说明,否则术语“或”包含所有可能的组合,除非不可行的情况。例如,如果陈述组件可以包括A或B,则除非另有明确说明或不可行的情况,否则该组件可以包括A或B或A和B。作为第二示例,如果陈述组件可以包括A、B或C,则除非另有明确说明或不可行的情况,否则该组件可以包括A或B或C或A和B或A和C或B和C或A和B和C。

  读者应当理解,本申请描述了若干发明。申请人不是将这些发明分成多个独立的专利申请,而是将这些发明归为一个文档,因为它们的相关主题可以使申请过程更加经济。但是,这种发明的独特的优点和方面不应当混为一谈。在一些情况下,实施例解决了本文中指出的所有缺陷,但是应当理解,本发明是独立有益的,并且一些实施例仅解决了这种问题的子集或者提供其他未提及的益处,这些益处对于审查本公开的本领域技术人员而言是很清楚的。由于成本限制,本文中公开的一些发明目前可能没有要求保护,而是可能在诸如连续申请等以后的申请中要求保护,或者通过修改本权利要求书来要求保护。同样,由于篇幅限制,本文件的“摘要”和“发明内容”部分均不应当被视为包含所有这种发明或这种发明的所有方面的全面列表。

  应当理解,说明书和附图并非旨在将本发明限制为所公开的特定形式,相反,其意图是涵盖落入由所附权利要求限定的本发明的精神和范围内的所有修改、等同形式和备选形式。

  鉴于本说明书,本发明的各个方面的修改和备选实施例对于本领域技术人员将是清楚的。因此,本说明书和附图仅应当被解释为是说明性的,并且目的是向本领域技术人员教导用于实施本发明的一般方式。应当理解,本文中示出和描述的本发明的形式将被视为实施例的示例。可以对本文中示出和描述的元素和材料进行替代,可以对各部分和过程进行颠倒、改变顺序或省略,可以独立地利用某些特征,并且可以组合实施例或实施例的特征,所有这些对于受益于本发明的本说明书的本领域技术人员而言是清楚的。在不脱离如所附权利要求中描述的本发明的精神和范围的情况下,可以对本文中描述的元素进行改变。本文中使用的标题仅用于组织目的,而并不意在用来限制本说明书的范围。

  如在本申请中通篇使用的,词语“可以(may)”以允许的意义(即,表示有可能)而不是强制性的意义(即,必须)来使用。词语“包括(include)”、“包括(including)”和“包括(includes)”等表示包括但不限于。如在本申请中通篇使用的,除非内容另外明确指出,否则单数形式的“一个(a)”、“一个(an)”和“该(the)”包括复数指示物。因此,例如,对“一个(an)”元素或“一个(a)”元素的引用包括两个或多个元素的组合,尽管对于一个或多个元素使用其他术语和短语,诸如“一个或多个”。描述条件关系的术语(例如,“响应于X、Y”、“在X、Y时”、“如果X、Y”、“当X、Y时”等)包含因果关系,其中先决条件是必要的因果条件,先决条件是充分的因果条件,或者先决条件是结果的附带的因果条件,例如,“状态X在获取条件Y时发生”是“X仅在Y时发生”和“X在Y和Z时发生”的通称。这种条件关系不限于在获取先决条件之后立即发生的后果,因为某些后果可能会延迟,并且在条件陈述中,先决条件与它们的后果相关,例如,先决条件与发生后果的可能性有关。除非另有说明,否则其中多个性质或功能被映射到多个对象的陈述(例如,一个或多个处理器执行步骤A、B、C和D)既包含所有这种性质或功能被映射到所有这种对象,又包含性质或功能的子集被映射到性质或功能的子集(例如,既包含所有处理器均执行步骤AD,又包含如下情况:处理器1执行步骤A,处理器2执行步骤B、和步骤C的一部分,并且处理器3执行步骤C的一部分和步骤D)。此外,除非另有说明,否则一个值或动作“基于”另一条件或值的陈述既包含条件或值是唯一因素的情况,又包含条件或值是多个因素中的一个因素的情况。除非另有说明,否则某个集合的“每个”实例具有某个性质的陈述不应当理解为排除较大集合的某些以其他方式相同或相似的成员不具有该性质的情况,即,每个不一定表示每一个。

  在某些美国专利、美国专利申请或其他材料(例如,文章)通过引用被并入的程度上,这种美国专利、美国专利申请和其他材料的文本仅通过引用而并入,使得这种材料与本文中给出的陈述和附图之间不存在冲突的程度。在发生这种冲突的情况下,在这种通过引用并入的美国专利、美国专利申请和其他材料中的任何这种冲突的文本均明确地不通过引用并入本文。

  尽管上面已经描述了本公开的特定实施例,但是应当理解,实施例可以以不同于所描述的方式来实践。

《受引导的图案化装置的检查.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式(或pdf格式)